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Abstract

Fine-tuning pre-trained multilingual models, such as mBART, enables the achievement

of promising results in multilingual abstractive text summarization. However, it can be

challenging for language pairs with limited or no provided supervised data, which is often

the case for low-resource languages.

This thesis investigates different methods to improve the quality of zero-shot

multilingual abstractive text summarization using pre-trained multilingual models, e.g.,

mBART. Specifically, I propose fine-tuning only queries and keys of multi-head attention,

resulting in better results and requiring less time for fine-tuning as it updates fewer

parameters. Applying this method during fine-tuning the mBART model with only

English data makes it possible to perform intralingual summaries in other languages,

including low-resource languages. For example, for Gujarati, it improves the

BERTScore-F1 metric from 59.2 to 73.2 compared to the model fine-tuned without this

method.

Other approaches proposed in this thesis enable cross-lingual summarization in zero-

shot cases by fine-tuning the mBART model using only monolingual data in multiple

languages. Language-specific encoder output adapters adapt encoder representation tokens

to the output language and force the output to be in the expected language. This approach

performs well but is slightly less effective than another approach that uses an adversarial

language classifier. The use of the adversarial language classifier makes the encoder output

less language-specific. In my thesis, I also present an updated version of this approach

that better encourages language-independent encoder output representation by using

Kullback–Leibler divergence to a uniform class distribution as a loss function. Additionally,

I combine this updated version with another approach that removes a residual connection

from one encoder layer to decrease positional information from the encoder output. This

combination of methods produces the best results. For example, in the Russian-English

pair, the Rouge-1 value improves from 31.9 to 33.1. I also analyzed the encoder output

representation, attempting to recognize the input language. This analysis confirms that

new approaches lead to more language-independent encoder output representation results.

This thesis also determines the required amount of supervised data for few-shot

experiments with which it is possible to achieve results comparable to experiments with

complete supervised data in both intralingual and cross-lingual scenarios. Experiments

showed that even a small amount of supervised data in the expected languages (10

samples) can significantly improve the results. Adding more data further improves the

results. In most scenarios, fine-tuning with 1000 or 10000 samples leads to results close to

the supervised solution.
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Zusammenfassung

Die Fine-tuning von vortrainierten mehrsprachigen Modellen wie mBART ermöglicht

versprechende Ergebnisse bei der mehrsprachigen abstrakten Textzusammenfassung.

Allerdings kann dies bei Sprachpaaren mit begrenzten oder gar keinen überwachten

Daten eine Herausforderung darstellen, was bei Low-Resource-Sprachen oft der Fall ist.

In dieser Arbeit werden verschiedene Methoden zur Verbesserung der Qualität

mehrsprachiger abstrakter Textzusammenfassungen in Zero-Shot-Fällen mit

vortrainierten mehrsprachigen Modellen, z.B. mBART, untersucht. Ich schlage vor, nur die

Queries und Keys der Multi-Head-Attention zu fine-tunen, was zu besseren Ergebnissen

führt und weniger Zeit für die Fine-tuning erfordert, da weniger Parameter aktualisiert

werden. Die Anwendung dieser Methode während der Fine-tuning des mBART-Modells

mit ausschließlich englischen Daten ermöglicht die Durchführung von intralingualen

Zusammenfassungen in anderen Sprachen, einschließlich Low-Resource Sprachen. Für

Gujarati beispielsweise verbessert sie die BERTScore-F1-Metrik von 59,2 auf 73,2 im

Vergleich zu dem Modell, das ohne diese Methode fine-tuned wurde.

Andere Ansätze, die in dieser Abschlussarbeit vorgeschlagen werden, ermöglichen eine

sprachübergreifende Zusammenfassung in Zero-Shot-Fällen, indem das mBART-Modell

nur mit monolingualen Daten in mehreren Sprachen fine-getuned wird. Sprachspezifische

Encoder-Output-Adapter passen die Token der Encoder-Repräsentation an die

Ausgabesprache an und erzwingen die Ausgabe in der erwarteten Sprache. Dieser Ansatz

erbringt gute Leistungen, ist aber etwas weniger effektiv als ein anderer Ansatz, der einen

Adversarial-Language-Classifier verwendet. Durch den Einsatz des

Adversarial-Language-Classifier ist die Encoder-Repräsentation weniger sprachspezifisch.

In meiner Abschlussarbeit stelle ich auch eine aktualisierte Version dieses Ansatzes vor,

die die Encoder-Repräsentation noch weniger sprachspezifisch macht und die

Kullback-Leibler-Divergenz zu einer uniformen Klassendistribution als Verlustfunktion

verwendet. Außerdem kombiniere ich diese aktualisierte Version mit einem anderen

Ansatz, bei dem eine Residual-Verbindung einer Encoderschicht entfernt wird, um die

Positionsinformationen aus der Encoder-Repräsentation zu verringern. Diese

Kombination von Methoden führt zu den besten Ergebnissen. So verbessert sich

beispielsweise der Rouge-1-Wert für das russisch-englische Paar von 31,9 auf 33,1. Ich

habe auch die Darstellung der Encoder-Repräsentation analysiert und versucht, die

Eingabesprache zu erkennen. Diese Analyse bestätigt, dass die neuen Ansätze zu

ergebnissen führen, die eine sprachunabhängigere Encoder-Repräsentation zeigen.

In dieser Abschlussarbeit wird auch die erforderliche Menge an überwachten Daten

für Few-Shot-Experimente bestimmt, mit denen es möglich ist, sowohl in intralingualen
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als auch in sprachübergreifenden Szenarien vergleichbare Ergebnisse wie mit vollständig

überwachten Daten zu erzielen. Die Experimente haben gezeigt, dass bereits eine kleine

Menge überwachter Daten in den erwarteten Sprachen (10 Stichproben) die Ergebnisse

deutlich verbessern kann. Durch Hinzufügen weiterer Daten werden die Ergebnisse weiter

verbessert. In den meisten Szenarien führt die Fine-tuning mit 1000 oder 10000 Stichproben

zu Ergebnissen, die der überwachten Lösung nahe kommen.
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1 Introduction

1.1 Motivation

Text summarization helps analyze large volumes of data in a short time. It enables people

to obtain relevant key information faster without reading entire texts. It can be applied in

different use cases. For example, when reading research papers, we first read abstracts to

understand what important information these papers contain. News summarization can

provide readers with key facts from different articles. Summarizing customer reviews helps

to receive faster feedback and understand if customers are satisfied. Text summarization

can also be applied as a pre-processing step for other tasks, e.g., information retrieval,

facilitating the search process.

Abstractive text summarization is a sequence-to-sequence task in natural language

processing where longer texts are inputted, and shorter versions containing key

information are generated. Unlike extractive methods, which only extract sentences or

phrases from the original texts, abstractive summarization creates new texts that may

include novel words, phrases, and sentences.

Multilingual abstractive summarization involves working with input texts and

summaries in various languages, including multiple intralingual (input and output in the

same language) input text-summary pairs and even multiple cross-lingual (input and

output languages can differ) input text-summary pairs. Training models for performing

multilingual abstractive summarization requires much more supervised data in different

languages, making it more challenging. This is especially problematic for low-resource

languages and different cross-lingual combinations of languages for which such data does

not exist. It complicates the training of separate models for every language pair. Also, this

approach exponentially increases the number of required models O(𝑛2) (where 𝑛 is a

number of languages) and extends training time.

Another approach for solving themultilingual summarization task is to combinemultiple

neural networkmodels. Firstly, it is necessary to train an intralingual summarizationmodel

that, for example, generates summaries in English from texts in English. Secondly, other

translation models can be utilized for translation to and from English and other languages

for data pre- and post-processing. In this case, only one summarization model needs to

be trained, and it requires supervised data only in one language. However, this approach

suffers from error propagation in each model, leading to overall poor performance.

An alternative solution that addresses these drawbacks involves using a single

multilingual model capable of generating intra- and cross-lingual summaries in different

1



1 Introduction

languages. This approach utilizes transfer learning between languages and eliminates the

need for supervised data for every language pair. Pre-trained models can be used to

enhance the quality of such a model and enable zero-shot summarization for low-resource

languages that were not included in the training data. One such model is mBART

presented by Yinhan Liu et al. (2020). The mBART model uses the Transformer

architecture introduced by Vaswani et al. (2017), which represents a state-of-the-art

solution for sequence-to-sequence tasks in natural language processing. The mBART

model is pre-trained on a huge amount of intralingual data across 25 languages, including

high-resource and low-resource. By fine-tuning pre-trained multilingual models such as

mBART, it becomes possible to generate mono- and cross-lingual summaries in different

languages.

The challenges faced in multilingual summarization are similar to those in machine

translation. In machine translation, various methods have been investigated to achieve

better results in zero-shot and few-shot cases (Arivazhagan et al. 2019; D. Liu, Niehues,

et al. 2021; Philip et al. 2020). The objective of this thesis is to adapt these methods to

multilingual summarization and evaluate their impact on the quality of zero-shot and

few-shot summarizations. By conducting few-shot experiments on pre-trained models,

the aim is to determine the amount of data required to achieve results comparable to

experiments conducted with complete supervised data.

1.2 Problem statement and research questions

Abstractive summarization can be performed by deep neural networks using an encoder-

decoder architecture, particularly the Transformer model proposed by Vaswani et al. (2017).

However, training such models from scratch with a large amount of multilingual data can

be very expensive and requires supervised data in numerous languages. To address this

issue and improve both the quality of summarization and the speed of training, pre-trained

Transformer models can be utilized. Specifically, for multilingual tasks like multilingual

abstractive summarization, employing pre-trained models that have been trained on

extensive multilingual data can be highly beneficial. These models are capable of encoding

and generating high-quality texts in various languages, including both high-resource and

low-resource languages.

The utilization of multiple languages during pretraining enables the identification of

common features and facilitates transfer learning across languages, similar to how humans

operate. Just as a person who speaks multiple languages can learn to create text summaries

in one language and subsequently apply that knowledge to summarize texts in another

language more efficiently, multilingual models can be fine-tuned using data from a single

language and then used for summarization in unseen languages during the fine-tuning

process. In this thesis, the performance of fine-tuning pre-trained multilingual models

for the multilingual abstractive summarization task will be investigated, leading to the

formulation of the following research questions:

2



1.3 Thesis outline

Research question 1: How can we generate intralingual summaries of texts in low-

resource languages when we only have intralingual data available in other languages and

a pre-trained multilingual model?

Research question 2: How can we generate cross-lingual summaries of texts when

we only have intralingual data available in the same languages or other languages, along

with a pre-trained multilingual model? Various scenarios and cases need to be considered

in this context:

• The languages are available as intralingual data during the fine-tuning process, but

they are considered zero-shot for cross-lingual summarization.

• The output language is available during the fine-tuning process, but the input

language is not.

• The input language is available during the fine-tuning process, but the output

language is not.

Research question 3: What is the required amount of supervised data for few-shot

experiments to achieve results that are comparable to experiments with complete

supervised data in both intralingual and cross-lingual scenarios?

Research question 4: What methods can be applied to improve zero-shot results in

both intralingual and cross-lingual scenarios?

1.3 Thesis outline

This thesis has the following structure. Chapter 2 provides background information.

It begins with a description of the summarization task, followed by an explanation of

how Transformer models work. Chapter 3 introduces various methods from the existing

literature that can improve the results of multilingual experiments. Chapter 4 describes

approaches that I propose in this thesis that could lead to further improvements. Chapter

5 provides an experimental setup that I use for experiments, for example, hyperparameters

and metrics that I apply. Chapter 6 and Chapter 7 explain conducted experiments and

discusses their results. Chapter 8 summarizes the results of my thesis, addresses the

research questions and offers suggestions for further investigation.
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2 Background

2.1 Sequence-to-sequence solution architecture

Recurrent neural networks (Rumelhart, Hinton, and Williams 1986), including gated

recurrent neural networks (Chung et al. 2014) and long short-term memory (Hochreiter

and Schmidhuber 1997), were considered state-of-the-art solutions for

sequence-to-sequence problems according to Vaswani et al. (2017). However, their main

drawback is the sequential nature of computations, which leads to longer training times.

In 2017, a new model architecture called the Transformer was introduced by Vaswani et al.

(2017). This innovative approach allows significantly more parallelization and has

emerged as the new state-of-the-art solution for sequence-to-sequence problems,

including abstractive summarization.

The Transformer model is an attention-based encoder-decoder architecture. The

Transformer encoder takes an input text which should be summarized as a sequence of

tokens x = [𝑥1; . . . ; 𝑥𝑛] and maps it to a sequence of continuous representations z = [𝑧1; . . . ;

𝑧𝑛]. The encoder consists of a stack of 𝑁 identical layers. Every layer includes two parts.

The first is a multi-head self-attention mechanism, and the second is a fully connected

feed-forward network. A residual connection is used around each part followed by a

normalization layer. The output of each part is 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑃𝑎𝑟𝑡 (𝑥)), where 𝑃𝑎𝑟𝑡 (𝑥)
is the function implemented by each part.

The Transformer decoder also consists of a stack of 𝑁 identical layers. In addition to

the two parts in each encoder layer, the decoder contains a third part, which performs

multi-head attention over the output of the encoder. The Transformer decoder takes a

continuous representation z, along with all previously generated tokens, as input and

generates the output summary 𝑦 = [𝑦1; . . . ; 𝑦𝑚] token by token (Vaswani et al. 2017). At

each step, the model is auto-regressive and calculates conditional probabilities P(𝑦1; . . . ; 𝑦𝑚
| 𝑥1; . . . ; 𝑥𝑛) (Yang Liu and Lapata 2019). The conditional probability of each token indicates

the likelihood of that token given the specific input text and all previously generated

tokens. Figure 1 provides its architecture.

The attention mechanism plays an important role in the Transformer architecture. It

analyzes sequences by paying more or less attention to different positions of sequences

depending on their importance.

The Transformer attention mechanism is referred to as multi-head attention. "Multi-

head" means that it operates with ℎ attentions or heads in parallel. As input, the multi-head

attention receives three vectors at each position: query, key, and value. Firstly, these vectors
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2 Background

Figure 1: The Transformer - model architecture (Vaswani et al. 2017).

are linearly projected ℎ times into dimensions 𝑑𝑞 , 𝑑𝑘 , and 𝑑𝑣 using distinct learned linear

projections. Secondly, a scaled dot-product attention is applied in parallel to the projected

vectors, generating output values of dimension 𝑑𝑣 for each head. Thirdly, the output values

from ℎ heads are concatenated into a single vector. Finally, this concatenated vector is

linearly projected to obtain the output vector, which represents the final values of the

multi-head attention. Figure 2 illustrates the structure of the multi-head attention.
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2.1 Sequence-to-sequence solution architecture

Figure 2: Multi-Head Attention (Vaswani et al. 2017).

