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Abstract

This paper presents a detailed analysis of accented-robust automatic speech recognition

(ASR) using transfer learning. Accents and dialects often possess limited labeled data

resources, while exhibiting significant variety compared to standard languages. For this dis-

parity, we demonstrate the potential of knowledge transfer between the end-to-end models

in the downstream learning process instead of further exploring the model architecture.

In our study with regards to knowledge, We aimed to discern the difference between

English accents and Chinese dialects as well as to investigate the learning difficulties in

various downstream tasks associated with accent/dialect ASR across different language

systems. The knowledge transfer in this work refers to a leveraged downstream learning

process where two threads of knowledge representations are parallel proceeded and com-

pared with each other in order to evaluate their capacity for handling multiple accents. In

both mono- and multi-lingual originated threads, knowledge representations are generated

by self-supervised pre-trained models and further optimized. Additionally, hypotheses

and further approaches were proposed for fine-tuning adapters.

We conclude that the disparities in knowledge between language systems, accents,

and dialects can lead to a significant decline in ASR model performance. A leveraged

fine-tuning process, where general knowledge representation is gradually merged with

the diversity-leveraged target-related accent, is proposed for a better focus on the target

accent as a downstream ASR task.
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Zusammenfassung

In diesem Beitrag wird eine detaillierte Analyse der automatischen Spracherkennung mit

Akzent-Robustik (ASR) unter Verwendung von Transfer-Lernen. Akzente und Dialekte

verfügen oft nur über begrenzte Ressourcen an gelabelten Datenressourcen, während

sie im Vergleich zu Standardsprachen eine große Vielfalt aufweisen. Für diese Gleichheit

demonstrieren wir das Potenzial des Wissenstransfers zwischen den End-to-End-Modellen

im nachgelagerten Lernprozess, anstatt die Modellarchitektur weiter zu erforschen.

In unserer Wissensstudie wollten wir den Unterschied zwischen englischen Akzenten

und chinesischen Dialekten erkennen und die Lernschwierigkeiten bei verschiedenen

nachgelagerten Aufgaben im Zusammenhang mit der Akzent/Dialekt-ASR in verschiede-

nen Sprachsystemen untersuchen. Der Wissenstransfer in dieser Arbeit bezieht sich auf

einen nachgelagerten Lernprozess, bei dem zwei Threads von Wissensrepräsentationen

parallel bearbeitet und miteinander verglichen werden, um ihre Fähigkeit zur Handha-

bung mehrerer Akzente zu bewerten. Sowohl in den ein- als auch in den mehrsprachigen

Threads werden die Wissensrepräsentationen durch selbstüberwachte, vortrainierte Mo-

delle generiert und weiter optimiert. Zusätzlich werden Hypothesen und weitere Ansätze

für die Feinabstimmung von Adaptern vorgeschlagen.

Wir kommen zu dem Schluss, dass die Wissensunterschiede zwischen den verschiede-

nen Sprachsystemen, Akzenten und Dialekten zu einer erheblichen Verschlechterung der

ASR-Modellleistung führen können. Es wird ein gehebeltes Feinabstimmungsverfahren

vorgeschlagen, bei dem die allgemeine Wissensrepräsentation schrittweise mit dem diver-

sitätsgehebelten zielbezogenen Akzent verschmolzen wird, um eine bessere Konzentration

auf den Zielakzent als nachgelagerte ASR-Aufgabe zu erreichen.
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1. Introduction

1.1. Motivation

The use of automatic speech recognition technology has become widespread due to

its remarkable convenience and user-friendliness. Its accuracy has been refined to an

exceptional level. However, natural speech frequently deviates from standard speech

due to variations in pronunciation [13, 11, 12], which can be classified into two broad

categories: accent and dialect.

The term accents refers to variations in how a language is pronounced across different

regions or social groups. It is worth noting that, despite these differences, the fundamental

grammar and vocabulary of the language remain constant [18]. While an accent pertains

primarily to pronunciation, a dialect [6] encompasses more comprehensive linguistic

variations. It can also involve variations in grammar, vocabulary, and syntax. Even

individuals who speak the same language may use different terms or phrases based on

their native dialects