MultiHead(𝑄,𝐾,𝑉 ) = Concat(head1, ..., headh)𝑊 𝑂 ,

where headi = Attention(𝑄𝑊 𝑄

𝑖
, 𝐾𝑊 𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 ),

𝑊
𝑄

𝑖
∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,

𝑊 𝐾
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,

𝑊 𝑉
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 ,

𝑊 𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙

Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉

(1)

An advantage of multi-head attention is that it allows the model to learn information

from different representation subspaces at different positions. With a single attention

head, it is impossible because of the averaging of values.

A part of multi-head attention that performs attention for every head is called scaled

dot-product attention. As input, it receives queries, keys, and values of dimensions 𝑑𝑞 , 𝑑𝑘 ,

and 𝑑𝑣 respectively. Firstly, it calculates the dot products between the query and all keys.

Secondly, it divides the results by

√
𝑑𝑘 . After that, a softmax function is applied, generating

weights for the input values. Finally, it multiplies the input values by these weights and

computes the sum. All of these computations are performed in parallel for input positions
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2 Background

Figure 3: Scaled Dot-Product Attention (Vaswani et al. 2017).

using matrices that contain all input vectors, 𝑄 , 𝐾 , and 𝑉 . Figure 3 presents the structure

of scaled dot-product attention.

In Transformer architecture attention is utilized in three places:

• Self-attention in encoder layers: In this case, input queries, keys, and values are

identical and represent the output of the previous layer in the encoder. Each position

in the encoder can use vectors from all other positions, both before and after itself.

• Self-attention in decoder layers: Similar to self-attention in encoder layers, but it

cannot utilize vectors from positions that come after itself because a decoder is

auto-regressive. This property is implemented by masking out all positions to the

right of the current position before applying the softmax function in the scaled

dot-product attention. The masking is achieved by setting values to -∞, resulting in

zero probability after applying the softmax function.

• Encoder-attention in decoder layers: In this case, keys and values are derived from

the output of the encoder, while only queries represent the output of the previous

layer in the decoder. This enables every position in the decoder to obtain information

from all positions in the input sequence.
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2.2 Pre-training for sequence-to-sequence tasks

2.2 Pre-training for sequence-to-sequence tasks

Training a Transformer model for solving an NLP task from scratch can be challenging,

requiring substantial hardware resources and time. Additionally, it needs a significant

amount of data to enable the model to acquire knowledge about various language patterns,

structures, semantic understanding, and contextual representations of words. When

working with multilingual models, even more data is required to learn to encode and

generate texts in different languages. Supervised datasets used for many tasks may not

be sufficient to understand languages and different relationships due to their potentially

limited size.

One potential solution to this challenge is the use of pre-trained models, which are

widely employed for NLP tasks nowadays. These models are typically trained on huge

amounts of unsupervised data, making it easier to obtain data. After being trained for a

certain period, pre-trained models can encode and generate texts well, although they are

not yet ready for solving specific NLP tasks. To adapt these models for various NLP tasks

such as question answering, machine translation, text summarization, etc., they need to

be fine-tuned using task-specific supervised data.

An advantage of fine-tuning pre-trained models is that this approach requires less

supervised data and training time to achieve acceptable results compared to training

from scratch. This makes the training process faster and more resource-efficient. The

effectiveness of this approach lies in transfer learning between tasks, as many tasks share

similarities and involve similar subtasks. All sequence-to-sequence models, including

pre-trained models, are trained to understand input texts and generate corresponding

output texts. Hence, fine-tuning necessitates less data and fewer resources.

Different types of pre-trained models are based on complete Transformers architecture

or only some components. Wang et al. (2022) describe these types:

• Encoder-only models. Such models utilize only an encoder from the

Transformers architecture. These models are a good choice for an analysis of

sequence representations. They can perform tasks at the sentence or token level

such as natural language inference, named entity recognition, and

question-answering. An example of such a model is BERT (Bidirectional Encoder

Representations from Transformers), as proposed by Devlin et al. (2019).

• Decoder-only models. Such models utilize only a decoder from the Transformers

architecture and can be utilized for text generation tasks. One of the first models

of this type was GPT-2 published by Radford et al. (2019). This type is currently

a big trend and is widely utilized for large language models (LLMs). One such

model is LLaMA proposed by Touvron et al. (2023), which achieves state-of-the-art

performance and is trained solely using publicly available data.

• Encoder-decoder models. Such models use both the encoder and decoder of

the original Transformers architecture. Encoders are used for analyzing an input

sequence and decoders for output generation. This type is a good choice for sequence-

to-sequence tasks. An example that utilizes this architecture is BART (Bidirectional
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2 Background

and Auto-Regressive Transformers) presented by Lewis et al. (2020). Another popular

model is T5 (Text-to-Text Transfer Transformer) presented by Raffel et al. (2020).

Pre-trained models use unsupervised data for pre-training. During pre-training encoder-

decoder models (BART and T5) corrupt an input sequence and try to reconstruct it. Lewis

et al. (2020) state that the pretraining of BART is carried out in two steps. In the first

step, an input text is corrupted using one of the noising functions. In the second step,

models learn how to reconstruct the original text from the corrupted version. Pre-training

is performed by minimizing a reconstruction loss, which is calculated as the cross-entropy

between the output of the decoder and the original document.

A B C . D E .A . C . E . A _ . D _ E .

A _C . _ E . C . D E . A B
Document RotationToken Masking

Token Deletion Text Infilling

D E . A B C .
Sentence Permutation

Figure 4: Noising functions allowed by BART (Lewis et al. 2020).

Models can use various noising functions for text corruption. BART, for example, allows

the utilization of the following types of noising functions that are also demonstrated in

Figure 4:

• Token Deletion: Random tokens are deleted from the input. The model must insert

missing inputs.

• Token Masking: Random tokens are replaced with [MASK] elements. The model

must replace [MASK] tokens with the correct tokens.

• Text Infilling: Random text spans with varying numbers of tokens are sampled

and replaced with a single [MASK] token. The model learns to predict the number

of missing tokens in each span.

• Sentence Permutation: Sentences within the text are shuffled randomly. The

model learns to detect the correct order.

• Document Rotation: The document is rotated in such a way that it begins with

one randomly chosen token. The model learns to identify the starting point of the

document.

Pre-trained models can be easily fine-tuned for various sequence-to-sequence tasks.

The challenge, however, is that the original versions of some models listed above are

pre-trained exclusively on data in a single language (English) and can not be utilized for

multilingual sequence-to-sequence tasks.

To address this challenge, it is possible to pre-train multilingual models capable of

encoding and generating texts in different languages. Some of the models listed above
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2.2 Pre-training for sequence-to-sequence tasks

(BERT (Devlin et al. 2019)., BART (Lewis et al. 2020), and T5 (Raffel et al. 2020)) have

their multilingual versions (e.g. mT5 presented by Xue et al. (2021) and mBART published

by Yinhan Liu et al. (2020)). These models are pre-trained using multiple languages

simultaneously, sharing vocabulary and model weights. This sharing facilitates transfer

learning between languages due to the similarities among them. Especially, low-resource

languages could benefit from this transfer learning.

Pre-training of multilingual models is conducted similarly to the original models, but

for different languages simultaneously. To inform a model about the language of the input

sequence and the expected language of the output text, multilingual models use language

tokens. These tokens are simply placed at the beginning or end of input sequences.
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2.3 Summarization task

Summarization is one of the sequence-to-sequence tasks that can be tackled by using

pre-trained Transformers models. Summarization is a natural language processing task

that aims to shorten longer texts while preserving their key information, important details,

and overall meaning. It reduces long documents to one or a few sentences. Summarization

can be used for faster information extraction, headline generation, abstract generation for

research papers, preprocessing for text classification and information retrieval, and other

applications.

As Allahyari and Safaei (2017) state, manual summarization done by humans is a time-

consuming process that requires significant resources. Therefore, it is a perfect candidate

for automation. However, automatic text summarization faces significant challenges since

machines lack human knowledge and language capabilities, making it a complex and

non-trivial task.

Pilault et al. (2020) note that automatic text summarization can be accomplished using

two main techniques: extractive and abstractive. Extractive summarization techniques

involve selecting a subset of words, phrases, or sentences from the input document and

constructing a summary using them, without introducing new words or paraphrasing.

The selected sentences should be concatenated in a manner that ensures readability, avoids

redundancy, and maintains coherency.

One advantage of extractive summarization is that it relies only on the information

present in the original text, without introducing any additional details. At the sentence

level, extractive summarization can be seen as a binary classification problem, with the

first class representing sentences to be included in the summary, and the second class

containing sentences that should be ignored (Gialitsis, Pittaras, and Stamatopoulos 2019).

A formal description of the task is as follows:

A given document D consisting of a sequence of N sentences 𝑆 = 𝑠𝑖, 𝑖 ∈ 𝑁 , is modified to
a subset of M sentences (where M < N) using a classifier that predicts a class (0, 1) for each
sentence (1 if a sentence should be included to the summary, 0 if not).

Abstractive summarization involves creating summaries that may include expressions,

sentences, or words not present in the original texts, while also capturing the meaning,

key ideas, and elements of the source text. One advantage of abstractive summarization is

its ability to generate summaries that resemble human-like writing, thereby enhancing

readability (Pilault et al. 2020). Abstractive summarization can be viewed as a sequence-

to-sequence problem. It takes as an input a sequence of tokens x = [𝑥1; . . . ; 𝑥𝑚] and

generates a target sequence y = [𝑦1; . . . ; 𝑦𝑛], so that y contains key infromation from x
(𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃 (𝑦 |𝑥)) and n < m (Chopra, Auli, and Rush 2016).

Table 1 shows an example of extractive and abstractive summaries.
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2.3 Summarization task

Text Coventry firm Travel de Courcey is to introduce the three buses in

May next year, on its Park and Ride South route. The 38-seat buses

will run between the Memorial Park in Kenilworth Road and the city

centre using power points already installed by the council. A Travel

de Courcey spokesman said the company had been looking to improve

its vehicles, both environmentally and from a passenger perspective.

The buses, Versa EV’s, are provided by Optare plc of Leeds. Travel de

Courcey has invested £400,000, the government’s Green Bus Fund has

invested £300,000 and Centro, which looks after public transport in the

West Midlands, has contributed £100,000. Mike de Courcey, from the

bus firm, said when it heard about the Green Bus Fund it seemed a good

opportunity for the firm. "The electric buses are ideal for urban driving

where the vehicle is stopping and starting," he said.

Extractive

summary

Coventry firm Travel de Courcey is to introduce the three buses in May

next year, on its Park and Ride South route. The 38-seat buses will run

between the Memorial Park in Kenilworth Road and the city centre

using power points already installed by the council.

Abstractive

summary

Electric buses will soon be running on the roads in Coventry.

Table 1: Examples of extractive and abstractive summaries.
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2.4 Zero-shot and few-shot multilingual abstractive
summarization

Multilingual abstractive summarization refers to the generation of summaries for texts

written in different languages. Training a single model that performs well with various

languages can be challenging. Such models need to encode and generate texts in different

languages, which can vary significantly in terms of alphabets, vocabulary, grammar, syntax,

and idiomatic expressions.

Multilingual summarization can be categorized into two types: intralingual and cross-

lingual. Intralingual multilingual summarization models can handle different languages,

but the input text and generated summaries are in the same language. Cross-lingual

multilingual summarization, on the other hand, can generate summaries in languages

different from the language of the input texts.

Figure 5: Two types of multilingual summarization models. Left: intralingual model; Right:

cross-lingual model.

Training models for multilingual summarization requires a substantial amount of

supervised training data, especially for different directions of cross-lingual scenarios. One

possible solution to this problem is training a single model on multilingual data, enabling

it to learn relationships between languages. Such models benefit from transfer learning,

as languages within the same family share similarities in summarization processes. As the

process of summarization is similar in different languages, training a single model for

multiple languages can improve results and facilitate summarization in those languages.

Another improvement can be achieved by utilizing pre-trained multilingual models that

have been pre-trained on extensive amounts of unsupervised multilingual data. Although

these models cannot be directly used for any task, they possess knowledge about language

relationships and usually have a large vocabulary. To employ pre-trained multilingual

models for multilingual summarization, they need to be fine-tuned using supervised data.

Fine-tuning a model in one language enables summarization in other languages, as the

model has acquired knowledge about those languages from the pre-training phase.
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2.4 Zero-shot and few-shot multilingual abstractive summarization

Zero-shot multilingual summarization refers to training a model using data in certain

languages and evaluating it using languages that complete one of the following conditions:

• The input language or the output language is unseen during the fine-tuning process.

• The input language and the output language are available during the fine-tuning

process, but not in such a combination.

In some cases, achieving good results in zero-shot scenarios can be challenging. In such

situations, few-shot learning can help improve performance. Few-shot learning differs

from zero-shot learning in that it utilizes a small amount of supervised data. An advantage

of few-shot learning is that it is relatively easy to prepare a small amount of data. By

adapting a pre-trained model quickly, few-shot learning can enhance results compared

to zero-shot learning. The amount of data required for few-shot learning depends on the

task and dataset.

15





3 Related work

This chapter discusses various methods that can enhance the performance of multilingual

summarization in zero-shot and few-shot scenarios. To achieve better results in zero-shot

and few-shot multilingual summarization, the methods should have at least one of the

following objectives:

• Maximizing transfer learning and minimizing catastrophic forgetting.
Maximize the benefits of utilizing a multilingual pre-trained model and minimize

the consequences of 𝑐𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑖𝑐 𝑓 𝑜𝑟𝑔𝑒𝑡𝑡𝑖𝑛𝑔. This term was introduced by Ratcliff

(1990) and French (1999). Catastrophic forgetting is a definition used in situations

when pre-trained models are fine-tuned in such a way that they are adapted to a

new task or new type of data so that they can not perform well on the tasks and

data that were used previously during pretraining. In the case of the multilingual

model, fine-tuning the multilingual model using only one language can make this

model specific only to this language. As multilingual models are pre-trained with

different languages and benefit from the transfer learning between languages, it is

helpful to try to overcome the problem of catastrophic forgetting to be able to keep

this multilingual knowledge.

• Enforcing language-independent encoder outputs. Make the output of the

encoder less language-specific. Even though all languages use the same encoder

and share encoder parameter weights, the encoder representation still contains

language-specific characteristics, which leads to poor zero-shot results according

to Yang et al. (2018). Ideally, it should be impossible to determine which language

the encoder output is related to, making it similar to an interlingua. This property

enables the use of input languages that were unavailable during fine-tuning and

improves the performance of previously unseen combinations of input and output

languages.

• Enforcing correct target language. Ensure that the output is in the expected

language. Models with multilingual generation capabilities must be conditioned on

the desired target language at inference time. This constraint is often integrated

into the model by dedicated target language tokens or specific language prompts

(Vu et al. 2022). In practice under few- or zero-shot conditions, this is not always

sufficient, leading to the generation of summaries in incorrect languages.

17



3 Related work

3.1 Maximizing transfer learning and minimizing catastrophic
forgetting

3.1.1 Partial model fine-tuning

A possible solution to mitigate catastrophic forgetting is partial fine-tuning of pre-trained

models. Maurya et al. (2021) and Chi et al. (2020) demonstrated that updating the weights

of only selected parts of pre-trained models during fine-tuning leads to better results.

Updating all weights of the model during fine-tuning with specific data, such as in one

particular language, adapts all weights to this data and makes models less multilingual. All

weights of models earlier pre-trained using multilingual data become language-specific and

forget the knowledge of other languages. It can lead to the off-target generation problem

described by Zhang et al. (2020). The authors originally called it off-target translation as

they use it for machine translation. It means that the model consistently generates output

texts in the wrong output language, regardless of a target language token that is supposed

to force an expected output language.

Fine-tuning only specific parts of pre-trained models and freezing others can help the

frozen parts of the models retain their knowledge of different languages obtained during

pre-training. Fine-tuning pre-trained models for a summarization task should aim to learn

how to summarize texts effectively while preserving knowledge of different languages.

For this purpose, it is beneficial to identify a subset of model components that should be

updated and those that should remain unchanged.

Maurya et al. (2021) and Chi et al. (2020) conducted zero-shot experiments on various

NLP generation tasks, specifically focusing on multilingual abstractive summarization.

Maurya et al. (2021) fine-tuned a pre-trained mBART model and utilized intralingua data

from the WikiLingua dataset (Ladhak et al. 2020). The model was trained with English

data and subsequently evaluated using Hindi and Japanese data in zero-shot scenarios.

Chi et al. (2020) employed a multilingual Transformer model consisting of 10 encoder

layers and 6 decoder layers. This model was fine-tuned using intralingual data from the

Gigagword summarization dataset (Napoles, Gormley, and Van Durme 2012). Fine-tuning

was performed on English data and evaluation in zero-shot scenarios using French and

Chinese data. In addition to these experiments, the authors of both papers also conducted

cross-lingual experiments for other generation tasks, including question generation and

headline generation.

In both papers, the authors observed that fine-tuning a multilingual model with data

in just one language (e.g., English) results in catastrophic forgetting, leading to the off-

target generation problem. The models fine-tuned by the authors perform well when

encountering unseen input languages but struggle when dealing with output text languages

that were not part of the fine-tuning process. Consequently, the model’s decoder forgets

other languages and consistently generates summaries in English.

To address this issue, the authors apply partial fine-tuning and propose freezing all

parameters of the decoder layers and word embeddings and tuning only weights in encoder
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layers during fine-tuning with English data (Maurya et al. 2021). This approach leads to

improved results, although it does not completely resolve the problem. The generated

outputs are no longer entirely in English but may still include some phrases in English.

Li et al. (2021) conducted multilingual speech-to-text translation experiments, employing

an encoder from the wav2vec 2.0 model for speech recognition and a decoder from the

mBART model for output text generation. The authors examined how freezing model

parameters and selectively tuning certain parts of the model could enhance its performance

in zero-shot scenarios, including unseen languages on both the source and output sides,

as well as unseen language pair directions. They found out that fine-tuning the encoder

together with the normalization layers and encoder attention within the decoder layers

leads to benefits in zero-shot scenarios. Furthermore, in some cases, it also resulted in

improved performance to freeze all parameters of the encoder except for the normalization

layers and self-attention layers within the encoder layers.
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3.1.2 Language adapters fine-tuning

Another option to increase transfer learning and minimize catastrophic forgetting is to use

language-specific or domain-specific adapters. Bapna and Firat (2019) were the first authors

who proposed the utilization of language-specific adapters for neural machine translation.

In their work, they employ adapters for adapting pre-trained models to new domains and

languages. Such adapters are added to pre-trained models and during fine-tuning only the

weights of these adapters are updated and the rest of the model stays unchanged.

Language pair adapters. Adapters proposed by Bapna and Firat (2019) are placed at

the end of every layer and can be used in both encoder and decoder layers. In encoder

layers, they enhance the encoding of input languages. In decoder layers, they improve the

generation of higher-quality output text by considering specific language details. Figure

6 demonstrates the architecture of adapters proposed by Bapna and Firat (2019). Firstly,

there is a normalization layer, followed by a down-projection of vectors to a bottleneck

dimension and a rectified linear unit (RELU) activation function. The output is then

up-projected and connected with the original value through a residual connection.

Figure 6: Adapter architecture proposed by Bapna and Firat (2019).

Adapters proposed by Bapna and Firat (2019) are bilingual, language-pair-specific

adapters, meaning one adapter for each language pair. While this approach can lead to

improved adaptation, it also has a few drawbacks. It necessitates training adapters for every

language pair, resulting in 𝑂 (𝑁 2) pairs. Training can be time-inefficient and requires

supervised data for all language pairs, making this solution impractical for zero-shot

scenarios.

20



3.1 Maximizing transfer learning and minimizing catastrophic forgetting

Monilingual language adapters. Philip et al. (2020) proposed the use of adapters with
the same architecture, but as monolingual, language-specific adapters. Adapters in encoder

layers are specific to the input text language, and adapters in decoder layers correspond

to the expected output languages. This approach requires fewer adapters 𝑂 (2 ∗ 𝑁 ) and
allows for the combination of any input and output languages seen in training including

unseen pairs.
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3.2 Enforcing language-independent encoder outputs

3.2.1 Adversarial language classifier

The problem of language-independent encoder representation has been analyzed by

multiple authors in the field of neural machine translation. Yang et al. (2018) enabled

translation between languages using a model trained solely on monolingual unsupervised

data. Arivazhagan et al. (2019) utilized supervised cross-lingual English-centred data for

training but conducted zero-shot experiments for unseen pairs of languages.

In both papers, the authors discovered that the encoder representation in encoders

trained across multiple languages remains language-specific, even though they share all

weights and are trained simultaneously. The authors demonstrate that making the encoder

representation less language-specific and more similar to an interlingua significantly

enhances results in zero-shot scenarios.

To achieve this objective, the authors utilize an adversarial loss. They construct a

language classification discriminator on the top of the encoder, capable of predicting the

language of the input text. The model is trained in such a way that the discriminator

attempts to minimize a classification loss, while simultaneously the encoder should be

updated to maximize the classification loss.

In my thesis, I employ an updated solution proposed by D. Liu and Niehues (2022). The

authors use a language classification discriminator on the token level. The training is

conducted in two alternating steps, which help prevent the coadaptation of parameters

and contribute to a more stable training process:

• Step 1. Encoder output classification step. In this step, only the language

classification discriminator is trained and updated. It minimizes the cross-entropy

loss between predicted languages and the expected ones on the token level.

Equation 2 is applied in this step.

Lclassifier = −
#𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝑠∑︁

𝑙=1

𝑦𝑙 log(𝑝𝑙 ), where

𝑦𝑙 = 1 if 𝑙 is the expected language of the token,

𝑦𝑙 = 0 otherwise,

𝑝𝑙 is the predicted probability that a token belongs to the language 𝑙

(2)

• Step 2. In the second step, the objective is to fool the language classification

discriminator. This could be achieved by updating the encoder weights using a

negative loss from the first step 2. However, the issue is that this loss can be

very small if the classifier performs well, leading to minimal updates of the encoder

weights. This is why the authors propose an adversarial classification loss, calculated

as shown in equation 3.

Ladversarial =

#𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝑠∑︁
𝑙=1

𝑦𝑙 log(1 − 𝑝𝑙 ), (3)
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For better stability, a summarization task loss is added to the adversarial loss. Finally,

equation 4 is employed for training in the second step.

Lencoder_decoder = Lsummarization + Ladversarial (4)
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3.2.2 Removing residual connections

Another possible approach that aids in achieving a more language-independent encoder

representation is removing residual connections. This concept was introduced by D. Liu,

Niehues, et al. (2021). In this paper, the authors conducted neural machine translation

experiments by training models using English-centered data and evaluating zero-shot

scenarios for unseen language pairs. They observed that the order of the encoder

representation corresponds significantly to the order of the encoder input and that this

positional information is also language-specific. The issue lies in the fact that it hinders

the generation of a less language-specific encoder representation, even when each token’s

encoder representation is language-independent. While positional information plays an

important role in some natural language processing tasks, such as part-of-speech tagging,

the authors demonstrate that it leads to poorer results in zero-shot scenarios in machine

translation.

Figure 7: Different encoder representation orders in English and Spanish.

Figure 7 illustrates an example of how two phrases with the same meaning in English

and Spanish are encoded. The encoder output representations have different orders, and a

Spanish phrase has one extra token. Even if all encoder output representation tokens are

language-independent, it is still possible to determine the language of the input sequence,

as different languages may have specific grammar rules for constructing sentences.

Figure 8: Left: standard encoder layer implementation; Right: with removed residual

connection.
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The authors D. Liu, Niehues, et al. (2021) propose a technique aimed at reducing

positional information in the encoder output representation. They recommend removing

a residual connection that links an input and an output of a self-attention mechanism in a

single encoder layer (as shown in Figure 8). Residual connections are valuable for

improving the gradient flow from losses to lower layers and mitigating the vanishing

gradient problem. They also maintain a one-to-one correspondence between the encoder

input sequence and the encoder output representation. The removal of such a residual

connection in one encoder layer degrades this correspondence. Since I am using a

pre-trained multilingual model in my thesis, the vanishing gradient problem does not

significantly impact training because the lower layers are already well pre-trained and

capable of encoding input sequences.

When selecting the encoder layer in which to implement this solution, the authors

decide that it is better to do so in the middle layer. They remove the third and fifth layers

of the models with 5 and 8 encoder layers, respectively.

The authors conducted experiments with various languages, demonstrating that their

implementation leads to improved results in zero-shot scenarios, closely approaching the

performance of machine translation using a pivot language on average. Their experiments

show that, when translating between languages of the same family (Germanic or Romance),

the results are even better compared to using a pivot language.

25





4 Proposed approaches

This chapter presents various approaches that I propose and that can be applied during

multilingual summarization model training to improve its performance. All of these

approaches are evaluated in Chapters 6 and 7 through experiments.

4.1 Key-query fine-tuning

A new approach proposed in this section, fine-tuning only keys and queries in multi-head

attentions, aims to maximize transfer learning and minimize catastrophic forgetting during

the fine-tuning of pre-trained multilingual models. Section 3.1 describes that fine-tuning

only a part of the model parameters can increase gains from the usage of pre-trained

multilingual models and improve zero-shot results. Maurya et al. (2021) and Chi et al.

(2020) proposed to update only the weights of encoder layers during fine-tuning. Li et al.

(2021) suggests updating both encoder and decoder weights during fine-tuning, but not all

of them. Within the encoder layers, only normalization layers and self-attention layers are

updated. Within the decoder layers, only the normalization layers and encoder attention

layers are updated.

Additionally, I propose exploring the possibility of finding an intermediate solution

that requires fine-tuning fewer parameters while improving performance simultaneously.

Pre-trained multilingual sequence-to-sequence models can reconstruct corrupted input

sequences in different languages. It means they can encode and analyze input texts and

generate coherent output texts. The distinction between the reconstruction task and the

summarization task lies in how they determine which parts of the input sequence are

relevant for output generation. Concerning text generation, both tasks operate similarly.

The goal is to maximize transfer learning from the pre-trained model regarding output

generation in different languages and to learn to select the most important parts of input

sequences for summarization. To achieve this, it could be beneficial to update only the

weights of parts of the models responsible for such selection, leaving the weights of other

components unchanged. Updating the weights of other components can make them more

language-specific and reduce transfer learning. As described in Section 2.1, the mechanism

responsible for selecting the most important parts of sequences during encoding and

decoding is multi-head attention. To leave text generation unchanged and to analyze input

sequences, only two of the three multi-head attentions should be fine-tuned: self-attentions

in encoder layers and encoder-attentions in decoder layers. Self-attentions in decoder

layers should not be updated as they are responsible for the generated output text.
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Multi-head attentions receive three vectors (values, queries, and keys) as input, and

apply linear projections to them initially (see Section 2.1). I propose fine-tuning only

the weights of linear projections applied to queries and keys. The reason for this is that,

through queries and keys, the importance of every position is calculated, helping in the

selection of parts of sequences important for generated summaries. Updating weights

of linear projections applied to values could make their weights more language-specific,

leading to direct language-specific transformation. In contrast, updating queries and

keys does not directly manipulate values but only decides on the importance of values

at every position. This approach could lead to a more focused consideration of the input

text structure and better utilization of transfer learning from the pre-trained multilingual

model.
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4.2 Improved adversarial language classifier

In my thesis, I will conduct experiments that enable the training of a cross-lingual model

using only monolingual data. For this purpose, I will try to use an adversarial language

classifier that was presented in Section 3.2.1. Such adversarial language classifiers aim to

make encoder outputs language-independent. In this section, I provide an updated version

of the adversarial language classifier that could create even more language-independent

encoder outputs.

In the best case, after applying an adversarial language classifier, it should not be possible

to differentiate between encoder output representations for inputs in different languages.

When training a model utilizing 𝑁 input languages, language classification probabilities

should have a uniform distribution with a value of 1/𝑁 for inputs in every language, as

shown in Diagram "d) Expected distribution" in Figure 9. In this case, the classifier really

is unable to distinguish input languages. The drawback of the original solution described

in Section 3.2.1 is that it could happen that it does not lead to equal probabilities between

all languages. Potentially, it could have two problems:

• Too big changes. It could penalize the output of the actual language so much that it

might map this actual language to another language. Applying this approach would

simply map some languages to incorrect labels, leading to a significant confusion

of the classifier, but not necessarily resulting in equal probabilities between all

languages. Diagram "b) Too big changes" in Figure 9 shows the potential outcome.

The probabilities are more equal compared to the original probabilities presented in

Diagram "a) Original probabilities" in Figure 9 but are manipulated too extensively.

This situation could especially occur if training is performed using unbalanced data.

• Too small changes. Another problem that can occur is that penalizing is not

sufficient and changes resulting from applying an adversarial language classifier

are too small. Diagram "c) Too small changes" in Figure 9 illustrates this situation.

Although it performs changes toward a uniform distribution, it may not be sufficient

for achieving a language-independent encoder representation.

I propose using a modified adversarial classification loss that considers the drawbacks

listed above and could make the encoder output representation less language-specific. I

suggest employing Kullback–Leibler divergence (see 5) instead of the original equation 3,

which enforces more equal probabilities for all languages. This modification would not

result in too big changes, as it leads to making probabilities equal to 1/𝑁 and not to zero.

Another advantage compared to the original equation is that the use of Kullback–Leibler

divergence does not only penalize the output of the actual language but also actively

encourages outputs of other languages. Performing only the penalization of actual

languages updates the weights of model components in such a way that it makes this

actual language less probable, but at the same time, it does not force the output of other

languages. This can lead to the problem of too small changes.
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Figure 9: Encoder output representation classification results for data in English.

Ladversarial kldivloss = 𝐷𝑘𝑙 (𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 | | 𝑒𝑞𝑢𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠),
where 𝑒𝑞𝑢𝑎𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 is a uniform distribution with the value

1

#𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒𝑠
, e.g. [1/3, 1/3, 1/3] for 3 languages

(5)

As an adversarial language classifier works at the token level, it removes

language-specific information from each token but not from the entire encoder output

representation. It is still possible that the encoder output representation contains

language-specific information represented by the structure of the output sequence.

Therefore, it can be helpful to additionally remove position information from the encoder

output representation. For this purpose, I apply the removal of residual connections from

Section 3.2.2 to the model and train it again in combination with an adversarial loss. The

combination of these two approaches should make the output sequence less

language-specific and improve results.
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4.3 Adapters for enforcing target language

In this section, I propose approaches that aim to improve control over the target language.

In multilingual models, the output language is typically triggered using a language token

during decoding. However, in many cases, this mechanism is not sufficient as the signal

from the target token can be weak and the output language also depends significantly on

the language-specific characteristics of the encoder output. As a potential solution for

more effectively forcing the generation of summaries in the desired languages, I propose

to use language-specific adapters that were presented in Section 3.1.2.

For my needs, I adopt monolingual adapters proposed by Philip et al. (2020). For stronger

enforcement of the output language, I apply a language adapter corresponding to the

output language in both the encoder and decoder layers. This approach differs from the

original solution proposed by the authors.

In the original papers, authors initially pre-train models for a machine translation task.

Afterward, they freeze all parameters, add adapters, and continue training only them

further. In my thesis, I will train all model parameters and adapters together because

my objective is to use them as a mechanism to enforce the output to be in the expected

language.

I also suggest another solution, that helps to adapt an encoder output representation

to the expected output language. For this purpose, I propose the use of language-specific

adapters at the token level of the encoder output representation. These adapters consist

of simple linear projections with the same dimensions, combined with dropout and a

rectified linear unit (RELU) activation function. Figure 10 illustrates its architecture. The

combination of these adapters with language tokens should make it easier to ensure that a

summary is generated in the expected language.
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Figure 10: Proposed encoder output adapter.
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5.1 Baselines

5.1.1 Zero-shot setup

Baseline zero-shot results demonstrate the performance of zero-shot cases conducted

using models trained without any advanced approaches. These baseline results are used

for comparisons and should be improved in further experiments employing different

approaches.

To obtain zero-shot results, a model is first fine-tuned using a subset of language pairs.

Subsequently, in zero-shot cases, language pairs are evaluated that did not participate

in the fine-tuning process. When selecting language pairs for zero-shot cases, different

combinations of languages should be considered:

1. A language pair contains an input or output language that was unseen during

fine-tuning.

2. A language pair consists of languages, both of which were available during fine-

tuning but not in such a combination.

5.1.2 Translation-based solution

One possible solution for multilingual summarization is to train a single model using

data in only one language, such as English, as it often has the most training data, and

employ other neural machine translation models for data pre- and post-processing. In this

case, firstly, I translate input texts from other languages to English. Secondly, I generate

summaries using a summarization model trained with English data. Finally, if required, I

translate the generated summary in English into another language. Figure 11 illustrates

how this scenario works.

An advantage of this approach is that it requires less supervised data and can be

applied to many languages. Modern neural machine translation models can produce

highly qualitative translations to and from English, especially for texts in high-resource

languages. In my thesis, I use two models and compare their results: mBART50 (presented

in Section 5.3.2) and NLLB (presented in Section 5.3.3).
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Figure 11: Multilingual summarization using a summarization model trained with English

data and neural machine translation models.

5.2 Few-shot setup

A model that is already capable of generating summaries in one language should require

less data to be adapted to other languages, benefiting from transfer learning between

different languages. By performing few-shot experiments, it is possible to analyze the

amount of supervised data needed to adapt models to new languages unseen during

fine-tuning and achieve good results for them.

For this purpose, I take fine-tuned baseline models that I trained earlier for other

language pairs and further fine-tune them with a limited amount of data in the desired

languages. Evaluations are performed using the following amounts of data: 10, 100, 1000,

and 10000 (if there is enough data for a language pair). The results should demonstrate

how easily models can be adapted to other languages and how much data is needed to

obtain good results.
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5.3 Utilized pre-trained models

5.3.1 mBART

For completing a summarization task in my experiments, I utilize a multilingual version

of BART called mBART proposed by Yinhan Liu et al. (2020). This model pre-trains a

complete autoregressive sequence-to-sequence model by reconstructing original texts

corrupted by two denoising functions: token infilling and sentence permutation. Token

infilling is done by masking 35% of the words in each instance by random sampling spans

of text. Sentence permutation is performed in each instance. Figure 12 shows an example

of pretraining and denoising functions. The mBART model utilizes large-scale intralingual

corpora across many languages for pre-training. Pre-training is done once for all languages

at the same time. A subset of 25 languages, CC25, extracted from the Common Crawl (CC)

(Wenzek et al. 2020) is used for pre-training. This subset contains languages from different

language families and with different amounts of data. For tokenization a sentence-piece

model (SPM) model (Kudo and Richardson 2018) is utilized that contains 250000 tokens.

Where did __ from ? </s> Who __ I __ </s> <En> 

Transformer Encoder Transformer Decoder

<En> Who am I ? </s> Where did I come from ? </s> 

Who am I ? </s> Where did I come from ? </s> <En> 

Figure 12: mBART pre-training (Yinhan Liu et al. 2020).

mBART architecture contains 12 encoder layers and 12 decoder layers with about 680M

parameters. All numbers of parameters are described in Table 2.

# parameters 680M

# encoder layers 12

# decoder layers 12

ℎ (# heads) 16

𝑑𝑚𝑜𝑑𝑒𝑙 1024

𝑑𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠 1024

𝑑𝑘 64

𝑑𝑣 64

𝑑𝑞 64

𝑑𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑 4096

vocabulary (# tokens) 250000

# supported languages 25

Table 2: mBART parameters.
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To control input and output languages, language tokens are used at three positions:

• At the end of the encoder input.

• At the end of the decoder output.

• At the beginning of the decoder input.

Setting a language token at the beginning of the decoder input during interference is

supposed to force output text to be in the expected language.

5.3.2 mBART50

mBART50 is an extended version of mBART proposed by Yinhan Liu et al. (2020),

supporting 50 languages instead of the original 25. I utilize two fine-tuned mBART50

models for translation purposes. The first model is many-to-one, translating input texts

from various languages to English. The second model is one-to-many, translating

generated summaries from English to other languages. For the translation process, I

employ the EasyNMT library (https://github.com/UKPLab/EasyNMT), which offers

wrappers for different machine translation models, including mBART50 models.

5.3.3 No Language Left Behind - NLLB

Another model that I use in my thesis for experiments is No Language Left Behind (NLLB)

presented by Team et al. (2022). It is a single model capable of performing many-to-

many cross-lingual translations from and to 200 different languages, including many

low-resource languages. The authors of NLLB demonstrate that their model has significant

improvements compared to previous state-of-the-art models. There are different versions

of NLLB models. In my thesis, I use the smallest one, NLLB-200-Distilled, with 600

million parameters, which is similar to the mBART50 model. For the translation process,

I utilize HuggingFace integration (https://huggingface.co/docs/transformers/model_

doc/nllb).
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5.4 Hyperparameters

I conduct experiments using the open-source sequence modeling toolkit FAIRSEQ, as

presented by Ott et al. (2019). This implementation allows the training of models for

different generation tasks, such as translation and summarization. For my experiments, I

utilize "translation_multi_simple_epoch" task that is designed for translation experiments.

I adapt this task to suit the requirements of the multilingual summarization task. All

modifications and implementations can be accessed in my repository, which is forked

from the original project: https://github.com/vladsolovyev/fairseq_summarization/

tree/main/summarization_scripts.

I conduct summarization experiments using an mBART model, as described in

Subsection 5.3.1. I utilize the pre-trained model "mbart.CC25", downloaded from https:

//github.com/facebookresearch/fairseq/blob/main/examples/mbart/README.md.

Table 3 provides an overview of the hyperparameters used during the fine-tuning of

models and inference. Further settings and all reproducible scripts can be found in my

repository, as provided above.

optimizer adam

adam eps 1e-8

adam betas (0.9, 0.999)

learning rate scheduler polynomial decay

learning rate 2e-5

end learning rate 5e-9

weight decay 0.01

dropout 0.1

attention dropout 0.1

beam size 5

length penalty intralingual 0.6

length penalty cross-lingual 1.0

min length intralingual 0

min length cross-lingual 10

max length 100

no repeat ngram size 3

Table 3: Experiments training and generation hyperparameters.
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5.5 Evaluation

To evaluate the performance of multilingual summarization models, automatic evaluation

metrics can be used. These metrics offer quick feedback regarding the quality of generated

summaries in different languages. For effective multilingual summarization, it is important

that the generated summaries contain all key information from the input texts, and the

output text language corresponds to the expected language.

5.5.1 Rouge metrics

Lin (2004) proposed a new metric called ROUGE, which stands for Recall-Oriented

Understudy for Gisting Evaluation. ROUGE-N metrics count how many n-gram and word

sequences from reference summaries appear in generated summaries. Normally,

ROUGE-1 and ROUGE-2 are used, which are calculated using unigrams and bigrams,

respectively. Equation 6 illustrates how ROUGE-N metrics are calculated.

𝑅𝑜𝑢𝑔𝑒𝑁 =

∑
𝑆∈𝑅𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠

∑
𝑔𝑟𝑎𝑚𝑛∈𝑆 𝐶𝑜𝑢𝑛𝑡𝑀𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛)∑

𝑆∈𝑅𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠
∑
𝑔𝑟𝑎𝑚𝑛∈𝑆 𝑔𝑟𝑎𝑚𝑛

(6)

Candidate: She learns computer science at a European university.

Reference: She studies computer science at the university in Europe.

Candidate unigrams: "She", "learns", "computer", "science", "at", "a", "European",

"university"

Reference unigrams: "She", "studies", "computer", "science", "at", "the", "university",

"in", "Europe"

Candidate bigrams: "She learns", "learns computer", "computer science", "science at",

"at a", "a European", "European university"

Reference bigrams: "She studies", "studies computer", "computer science", "science

at", "at the", "the university", "university in", "in Europe"

𝑅𝑜𝑢𝑔𝑒1 =
5

9

𝑅𝑜𝑢𝑔𝑒2 =
2

8

Table 4: An example of Rouge metrics calculation.

Example 4 demonstrates how to create reference and candidate unigrams and bigrams

and calculate ROUGE-1 and ROUGE-2 metrics.

A disadvantage of ROUGE-N metrics is that they do not consider the order of

appearing N-grams. "A professor asked students." and "Students asked a professor."

sentences would have the same ROUGE-1 metric values, even though they have different

meanings. ROUGE-L addresses this drawback. ROUGE-L calculates the longest matching

sequence of words using the longest common subsequence (LCS) approach. It identifies a

common subsequence in two summaries with the maximum length.
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A sequence z = [𝑧1; . . . ; 𝑧𝑛] is considered a subsequence of another sequence x = [𝑥1; . . . ;

𝑥𝑛] if there exists a strictly increasing sequence [𝑖1; . . . ; 𝑖𝑘] of indices in x such that for all j

= 1; . . . ; k, we have 𝑥𝑖 𝑗 = 𝑧 𝑗 (Lin 2004). LCS considers the order of the n-grams but does

not require consecutive matches. This allows it to calculate the longest common n-grams

without the need to predefine the length of the n-grams. To prevent longer summaries

from receiving higher values disproportionately, the F-measure is applied. To estimate

the overlap between a reference summary 𝑋 of length𝑚 and a candidate summary 𝑌 of

length 𝑛, the following equations for recall, precision, and F-measure are calculated. 5

provides formulas that are utilized for the calculation of ROUGE-LCS metrics. 6 gives an

example of such a calculation.

𝑅𝑙𝑐𝑠 =
𝐿𝐶𝑆 (𝑋,𝑌 )

𝑚
𝑃𝑙𝑐𝑠 =

𝐿𝐶𝑆 (𝑋,𝑌 )
𝑛

𝛽 =
𝑃𝑙𝑐𝑠

𝑅𝑙𝑐𝑠
𝐹𝑙𝑐𝑠 =

(1 + 𝛽2)𝑅𝑙𝑐𝑠𝑃𝑙𝑐𝑠
𝑅𝑙𝑐𝑠 + 𝛽2𝑃𝑙𝑐𝑠

Table 5: Rouge-LCS metrics formulas.

Reference: A professor asks students.

Candidate 1: A professor asked students.

𝑅𝑜𝑢𝑔𝑒1 =
3

4

𝑅𝑜𝑢𝑔𝑒𝑙𝑐𝑠 =
3

4

Candidate 2: Students asked a professor.

𝑅𝑜𝑢𝑔𝑒1 =
3

4

𝑅𝑜𝑢𝑔𝑒𝑙𝑐𝑠 =
2

4

Table 6: An example of Rouge-LCS metrics calculation.

A disadvantage of the ROUGE-L score is that it considers only the longest common

subsequence, and other shorter common subsequences do not have an influence on the

final metric value.
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5.5.2 BERTScore

Many metrics, including ROUGE, have a drawback in that they only work with exact

n-gram overlaps and do not consider the semantic meaning of words and phrases. In this

case, two synonyms have the same impact on the final score as two entirely different

words. Additionally, the context in which n-grams appear does not play a role, making

the evaluation inaccurate. For example, consider a reference sentence "A professor asked

students," with two candidate sentences: "People in the class got a question from the

lecturer," and "Students said hello to the professor." The ROUGE-1 metric assigns a higher

value to the second candidate sentence than the first one, even though the meaning of the

first candidate sentence is much closer to the reference sentence.

Zhang* et al. (2020) introduced a neural metric called BERTScore, which addresses this

issue and enables judgments that are closer to human evaluation. When provided with a

reference sentence 𝑥 = ⟨𝑥1, . . . , 𝑥𝑘⟩ and a candidate sentence 𝑥 = ⟨𝑥1, . . . , 𝑥𝑙⟩, BERTScore
utilizes contextual embeddings and computes token similarities by calculating pairwise

cosine similarity between tokens, optionally applying inverse document frequency scores.

Figure 13 illustrates an example of BERTScore calculation.

Reference
the weather is 
cold today

Candidate
it is freezing today

Candidate

Contextual
Embedding

Pairwise Cosine
Similarity

RBERT = (0.713⇥1.27)+(0.515⇥7.94)+...
1.27+7.94+1.82+7.90+8.88

<latexit sha1_base64="OJyoKlmBAgUA0KDtUcsH/di5BlI="></latexit><latexit sha1_base64="RInTcZkWiVBnf/ncBstCvatCtG4="></latexit><latexit sha1_base64="RInTcZkWiVBnf/ncBstCvatCtG4="></latexit><latexit sha1_base64="fGWl4NCvlvtMu17rjLtk25oWpdc="></latexit>

1.27

7.94

1.82

7.90

8.88

idf

weights

Importance Weighting
(Optional)

Maximum Similarity

x
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Figure 13: An example of BERTScore calculation (Zhang* et al. 2020).

In comparison to word embeddings like GloVe (Pennington, Socher, and Manning 2014)

and Word2Vec (Mikolov et al. 2013), contextual embeddings can have distinct vector

representations for the same word in various texts. To obtain such contextual embeddings,

Transformer encoders can be employed, such as BERT models. Through their application,

input sequences can be encoded, and each input token obtains its contextual representation.

This thesis utilizes a multilingual version of BERT ("bert-base-multilingual-cased") since

generated output summaries may be in different languages.

There are three types of BERTScore: recall, precision, and the F1 measure. For recall

calculation, the contextual embedding of each token in 𝑥 is compared to the contextual

embedding of every token in 𝑥 . For precision calculation, the contextual embedding of

each token in 𝑥 is compared to the contextual embedding of every token in 𝑥 . Afterward,

a greedy matching strategy is applied to maximize the matching similarity score. This

involves matching the contextual embedding of each token to the most similar contextual

embedding of a token in the other sentence. The values of precision and recall are then

combined to calculate the F1 measure.
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5.5 Evaluation

For a candidate 𝑥 and a reference 𝑥 , the values of recall, precision, and F1 scores are

determined using the following equations:

𝑅𝐵𝐸𝑅𝑇 =
1

|𝑥 |
∑︁
𝑥𝑖∈𝑥

max

𝑥 𝑗∈𝑥
x⊤𝑖 x̂ 𝑗 (7)

𝑃𝐵𝐸𝑅𝑇 =
1

|𝑥 |
∑̂︁
𝑥 𝑗∈𝑥

max

𝑥𝑖∈𝑥
x⊤𝑖 x̂ 𝑗 (8)

𝐹𝐵𝐸𝑅𝑇 = 2

𝑅𝐵𝐸𝑅𝑇 · 𝑃𝐵𝐸𝑅𝑇
𝑅𝐵𝐸𝑅𝑇 + 𝑃𝐵𝐸𝑅𝑇

(9)

A disadvantage of using the BERTScore metric with a multilingual BERT model is that

the same words in different languages often have very similar semantic representations.

This can result in situations where BERTScore values are high, even though the generated

output summaries are in unexpected languages.

5.5.3 Language identification (LangID)

For the evaluation of multilingual summarization models, it is useful to identify the output

languages. This helps in determining whether the models generate output summaries in

the expected languages or not. To achieve this, the Language Identification (LangID) task

can be utilized.

Lui and Baldwin (2012) introduced a language identification tool called 𝑙𝑎𝑛𝑔𝑖𝑑.𝑝𝑦 to

perform this task. The 𝑙𝑎𝑛𝑔𝑖𝑑.𝑝𝑦 tool was trained using data from five different domains

and supports 97 languages. As a classifier, it uses the naive Bayes classifier algorithm.

Given a text and a list of possible languages as input, it returns the probabilities of each

language being present in the input text.
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6 Intralingual experiments

In this chapter, the results of intralingual experiments are presented. Intralingual

multilingual models are models that can encode and generate texts in different languages,

but the input and output languages are always identical. In my experiments, I work with

two types of models:

1. models trained using only monolingual English data (Figure 14)

2. models trained using monolingual English, Spanish, and Russian data (Figure 15)

Figure 14: Intralingual multilingual summarization. Training is performed using only

English data.

An advantage of the model trained with only English data is that it requires less

supervised data. Many datasets for different tasks are available only in English. Being able

to fine-tune a multilingual model using data from only one language brings us many

benefits. This is especially relevant for low-resource languages, which often have much

less supervised data. For this reason, I included both high-resource languages (English,

Spanish, and Russian) and a low-resource language (Gujarati) in my experiments. I train

models using only English data and evaluate zero-shot and few-shot scenarios for Spanish,

Russian, and Gujarati.

A drawback of models trained only with English data is that they can become very

English-specific. To overcome this problem, I also train models using multiple languages

(English, Spanish, and Russian) and perform evaluations using only a low-resource

language (Gujarati). Training with data in multiple languages is supposed to improve

transfer learning between languages and hinder model weights from becoming
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6 Intralingual experiments

Figure 15: Intralingual multilingual summarization. Training is performed using English,

Spanish, and Russian data.

language-specific, focusing more on understanding the input text and generating

summaries. A disadvantage of this type of model is that it requires more supervised data.

Ideally, this should be supervised data in different languages generated using the same

scheme. For many tasks, there is a shortage of such data.

Through these intralingual experiments, it is possible to obtain answers to the first,

third, and fourth research questions.

6.1 Dataset - XL-Sum

Hasan et al. (2021) introduced a new dataset for multilingual abstractive summarization

called XL-Sum. This dataset contains over 1 million professionally annotated article-

summary pairs extracted from the British Broadcasting Corporation (BBC) news website

at https://www.bbc.com/. The dataset comprises data in 44 languages, including both

high-resource and low-resource languages from various language families. A notable

advantage of this dataset is that all the data in different languages originates from the same

source. Consequently, all summaries are generated using the same summarization strategy

across all languages, making this dataset a good choice for multilingual summarization

that can be performed by a single model.

The XL-Sum dataset contains onlymonolingual data in various languages. Consequently,

the languages of all abstractive summaries always correspond to the languages of the input

articles. This dataset facilitates the development and evaluation of intralingual models

capable of producing summaries in the same language as the articles. Table 7 provides an

example in English illustrating how abstractive summaries are constructed, highlighting

text segments that influence the generated summary.
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6.2 Supervised oracle condition and baseline

Input Article: Yahoo’s patents suggest users could weigh the type of ads against

the sizes of discount before purchase. It says in two US patent applications that ads

for digital book readers have been “less than optimal" to date. [...] “Greater levels

of advertising, which may be more valuable to an advertiser and potentially more

distracting to an e-book reader, may warrant higher discounts," it states. [...] It adds

that the more willing the customer is to see the ads, the greater the potential discount.

[...] At present, several Amazon and Kobo e-book readers offer full-screen adverts

when the device is switched off and show smaller ads on their menu screens. [...]

Yahoo does not currently provide ads to these devices, and a move into the area could

boost its shrinking revenues.

Summary: Yahoo has signalled it is investigating e-book adverts as a way to

stimulate its earnings.

Table 7: An example of the input article-summary pair in English (Hasan et al. 2021).

Table 8 displays the statistics of the XL-Sum dataset for four languages: English, Spanish,

Russian, and Gujarati. It shows the number of samples available for the training, validation,

and test splits.

language train validation test

en 302627/459.92/22.31 11535/440.39/21.15 11535/437.29/21.24

es 35633/823.53/29.37 4763/766.47/27.42 4763/764.75/27.41

ru 60044/564.04/26.09 7780/466.26/24.21 7780/465.28/24.17

gu 8790/769.06/23.96 1139/542.60/21.23 1139/529.90/21.69

Table 8: Xlsum dataset statistics - number of samples/average input length in

words/average output length in words.

6.2 Supervised oracle condition and baseline

In the beginning, I first establish the performance under oracle conditions with supervised

data and calculate baseline results that can be used for further comparisons. The results of

the supervised oracle model show values that I aim to achieve with different experiments.

Before performing supervised oracle and baseline experiments, it should be decided

what training settings to use as a standard. Particularly, it is not clear whether it is better

to update pre-trained token embeddings or not. I fine-tune two models using English,

Spanish, and Russian data jointly and perform an evaluation using these three languages

as supervised cases and additionally Gujarati as a zero-shot case.

It is observed that fine-tuning models without updating pre-trained token embeddings

leads to better results in both supervised and zero-shot cases. Table 9 shows a comparison

of two models: the first one with fine-tuned embeddings ("fine-tuned" scenario), and the

second one with frozen embeddings ("frozen" scenario). The results of the model fine-tuned
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6 Intralingual experiments

without updating pre-trained token embeddings are better in all cases. This is especially

notable in the zero-shot case evaluated with Gujarati data. Although the model generates

texts as expected in Gujarati, the values of other metrics are much lower. It is remarkable

that generated texts are much longer in this case (55.9 words against 14.4 words). This

phenomenon can occur while using mBART models because of its design. The problem is

that mBART models utilize a target language token as an end-of-sentence token. If models

do not output this language token as expected, they continue generating texts, resulting

in very long outputs with maximally allowed lengths. I suppose that in the case of token

embeddings fine-tuning, models forget how to output target language tokens in other

languages that are not available during fine-tuning. As the results of the first model are

better in all cases, I perform all further experiments without fine-tuning embeddings.

Language

pair

Scenario Rouge-1/2/L BERTScore-F1

Expected

language

Length

en

fine-tuned 39.3/16.4/31.4 78.3 100.0 17.1

frozen 39.5/16.4/31.4 78.3 100.0 17.4

es

fine-tuned 33.9/12.9/25.8 74.0 100.0 19.3

frozen 34.4/12.9/26.0 74.0 100.0 20.3

ru

fine-tuned 34.9/15.1/28.1 75.0 100.0 17.5

frozen 35.3/15.3/28.4 75.0 100.0 17.3

gu (ZS)

fine-tuned 12.1/2.8/10.0 66.1 100.0 59.9

frozen 17.8/5.2/16.0 71.8 99.6 14.4

Table 9: Models trained using English, Spanish, and Russian data jointly. 1)

with embeddings fine-tuning ("fine-tuned") 2) without embeddings fine-

tuning("frozen"). Evaluation is performed for English, Spanish, Russian, and

Gujarati (zero-shot).

After the initial step, I conduct experiments that evaluate the performance under oracle

conditions with supervised data and calculate baseline results. For a better comparison of

further zero-shot and few-shot experiments, it is necessary to build three models initially.

The first model ("supervised" scenario in Table 10) is fine-tuned under oracle conditions

using supervised data in all four languages (English, Spanish, Russian, and Gujarati)

jointly. The next two models are used for the calculation of baseline results that should be

improved in further experiments. The second model ("ZS-baseline" scenario in Table 10)

is fine-tuned using only English data. Using this model, I calculate zero-shot results for

Spanish, Russian, and Gujarati data. The third model ("ZS-baseline (en+es+ru)" scenario in

Table 10) is trained using data in several languages (English, Spanish, and Russian). Using

this model, I calculate zero-shot results only for Gujarati. The results of these three models

are provided in Table 10.

The results of the second model demonstrate that the performance of a model trained

only with one language is very poor for zero-shot experiments in other languages. This

trained model becomes very English-specific and leads to the off-target generation problem,

generating summaries always in English, regardless of the input language. Additionally, it
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6.2 Supervised oracle condition and baseline

generates very long summaries. Here the same problem occurs as described above with

Gujarati data. In this case, the mBART model learns to use an English language token as

an end-of-sequence token. During inference, it attempts to finish summaries by outputting

the English language token. However, according to the design, it expects another language

token and therefore continues with generation.

The results of the third model, evaluated with a zero-shot scenario in Gujarati, are

much better. Training a model with several languages hinders it from becoming language-

specific. It generates summaries in the expected language with good results but still worse

than a supervised solution from the first model.

Language

pair

Scenario Rouge-1/2/L BERTScore-F1

Expected

language

Length

es

supervised 34.2/13.0/26.1 74.0 100.0 20.1

ZS-baseline 7.9/1.2/6.2 66.0 0.2 61.7

ru

supervised 35.3/15.3/28.4 75.1 100.0 17.9

ZS-baseline 1.2/0.3/1.1 64.3 2.3 59.5

gu

supervised 22.3/8.0/20.0 74.2 100.0 16.5

ZS-baseline 1.6/0.3/1.5 59.2 13.4 61.3

ZS-baseline

(en+es+ru)

17.8/5.2/16.0 71.8 99.6 14.4

Table 10: Intralingual supervised learning and baseline results. Results of two baseline

models: 1) using English data and evaluating using Spanish, Russian, and Gujarati

2) using English, Spanish, and Russian data jointly (en+es+ru) and evaluating

using only Gujarati.
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6 Intralingual experiments

6.3 Translation-based results

I conduct experiments using translation models for both data pre- and post-processing.

Since I work with intralingual data in different languages, it is necessary to employ

translation models twice for each case.

Table 11 illustrates the results obtained using translation models and the summarization

model trained with English data. Approaches utilizing both mBART50 and NLLB for

translation perform similarly on Russian data. NLLB slightly outperforms mBART50 on

Spanish data. However, a significant difference occurs when applying this method to

Gujarati data. Although mBART50 generates text in Gujarati as expected, the results

are notably poor. In contrast, NLLB performs significantly better with Gujarati data, for

example, achieving a Rouge-1 value of 15.7 compared to 2.6. This suggests that NLLB

works more effectively with low-resource languages.

When comparing these results with the zero-shot results from Table 10, it is notable

that the translation-based solution performs much better than zero-shot cases applied to

the model trained with only English data.

Language

pair

Scenario Rouge-1/2/L BERTScore-F1

Expected

language

Length

es

supervised 34.2/13.0/26.1 74.0 100.0 20.1

mBART50 23.1/4.5/16.8 68.1 100.0 27.2

NLLB 29.2/8.6/21.5 72.1 100.0 21.6

ru

supervised 35.3/15.3/28.4 75.1 100.0 17.9

mBART50 26.5/8.4/21.3 72.4 99.8 15.2

NLLB 26.7/8.5/21.3 72.4 100.0 15.3

gu

supervised 22.3/8.0/20.0 74.2 100.0 16.5

mBART50 2.6/0.3/2.4 64.4 94.6 17.0

NLLB 15.7/3.3/14.1 72.1 100.0 16.3

Table 11: Evaluation for Spanish, Russian, and Gujarati data using a model trained with

only English data and translation models for translation to and from English.
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6.4 Few-shot results

6.4 Few-shot results

I perform few-shot experiments as described in Chapter 5.2. A model trained with English

data is fine-tuned separately with Spanish, Russian, and Gujarati data. Additionally, a

model trained with English, Spanish, and Russian data is fine-tuned using only Gujarati

data.

Evaluations are conducted with different amounts of data: 10, 100, 1000, and 10000

(except for Gujarati, as there is less total data). Table 12 shows the results of few-shot

experiments. Even with a small amount of added supervised data (10 samples), there is

a noticeable improvement in performance. All summaries are generated in the expected

languages. Increasing the amount of data brings the results closer to the supervised

solution. For example, a model fine-tuned with 10 samples in Spanish results in a Rouge-1

value of 29.8 and an F-1 BertScore value of 71.8. Adding just 90 extra samples increases

these values to 30.4 and 72.2, respectively. These results demonstrate that models can be

easily adapted to other languages and do not require a large amount of data.

Language

pair

Scenario Rouge-1/2/L BERTScore-F1

Expected

language

Length

es

supervised 34.2/13.0/26.1 74.0 100.0 20.1

FS 10 29.8/8.5/21.6 71.8 99.9 23.9

FS 100 30.4/9.1/22.2 72.2 100.0 22.7

FS 1000 31.9/10.4/23.6 72.9 100.0 21.5

FS 10000 33.4/11.7/24.8 73.3 100.0 21.5

ru

supervised 35.3/15.3/28.4 75.1 100.0 17.9

FS 10 29.6/10.2/23.2 73.0 100.0 17.1

FS 100 30.6/10.9/23.6 73.2 100.0 19.5

FS 1000 31.2/11.6/24.2 73.3 100.0 21.7

FS 10000 31.7/12.3/24.5 73.4 100.0 23.4

gu

supervised 22.3/8.0/20.0 74.2 100.0 16.5

FS 10 17.9/5.2/15.8 72.0 100.0 16.6

FS 100 19.1/5.5/16.9 72.9 100.0 16.9

FS 1000 20.9/6.7/18.5 73.5 100.0 17.0

FS 10

(en+es+ru)

19.4/5.9/17.2 72.8 100.0 17.6

FS 100

(en+es+ru)

20.6/6.4/18.2 73.5 100.0 18.0

FS 1000

(en+es+ru)

21.5/6.9/19.1 73.8 100.0 16.8

Table 12: Few-shot results for Spanish, English, and Gujarati using a model trained with

English data. And additionally few-shot results for Gujarati using a model trained

with English, Spanish, and Russian data jointly (en+es+ru).
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6 Intralingual experiments

The few-shot experiments with Gujarati data also demonstrate that pre-training with

multiple languages can be beneficial for further fine-tuning with low-resource languages.

For example, fine-tuning a model with 10 samples, previously fine-tuned only with English

data, results in a Rouge-1 value of 17.9. In contrast, fine-tuning the same model with 10

samples, previously fine-tuned with English, Spanish, and Russian data jointly, leads to

a better Rouge-1 value of 19.4. This is also true for 100 and 1000 samples and all other

metrics. Notably, fine-tuning a model with 1000 samples, previously fine-tuned with

multiple languages, almost reaches values obtained using a supervised solution (Rouge-1

value of 21.5 compared to 22.3).
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6.5 Zero-shot experiments with partial fine-tuning

Language

pair

Scenario Rouge-1/2/L BERTScore-F1

Expected

language

Length

es

supervised 34.2/13.0/26.1 74.0 100.0 20.1

ft. all 7.9/1.2/6.2 66.0 0.2 61.7

ft. enc 26.2/7.3/19.4 70.8 85.2 23.6

ft. SA, EA 29.7/8.6/21.8 71.9 99.5 20.4

ft. Q and K 30.0/9.3/22.4 72.3 99.9 19.5

ru

supervised 35.3/15.3/28.4 75.1 100.0 17.9

ft. all 1.2/0.3/1.1 64.3 2.3 59.5

ft. enc 30.1/11.1/24.1 73.2 100.0 14.5

ft. SA, EA 28.8/10.2/22.8 72.7 100.0 15.1

ft. Q and K 30.8/11.8/24.7 73.6 100.0 14.8

gu

supervised 22.3/8.0/20.0 74.2 100.0 16.5

ft. all 1.6/0.3/1.5 59.2 13.4 61.3

ft. enc 17.2/5.2/15.8 71.7 100.0 12.3

ft. SA, EA 12.4/3.4/11.1 68.6 99.8 17.0

ft. Q and K 19.6/6.3/17.8 73.2 100.0 12.9

ft. all

(en+es+ru)

17.8/5.2/16.0 71.8 99.6 14.4

ft. enc

(en+es+ru)

18.2/5.4/16.6 72.2 100.0 12.7

ft. SA, EA

(en+es+ru)

19.1/6.1/17.2 72.6 100.0 13.3

ft. Q and K

(en+es+ru)

19.4/6.7/17.7 73.1 100.0 14.2

Table 13: Zero-shot results for Spanish, English, and Gujarati using models trained with

English data. Additionally, zero-shot results for Gujarati using models trained

with English, Spanish, and Russian data jointly ("en+es+ru"). "ft. all" updates

all weights of all encoder and decoder layers; "ft. enc" updates all weights of

all encoder layers; "ft. SA, EA" updates all weights of self-attention in encoder

layers, encoder-attention in decoder layers, and normalization layers; "ft. Q and

K" updates weights of queries and keys linear projections in self-attention of

encoder layers and encoder-attention of decoder layers.

I conduct partial fine-tuning experiments using three different settings:

1. ft. enc: Update only the weights of encoder layers. This approach, proposed by

Maurya et al. (2021) and Chi et al. (2020), is described in Section 3.1.1.

2. ft. SA, EA: Update only normalization layers and self-attention layers within the

encoder layers. Within the decoder layers, update only normalization layers and

encoder attention layers. This method, proposed by Li et al. (2021), is described in

Section 3.1.1.
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3. ft. Q and K: Update only the weights of keys and queries of self-attention in encoder

layers and encoder attention in decoder layers. This approach, proposed in this

thesis, is described in Section 4.1.

Table 13 illustrates the results of the experiments with partial fine-tuning. The conducted

experiments confirm the results obtained by the authors who originally proposed these

methods with partial fine-tuning. Both the first and the second settings lead to better zero-

shot results and help generate summaries in the expected languages. However, determining

which setting works better is challenging because results vary for different languages. For

example, for Spanish, the second setting works better than the first method (Rouge-1 value

of 29.7 compared to 26.2). But for data in Russian, it is the opposite (Rouge-1 value of 28.8

compared to 30.1).

An evaluation of the third setting proposed in this thesis shows that it performs even

better than the first two. It results in some improvements for all conducted experiments.

For example, for Russian, the Rouge-1 value is 30.8 which is higher than for the first (30.1)

and the second (28.8) settings.

It is notable also in this case that pre-training performed using multiple languages helps

in zero-shot cases with data in Gujarati. It gives an improvement of the BERTScore-F1

value for the first setting from 71.7 to 72.2 and for the second setting from 68.6 to 72.6.

For the third setting, the results are very similar; some metrics are slightly better for the

model pre-trained with English data (Rouge-1 value of 19.6 compared to 19.4), but some of

them are better for the model pre-trained with English, Spanish, and Russian data jointly

(Rouge-1 value of 6.7 compared to 6.3). It means that the third setting not only improves

results in zero-shot cases but can also achieve such good results with less data.

Another advantage of partial fine-tuning is that it updates fewer model parameters

and hence requires less time for fine-tuning. Table 14 demonstrates how many model

parameters are trainable in different scenarios. The solution proposed in this thesis with

fine-tuning only keys and queries updates fewer parameters than all other scenarios.

Scenario # trainable parameters % from overall

ft. all incl. embeddings 610,851,840 100%

ft. all excl. embeddings 352,718,848 57.7%

ft. enc 151,156,736 24.7%

ft. SA, EA 100,888,576 16.5%

ft. Q and K 50,380,800 8.2%

Table 14: Number of model parameters that are trainable during fine-tuning.
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6.6 Results overview

This section provides a brief overview of the results of all approaches applied in this

chapter for conducting experiments. Table 15 presents the Rouge-L and BERTScore-F1

values.

The best zero-shot approach, "ft. Q and K," outperforms the approach with translation

models, "translated - NLLB," for all languages. Applying translation models for pre- and

post-processing accumulates errors from the models and leads to slightly worse results.

This is especially notable for Gujarati, where the Rouge-L value is 17.8 compared to 14.1.

The reason for this could be that the performance of translation models for translation

from and to low-resource languages is worse than for high-resource languages.

Comparing few-shot results, it is possible to say that about 1000 samples are required

to achieve the best zero-shot approach results on average. Notably, Russian few-shot

results with even 10000 samples perform worse than my proposed approach, achieving a

BERTScore-F1 value of 73.4 compared to 73.6. Another observation is that few-shot

experiments conducted for Gujarati perform better for the model pre-trained with

multilingual data and require only 100 samples to obtain better results compared to the

best zero-shot solution.

Scenario es ru gu

gu

(en+es+ru)

(1) supervised 26.1/74.0 28.4/75.1 20.0/74.2 20.0/74.2

(2) zero-shot (baseline) 6.2/66.0 1.1/64.3 1.5/59.2 16.0/71.8

(3) translated - NLLB 21.5/72.1 21.3/72.4 14.1/72.1 -

(4) (2) + 10 samples 21.6/71.8 23.2/73.0 15.8/72.0 17.2/72.8

(5) (2) + 100 samples 22.2/72.2 23.6/73.2 16.9/72.9 18.2/73.5

(6) (2) + 1000 samples 23.6/72.9 24.2/73.3 18.5/73.5 19.1/73.8

(7) (2) + 10000 samples 24.8/73.3 24.5/73.4 - -

(8) ft. enc 19.4/70.8 24.1/73.2 15.8/71.7 16.6/72.2

(9) ft. SA, EA 21.8/71.9 22.8/72.7 11.1/68.6 17.2/72.6

(10) ft. Q and K 22.4/72.3 24.7/73.6 17.8/73.2 17.7/73.1

Table 15: Overview of Rouge-L and BERTScore-F1 values for all intralingual scenarios.
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This section presents the results of cross-lingual experiments. Cross-lingual multilingual

models can encode and generate texts in different languages, allowing for the input and

output languages to differ. This allows to perform simultaneous summarization and

translation. It is possible to construct more complicated scenarios using cross-lingual

models.

In my thesis, I conduct experiments using only monolingual data in English, Spanish,

and Russian during training. Applying different methods, I attempt to train models in

such a way that cross-lingual summarization becomes possible. Figure 16 demonstrates

such a model.

Figure 16: Cross-lingual multilingual summarization. Training is performed using

monolingual English, Spanish, and Russian data jointly. Evaluation includes

cross-lingual scenarios.

The performance of models is evaluated using cross-lingual data in different languages,

considering combinations of languages from the second research question. The following

language pairs are utilized:

• Spanish-English, Russian-English, and Spanish-Russian. All languages are available

during the fine-tuning process but not in such combinations.

• Turkish-English. Only the output language is available during the fine-tuning

process.

• English-Turkish. Only the input language is available during the fine-tuning process.
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• Turkish-Turkish. Both input and output languages are not available during the

fine-tuning process.

In this section, I will also conduct both zero-shot and few-shot experiments. With these

experiments, I will be able to answer the second, third, and fourth research questions.

7.1 Dataset - WikiLingua

Ladhak et al. (2020) introduced another dataset for multilingual abstractive summarization

known as WikiLingua. One specific feature and advantage of this dataset is that, in

addition to monolingual data in various languages, it also includes cross-lingual data. This

feature enables us to perform a broader range of experimental scenarios, making it even

more attractive. The dataset comprises pairs of articles and abstractive summaries in 18

languages, all written by human authors.

Table 16 displays the statistics of the WikiLingua dataset for different language pairs

used for experiments in this thesis: English-English, English-Turkish, Spanish-English,

Spanish-Spanish, Spanish-Russian, Russian-English, Russian-Russian, Turkish-English,

and Turkish-Turkish. It shows the number of samples available for the training, validation,

and test splits.

languages train validation test

en-en 95517/379.68/32.23 3000/379.82/32.64 27489/377.35/32.27

en-tr 3052/350.67/27.51 438/350.00/27.83 874/329.94/27.21

es-en 76295/406.96/31.74 3000/404.95/31.60 21726/406.76/32.31

es-es 76295/406.96/36.72 3000/404.95/36.62 21726/406.76/37.30

es-ru 32458/418.26/27.76 3000/428.64/28.35 8737/415.56/28.20

ru-en 35313/322.08/30.57 3000/326.38/31.75 9962/318.70/31.07

ru-ru 35313/322.08/27.79 3000/326.38/28.58 9962/318.70/28.12

tr-en 3052/265.21/32.65 438/263.42/32.60 874/249.35/32.33

tr-tr 3052/265.21/27.51 438/263.42/27.83 874/249.35/27.21

Table 16: WikiLingua dataset statistics - number of samples/average input length in

words/average output length in words.

The data in the WikiLingua dataset is extracted from the WikiHow website (https:

//www.wikihow.com/). Similar to the XL-Sum dataset, articles and summaries in various

languages within the WikiLingua dataset are constructed using the same scheme, making

it a good choice for multilingual summarization tasks.

Articles in this dataset provide instructions with detailed steps explaining how to

complete various tasks across a range of topics, such as How to Make a Simple Chocolate
Cake, How to Play Tennis, and How to Code. Each task consists of multiple steps that

offer comprehensive instructions on completing these tasks. Each step consists of a
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textual paragraph with instructions and a one-sentence summary at the beginning of

the paragraph, which serves as a summary of that step. All one-sentence summaries are

combined into a single common summary, and all paragraphs are aggregated into an input

article.

Table 17 presents an example of How to ride a bicycle, illustrating how task descriptions

are transformed into articles and summaries in different languages.

Original task description:Step 1. Find a fitting location. When you’re learning as a

beginner, you want to find a place that’s comfortable and far from traffic. A good place

to start is a flat, smooth stretch of ground such as your driveway or your sidewalk.

Those who don’t have space at home can practice in a parking lot or park. Step 2.

Wear riding clothing. Knee and elbow pads insulate joints and protect against scrapes,

so they are recommended for all riders. Long-sleeved shirts and long pants also help

protect against falls and can be combined with pads. Step 3. Put on a helmet. Helmets

are recommended for beginners and experienced bike riders alike. You never know

when an accident will happen. A broken bone can usually be fixed, but head trauma,

common in bicycle accidents, leaves a lasting impact. Also, some areas have laws

requiring riders to wear helmets.

Extracted input article: When you’re learning as a beginner, you want to find a place

that’s comfortable and far from traffic. A good place to start is a flat, smooth stretch

of ground such as your driveway or your sidewalk. Those who don’t have space at

home can practice in a parking lot or park. Knee and elbow pads insulate joints and

protect against scrapes, so they are recommended for all riders. Long-sleeved shirts

and long pants also help protect against falls and can be combined with pads. Helmets

are recommended for beginners and experienced bike riders alike. You never know

when an accident will happen. A broken bone can usually be fixed, but head trauma,

common in bicycle accidents, leaves a lasting impact. Also, some areas have laws

requiring riders to wear helmets.

Summary in English: Find a fitting location. Wear riding clothing. Put on a helmet.

Summary in German: Suche dir einen passenden Ort. Trage die richtige Kleidung.

Setze einen Helm auf.

Table 17: A WikiLingua example from the article explaining how to ride a bicycle

https://www.wikihow.com/Ride-a-Bicycle.
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7.2 Supervised oracle condition and baseline

As in the case of intralingual experiments, initially, it is necessary to train models that

will be utilized for further comparisons. For this purpose, two models are trained and

evaluated:

1. The first model ("supervised" scenario in Table 18) is a model trained using supervised

data that is used in other experiments for evaluation (Spanish-English, Russian-

English, Spanish-Russian, Turkish-English, English-Turkish, Turkish-Turkish).

2. The second model ("baseline" scenario in Table 18) is a baseline model trained with

monolingual data in English, Spanish, and Russian.

Table 18 demonstrates the results of the evaluation of the models described above. The

baseline model performs very poorly for all cases, except for the monolingual language

pair Turkish-Turkish. This result supports findings that were obtained with intralingual

experiments that a model pre-trained with intralingual data in multiple languages performs

relatively well in intralingual zero-shot cases.

For other language pairs, the model suffers from the off-target generation problem,

making it inappropriate for zero-shot cross-lingual cases. It also generates very long

summaries that are not expected. This problem and its explanation are described in

Section 6.5.

Language

pair

Scenario Rouge-1/2/L BERTScore-F1

Expected

language

Length

es-en

supervised 38.4/14.8/31.4 78.1 99.8 24.3

baseline 2.4/0.1/2.2 67.8 0.0 63.9

es-ru

supervised 21.0/6.2/18.0 75.2 100.0 19.6

baseline 0.6/0.1/0.6 64.7 0.0 64.8

ru-en

supervised 36.0/13.2/29.4 77.5 99.7 23.6

baseline 0.7/0.1/0.7 63.3 0.0 47.7

tr-en

supervised 41.5/18.2/34.5 78.8 99.4 25.2

baseline 5.0/1.1/4.6 62.9 1.6 32.9

en-tr

supervised 23.8/8.1/20.7 73.2 100.0 20.2

baseline 2.7/0.5/2.5 60.9 0.0 66.4

tr-tr

supervised 30.4/12.4/26.3 75.5 99.7 21.1

baseline 20.9/6.0/18.0 71.5 96.4 20.9

Table 18: Cross-lingual supervised learning and baseline results.
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7.3 Translation-based results

This section presents the results of cross-lingual summarization using translation models.

For this purpose, it is necessary to train an intralingual summarization model using

monolingual English data from the WikiLingua dataset. With the use of mBART50 and

NLLB models, data can be pre- and postprocessed.

Table 19 demonstrates the results of the evaluation. Cross-lingual summarization using

both translation models works well, especially for language pairs with English as an output

language, where translation is performed only once to prepare the input. The NLLB model

outperforms the mBART50 model on all language pairs, especially when Turkish is one

of the languages in the language pair. These results align with those obtained during

intralingual experiments in Section 6.3.

Language

pair

Scenario Rouge-1/2/L BERTScore-F1

Expected

language

Length

es-en

supervised 38.4/14.8/31.4 78.1 99.8 24.3

mBART50 36.4/13.4/29.7 77.6 99.7 24.6

NLLB 37.9/14.5/31.1 78.1 99.7 23.9

es-ru

supervised 21.0/6.2/18.0 75.2 100.0 19.6

mBART50 16.1/3.5/13.9 73.3 100.0 20.0

NLLB 16.7/3.7/14.4 73.8 100.0 19.5

ru-en

supervised 36.0/13.2/29.4 77.5 99.7 23.6

mBART50 34.5/12.1/28.4 77.3 99.7 21.9

NLLB 34.6/12.2/28.5 77.3 99.7 22.2

tr-en

supervised 41.5/18.2/34.5 78.8 99.4 25.2

mBART50 36.1/13.0/29.5 77.1 100.0 26.3

NLLB 40.9/17.0/34.1 78.7 99.4 24.8

en-tr

supervised 23.8/8.1/20.7 73.2 100.0 20.2

mBART50 13.0/2.7/11.8 70.6 99.8 19.7

NLLB 20.9/5.5/18.7 73.1 99.8 19.7

tr-tr

supervised 30.4/12.4/26.3 75.5 99.7 21.1

mBART50 12.5/2.7/11.3 70.4 100.0 20.4

NLLB 20.7/5.8/18.5 73.2 99.8 19.7

Table 19: Evaluation for different language pairs using a model trained with only English

data and translation models for translation to and from English.

For language pairs generating summaries in English, the solution with the NLLB model

is almost as good as the supervised solution. For instance, in the Turkish-English pair,

the BERTScore-F1 value is 78.7, compared to 78.8 in the supervised scenario. The reason

is that in this case, translation is performed only once as a pre-processing step from

other languages to English. In other cases where summaries are generated in languages

other than English, such as the Spanish-Russian pair, it is also necessary to translate the

generated summaries from English to Russian, resulting in additional errors. Another
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possible reason is that the NLLB model is likely more proficient at translating in English

than in other languages.
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7.4 Few-shot results

The results of few-shot experiments are presented in Table 20. The results show a similar

performance as in intralingual cases in Section 6.4. For most language pairs, even a small

amount of data (10 samples) significantly improves the results. However, the language

pair English-Turkish requires more data, as 10 samples are insufficient for adaptation, and

the model continues to generate texts in English. It means that it is more challenging for

a model to adapt and generate summaries in a language unseen during the fine-tuning

process. With a limited amount of data, it is almost possible to achieve a performance

level comparable to that of a model trained with complete supervised data. For example,

in the case of a Spanish-Russian language pair, a model fine-tuned with 10000 samples has

a Rouge-1 value of 20.5 compared to 21.0 for the supervised solution.

Language

pair

Scenario Rouge-1/2/L BERTScore-F1

Expected

language

Length

es-en

supervised 38.4/14.8/31.4 78.1 99.8 24.3

FS 10 33.6/10.5/26.9 76.3 99.3 27.5

FS 100 34.3/11.0/27.4 76.7 99.7 27.0

FS 1000 35.4/11.8/28.3 77.1 99.7 27.7

FS 10000 37.4/13.6/30.2 77.8 99.7 26.8

es-ru

supervised 21.0/6.2/18.0 75.2 100.0 19.6

FS 10 16.0/3.9/13.7 73.0 100.0 20.4

FS 100 18.0/4.5/15.0 73.7 100.0 23.7

FS 1000 19.1/5.0/16.0 74.1 100.0 23.4

FS 10000 20.5/5.9/17.4 74.8 100.0 22.0

ru-en

supervised 36.0/13.2/29.4 77.5 99.7 23.6

FS 10 31.0/9.5/25.2 76.0 99.7 24.0

FS 100 32.7/10.2/26.2 76.3 99.8 26.2

FS 1000 33.7/10.9/27.1 76.7 99.8 26.5

FS 10000 35.3/12.4/28.8 77.3 99.7 24.7

tr-en

supervised 41.5/18.2/34.5 78.8 99.4 25.2

FS 10 35.0/12.1/28.1 76.5 99.7 27.6

FS 100 36.5/13.2/29.6 77.2 99.8 26.0

FS 1000 39.1/15.5/32.1 78.2 99.6 25.9

en-tr

supervised 23.8/8.1/20.7 73.2 100.0 20.2

FS 10 3.3/0.6/3.1 60.9 0.1 54.6

FS 100 16.4/3.6/14.2 70.3 99.9 18.7

FS 1000 21.3/5.9/18.4 72.4 99.9 19.6

tr-tr

supervised 30.4/12.4/26.3 75.5 99.7 21.1

FS 10 25.7/8.5/21.9 74.0 99.7 21.6

FS 100 27.7/9.5/23.5 74.9 99.8 22.6

FS 1000 29.7/11.4/25.8 75.5 99.9 20.7

Table 20: Few-shot cross-lingual experiments results using a model trained with English

data.
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7.5 Zero-shot results with advanced methods

7.5.1 Adversarial language classifier and removing residual connections

I conduct experiments by applying an adversarial language classifier to the encoder

output representation to prove that it is possible to train a cross-lingual model using only

monolingual data. Results presented in Table 21 show that both approaches with different

formulas ("(1) adv.loss" scenario stands for the original approach with Equation 3, "(2)

adv.loss(KL-div)" scenario stands for the approach proposed in this thesis with Equation 5)

work well for all language pairs that utilize an output language available during fine-tuning

(English, Spanish, or Russian). For output languages that do not take part in the fine-tuning

process (Turkish), the results are very poor. English-Turkish and Turkish-Turkish language

pairs demonstrate bad results, as the fine-tuned model generates off-target summaries in

unexpected languages in these cases. The Turkish-English language pair shows that this

approach is also suitable for unseen input languages.

The proposed approach that utilizes Kullback–Leibler divergence slightly outperforms

the original solution for all language pairs, particularly for pairs for which this solution

with adversarial loss works. For example, in the Spanish-English pair, the Rouge-1 value

is improved from 33.4 to 34.1, and the BERTScore-F1 value from 76.1 to 76.4. It means that

it allows making an encoder output representation more language-independent.

I also conduct experiments with removing residual connections ("(2) + residual" scenario

in Table 21) to eliminate position information from the encoder output representation. I

apply this approach together with an adversarial loss proposed in this thesis with Equation

5. Since D. Liu, Niehues, et al. (2021) state that it is better to remove the residual connection

in the middle layer and the encoder in the mBART model consists of 12 layers, I attempt to

remove a residual connection in the seventh layer. Results demonstrate that this approach

gives further improvements for cases when the input language is available during fine-

tuning. In the same language pair Spanish-English it moves the results of the Rouge-1

and BERTScore-F1 values to 34.8 and 76.6. When the input language is not seen during

fine-tuning, removing residual connections does not lead to any benefits.
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Language

pair

Scenario Rouge-1/2/L BERTScore-F1

Expected

language

Length

es-en

supervised 38.4/14.8/31.4 78.1 99.8 24.3

(1) adv.loss 33.4/10.5/26.7 76.1 98.5 28.6

(2)

adv.loss(KL-

div)

34.1/11.0/27.2 76.4 99.4 28.9

(2) + residual 34.8/11.3/27.6 76.6 99.7 29.9

es-ru

supervised 21.0/6.2/18.0 75.2 100.0 19.6

(1) adv.loss 16.9/4.1/14.1 72.5 97.6 26.5

(2)

adv.loss(KL-

div)

17.3/4.3/14.3 72.8 99.9 27.8

(2) + residual 17.8/4.5/14.8 73.1 100.0 27.2

ru-en

supervised 36.0/13.2/29.4 77.5 99.7 23.6

(1) adv.loss 31.9/9.9/25.3 75.7 99.6 29.2

(2)

adv.loss(KL-

div)

32.2/10.2/25.6 75.8 99.8 29.3

(2) + residual 33.1/10.6/26.3 76.1 99.9 29.8

tr-en

supervised 41.5/18.2/34.5 78.8 99.4 25.2

(1) adv.loss 32.0/10.7/26.1 75.2 98.9 24.8

(2)

adv.loss(KL-

div)

32.6/11.0/26.6 75.5 99.8 26.5

(2) + residual 32.1/10.3/25.7 75.2 99.1 26.2

en-tr

supervised 23.8/8.1/20.7 73.2 100.0 20.2

(1) adv.loss 2.8/0.5/2.5 60.9 0.0 65.4

(2)

adv.loss(KL-

div)

2.8/0.5/2.6 60.9 0.0 65.4

(2) + residual 2.7/0.5/2.5 61.0 0.0 64.9

tr-tr

supervised 30.4/12.4/26.3 75.5 99.7 21.1

(1) adv.loss 5.7/1.1/5.2 62.8 10.6 55.1

(2)

adv.loss(KL-

div)

3.5/0.5/3.2 61.1 0.1 63.4

(2) + residual 2.5/0.4/2.3 60.8 0.0 59.2

Table 21: Results of applying adversarial language classifier and removing residual

connections. "(1) adv.loss" - an original approach with Equation 3. "(2)

adv.loss(KL-div)" - an approach proposed in this thesis with Equation 5. "(2)

+ residual" - a combination of the second approach with removing residual

connections.
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7 Crosslingual experiments

To evaluate how much language information tokens contain, it is helpful to train a

language classifier on top of the encoder (Adi et al. 2017) that attempts to classify tokens

based on their original languages. I perform this encoder output language classification

for a baseline model and three models presented in this subsection. Figure 17 illustrates

the results.

Conducted experiments demonstrate the successful implementation of all these

approaches in making the encoder output more language-independent. The classification

results correspond to the results discussed above and presented in Table 21. The original

approach using Equation 3 works, but it leads to small changes and produces results that

are significantly far from the uniform distribution. It reduces values for English, Spanish,

and Russian from 0.992, 0.99, and 0.99 to 0.954, 0.953, and 0.956, respectively. The changes

for Turkish are even smaller, decreasing from 0.985 to 0.968.

The approach proposed in this thesis, using Equation 5, demonstrates better performance

and results and leads to more equal language probabilities. English, Spanish, and Russian

become less predictable, with probabilities of 0.594, 0.689, and 0.641, respectively. The

probability for Turkish also decreases, although remaining relatively high at 0.905, but

lower than the original value. The problem is that for languages participating in fine-tuning

with the adversarial loss it is attempted to eliminate their specific language features, but

some of the specific features of other languages (in this case Turkish) remain unchanged.

Conducting such fine-tuning with more languages, including those from the same language

family, could potentially lead to better results, even for languages not seen during the

fine-tuning process.

Combining the proposed approach with removing residual connections further

improves the results, bringing them closer to a language-independent representation with

probabilities of 0.496, 0.523, 0.51, and 0.644 for English, Spanish, Russian, and Turkish,

respectively. Notably, English and Spanish have more similar probabilities with each other

than with Russian, which could be explained by linguistic similarities between these

languages. They share the same alphabet and have common tokens.

Another interesting observation is that it becomes more difficult to classify Turkish,

although it does not participate in the original fine-tuning. There could be a combination of

two reasons for that 1) the effectiveness of this approach, as it removes direct connections

from input tokens, and 2) the potential loss of some language-specific features learned

during pre-training with extensive data, as I modify the architecture of one encoder layer

in this approach, requiring the model to relearn these features.
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7.5 Zero-shot results with advanced methods

Figure 17: Encoder output language classification results. "Baseline" - a baseline model

trained without any advanced approaches. "Adversarial loss" - an original

approach with Equation 3. "Adversarial loss (KL-div)" - an approach proposed in

this thesis with Equation 5. "Adversarial loss (KL-div) + residual" - a combination

of the second approach with removing residual connections.
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7.5.2 Language adapters

I conduct experiments with two types of adapters as described in Section 4.3: layers

adapters and encoder output adapters. Table 22 demonstrates the results of experiments.

A solution utilizing adapters proposed by Philip et al. (2020) ("layer" scenario) gives

improvements for some language pairs (Russian-English and Turkish-English) in

comparison to zero-shot cases. At the same time, the results for other pairs

(Spanish-English and Spanish-Russian) are poor.

Language adapters that I proposed to use in this thesis ("encoder output" scenario)

and applied at the token level to encoder output representation show good results for all

language pairs. They enable good zero-shot performance, generating summaries in the

correct languages with expected content.

Encoder output adapters outperform layer adapters significantly. The problem with

layer adapters is that they contain residual connections (see 6). Even with the application

of language-specific adapters, the original signal coming from the input language stays

strong and has an influence on the output language. In contrast, encoder output adapters,

do not contain a residual connection and just perform language-specific linear projections.

This enables them to change values much stronger and to adapt encoder output tokens to

the expected output language.

Language

pair

Scenario Rouge-1/2/L BERTScore-F1

Expected

language

Length

es-en

supervised 38.4/14.8/31.4 78.1 99.8 24.3

layer 4.5/0.5/4.2 70.6 1.2 25.4

encoder

output

32.5/10.0/26.2 76.3 99.6 24.4

es-ru

supervised 21.0/6.2/18.0 75.2 100.0 19.6

layer 0.7/0.1/0.7 64.9 0.3 56.8

encoder

output

16.6/4.0/13.9 73.1 100.0 23.1

ru-en

supervised 36.0/13.2/29.4 77.5 99.7 23.6

layer 20.9/5.8/17.1 70.8 57.9 19.4

encoder

output

30.6/9.3/24.7 75.8 99.7 23.2

tr-en

supervised 41.5/18.2/34.5 78.8 99.4 25.2

layer 16.7/4.8/14.1 68.4 49.4 17.2

encoder

output

31.9/10.4/25.9 75.7 99.8 22.0

Table 22: Results of experiments with language adapters. "Layer" - language adapters

applied to layers and proposed by Philip et al. (2020). "encoder output" - language

adapters applied to encoder output representation and proposed in this thesis.
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7.5 Zero-shot results with advanced methods

7.5.3 Two-step fine-tuning (translate-then-summarize)

Another possible strategy to train a multilingual summarization model capable of

performing cross-lingual summarization is training in two steps. With two-step

fine-tuning, it is possible to first fine-tune a model with one task and after that fine-tune it

again with another task. This training approach utilizes transfer learning between tasks

and improves results.

In the context of cross-lingual summarization, two-step fine-tuning consists of the

following steps:

1. Fine-tune with a translation task: In this step, a model learns to perform

translation between desired languages. This fine-tuning step allows the model to

learn language-specific features and patterns relevant to translation. I perform

translation using many-to-many data in all four languages that I use for evaluation:

English, Spanish, Russian, and Turkish.

To prepare the translation data for this step, I parse a WikiLingua dataset presented

at the beginning of this chapter. I iterate over samples in different language pairs

and matched samples that have the same input text or output summary in the

same language, but the corresponding output summary or input text is presented in

different languages. By performing such matching, I generate translation data in

the same domain as used for summarization. A translation model trained with such

data is capable of translating both short and long sequences.

2. Fine-tune with a summarization task: In this step, a model learns how to

summarize texts, adapting to the characteristics of summarization. To avoid the

problem of catastrophic forgetting, the same technique with partial key-query

fine-tuning as described in Chapter 4.1 is applied. Similar to intralingual cases, I

apply key-query fine-tuning to both the encoder and decoder. I fine-tune two

models: the first one using only English data, and the second one using English,

Spanish, and Russian data jointly.

An advantage of this approach with two-step fine-tuning is that there is much more

cross-lingual supervised data for a translation task than for other NLP tasks, such as

summarization. This advantage is especially important for language combinations,

including low-resource languages, as fine-tuning with a summarization task does not

require supervised data in all language pairs.

Table 23 presents the results of the two-step approach. All cases confirm the effectiveness

of this approach, showing comparable results with the translation-based solution using

the NLLB model. Notably, the generated summaries in the two-step approach are always

longer, resulting in lower BERTScore-F1 values, but, in some cases, higher Rouge-1 values.

For instance, in the Spanish-Russian pair, the generated summaries have an average length

of 24.3 for a model fine-tuned using only English data and 22.3 for a model fine-tuned

using English, Spanish, and Russian data jointly. In comparison, the translation-based

solution has an average length of 19.5 words which is a little bit less. The BERTScore-F1

value is 73.8 in the translation-based approach, compared to 73.6 and 73.4 for the two-step
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Language

pair

Scenario Rouge-1/2/L BERTScore-F1

Expected

language

Length

es-en

supervised 38.4/14.8/31.4 78.1 99.8 24.3

NLLB 37.9/14.5/31.1 78.1 99.7 23.9

en 35.4/12.2/28.4 76.9 99.6 26.5

en+es+ru 34.4/11.5/27.7 76.5 98.4 26.1

es-ru

supervised 21.0/6.2/18.0 75.2 100.0 19.6

NLLB 16.7/3.7/14.4 73.8 100.0 19.5

en 17.9/4.6/14.8 73.6 99.5 24.3

en+es+ru 17.6/4.6/14.8 73.4 98.4 22.3

ru-en

supervised 36.0/13.2/29.4 77.5 99.7 23.6

NLLB 34.6/12.2/28.5 77.3 99.7 22.2

en 33.7/11.0/26.7 76.2 99.8 28.9

en+es+ru 32.8/10.7/26.3 76.1 99.6 25.3

tr-en

supervised 41.5/18.2/34.5 78.8 99.4 25.2

NLLB 40.9/17.0/34.1 78.7 99.4 24.8

en 39.1/15.1/31.1 77.4 99.8 30.4

en+es+ru 38.6/14.6/30.7 77.4 99.7 29.6

en-tr

supervised 23.8/8.1/20.7 73.2 100.0 20.2

NLLB 20.9/5.5/18.7 73.1 99.8 19.7

en 14.7/4.1/12.5 68.8 66.6 27.9

en+es+ru 20.4/5.8/16.7 71.3 98.7 28.4

tr-tr

supervised 30.4/12.4/26.3 75.5 99.7 21.1

NLLB 20.7/5.8/18.5 73.2 99.8 19.7

en 20.4/6.1/16.3 70.7 92.4 36.6

en+es+ru 23.1/7.0/18.4 72.0 100.0 37.3

Table 23: Two-step fine-tuning (translate-then-summarize) results. "en" - only English

data was used for fine-tuning in the summarization step. "en+es+ru" - English,

Spanish, and Russian data was used for fine-tuning in the summarization step.

approach. However, the Rouge-1 value is only 16.7, as opposed to 17.9 and 17.6 in the

two-step approach.

I also apply the second fine-tuning step with a summarization task to the mBART50

(pre-trained for many-to-many translation version) and NLLB models. This approach

does not work for both models. The problem with mBART50 is that it is pre-trained

using many-to-one and one-to-many data using English-centric data. This model can not

perform intralingual transformations, resulting in the off-target generation. This model

can not learn how to summarize texts by updating only queries and keys while using only

monolingual data. It leads to significant losses but at the same time, it can not update

enough weights because of partial fine-tuning. The problem with the NLLB model arises

from its limitation to inputs of a maximum of 512 tokens. Many WikiLingua input texts

are longer than 512 tokens. It makes it difficult for the model to establish relationships

between truncated shorter input texts and expected summaries.
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7.6 Results overview

This section provides a brief overview of the results of all approaches applied in this

chapter for conducting experiments. Table 24 presents the Rouge-L and BERTScore-F1

values.

All proposed advanced approaches applying language-specific adapters and an

adversarial language classifier loss work well in zero-shot cases. However, they are not

capable of generating summaries in languages unseen during fine-tuning, e.g.,

English-Turkish. A good fact is that they can generate summaries from input texts in

languages unseen during fine-tuning, e.g., Turkish-English. To conduct summaries in

languages unseen during fine-tuning, the translation-based solution, the two-step

solution, or few-shot scenarios can be used.

The best zero-shot solution, "(9) + residual," outperforms the approach with translation

models only for the Spanish-Russian pair (the Rouge-L value is 14.8 compared to 14.4). For

other pairs, where English is the output language, the translation-based approach works

better. As described in Section 7.3, possible reasons for this are that in the Spanish-Russian

case, translation is conducted twice for both pre- and post-processing data, resulting in

additional errors, and that the NLLB model is likely more proficient at translating in

English than in other languages.

Scenario es-en es-ru ru-en tr-en en-tr tr-tr

(1) supervised 31.4/78.1 18.0/75.2 29.4/77.5 34.5/78.8 20.7/73.2 26.3/75.5

(2) zero-shot (baseline) 2.2/67.8 0.6/64.6 0.7/63.3 4.6/62.9 2.5/60.9 18.0/71.5

(3) translated - NLLB 31.1/78.1 14.4/73.8 28.5/77.3 34.1/78.7 18.7/73.1 18.5/73.2

(4) (2) + 10 samples 26.9/76.3 13.7/73.0 25.2/76.0 28.1/76.5 3.1/60.9 21.9/74.0

(5) (2) + 100 samples 27.4/76.7 15.0/73.7 26.2/76.3 29.6/77.2 14.2/70.3 23.5/74.9

(6) (2) + 1000 samples 28.3/77.1 16.0/74.1 27.1/76.7 32.1/78.2 18.4/72.4 25.8/75.5

(7) (2) + 10000 samples 30.2/77.8 17.4/74.8 28.8/77.3 - - -

(8) adv.loss 26.7/76.1 14.1/72.5 25.3/75.7 26.1/75.2 2.5/60.9 5.2/62.8

(9) adv.loss(KL-div) 27.2/76.4 14.3/72.8 25.6/75.8 26.6/75.5 2.6/60.9 3.2/61.1

(10) (9) + residual 27.6/76.6 14.8/73.1 26.3/76.1 25.7/75.2 2.5/61.0 2.3/60.8

(11) Dec. layer adapters 4.2/70.6 0.7/64.9 17.1/70.8 14.1/68.4 - -

(12) Enc. output adapters 26.2/76.3 13.9/73.1 24.7/75.8 25.9/75.7 - -

(13) Two-step - en 28.4/76.9 14.8/73.6 26.7/76.2 31.1/77.4 12.5/68.8 16.3/70.7

(14) Two-step - en+es+ru 27.7/76.5 14.8/73.4 26.3/76.1 30.7/77.4 16.7/71.3 18.4/72.0

Table 24: Overview of Rouge-L and BERTScore-F1 values for all cross-lingual scenarios.

To achieve better results with few-shot scenarios than with the best zero-shot solution,

"(9) + residual," about 100-1000 samples are required. For input languages that do not take

part in fine-tuning, e.g., Turkish, few-shot results with 10 samples are already better than

advanced approaches. The value of the Rouge-L score in the "(2) + 10 samples" case is

28.1, compared to 26.6 in the "adv.loss(KL-div)" case. The reason for that is that advanced

approaches applied in this thesis also change the weights of the encoder, making it slightly
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7 Crosslingual experiments

more language-specific and adapting it more to languages that take part in fine-tuning. In

this case, the transfer learning between languages seen and unseen during fine-tuning

becomes smaller.
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8 Conclusion

This chapter concludes this thesis, in which I analyzed different approaches that can be

applied to improve multilingual abstractive summarization. I conducted zero-shot and few-

shot experiments using the pre-trained mBART model. It was proven that it is possible

to obtain very good results with the use of few or even no data for both intralingual

and cross-lingual cases. Section 8.1 presents the answers to research questions stated in

Chapter 1. Section 8.2 discusses potential extensions to this thesis in the future.

8.1 Answers to research questions

Research question 1: How can we generate intralingual summaries of texts in low-

resource languages when we only have intralingual data available in other languages and

a pre-trained multilingual model?

In Chapter 6, I conducted different experiments with intralingual data. Fine-tuning a

model using data only in one language without applying advanced approaches makes

the model language-specific. Zero-shot experiments showed that this approach leads to

the off-target generation problem. Fine-tuning a model using data in multiple languages

can help avoid this problem. A model fine-tuned with multiple languages performs much

better in zero-shot cases, enabling the summarization of texts in low-resource languages.

Research question 2: How can we generate cross-lingual summaries of texts when

we only have intralingual data available in the same languages or other languages, along

with a pre-trained multilingual model?

Chapter 7 describes the results of cross-lingual experiments. A model fine-tuned using

only intralingual data in multiple languages without applying advanced approaches can

not generate cross-lingual summaries. Such a model remains intralingual and suffers from

the off-target problem as well. A language token used by pre-trained multilingual models,

e.g., mBART, is not enough to force the output to be in the expected language. It was

shown that the encoder output representation remains very language-dependent in this

case and the output language depends much more on it than on the language token.

Research question 3: What is the required amount of supervised data for few-shot

experiments to achieve results that are comparable to experiments with complete

supervised data in both intralingual and cross-lingual scenarios?

Experiments conducted for both intralingual and cross-lingual cases showed that even

a small amount of supervised data in the desired languages (10 samples) can significantly
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improve the results. Adding more data further improves the results. In most scenarios,

fine-tuning with 1000 or 10000 samples leads to results close to the supervised solution.

Research question 4: What methods can be applied to improve zero-shot results in

both intralingual and cross-lingual scenarios?

I evaluated different approaches from the literature and new approaches proposed in

this thesis. It was proven that partial fine-tuning helps against off-target generation and

maximizes benefits from the use of pre-trained multilingual models. This method improves

the results of zero-shot experiments with intralingual models significantly. The newly

proposed approach, fine-tuning only queries and keys of multi-head attention, showed

the best results, resulting in better metric values and requiring less time for fine-tuning as

it updates fewer parameters.

Applying language-specific encoder output adapters proposed in this thesis makes it

possible to perform cross-lingual summarization in zero-shot cases. Another suitable

approach for that is using an adversarial loss that was proposed earlier for machine

translation. This method works well for cross-lingual summarization as it makes the

encoder output representation less language-specific. The improvement proposed in this

thesis that better encourages language-independent encoder output representation by

using Kullback–Leibler divergence to a uniform class distribution as a loss function leads

to even better results. This new method was also combined with another approach that

removes a residual connection from one encoder layer to decrease positional information

from the encoder output. This combination showed the best results. I also performed a

probing analysis of the encoder output representation trying to recognize the input

language. This analysis showed that new approaches also lead to more

language-independent results.

8.2 Future work

It should be further analyzed how to make the encoder output representation less language-

specific, both at the token and sequence levels. Even by making tokens less language-

specific, it is still possible to identify the input language. Different languages have distinct

grammar rules; the same words in different languages can be tokenized into various

numbers of tokens, influencing the length of sequences; and some words simply do not

exist in certain languages. All these challenges make it difficult to achieve a more language-

independent encoder output.

For many cross-lingual sequence-to-sequence tasks, it would be beneficial to pre-train a

cross-lingual version of mBART that utilizes multiple languages and enables high-quality

transformations. Currently available pre-trained mBART versions are either intralingual

or cross-lingual, showing poor results for many language directions, especially with low-

resource languages. Some currently available cross-lingual models, such as NLLB, can

not accept inputs longer than 512 tokens, making them not applicable for some tasks.

Pre-training the cross-lingual version of mBART could be conducted using the advanced
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approaches proposed in this thesis. Applying these approaches during pre-training could

lead to even better results because of the amount of available unsupervised data. Such pre-

training would cover more tokens during training and would not suffer from overfitting.

However, such pre-training would require significant computation resources, and therefore,

it was out of the scope of this thesis.
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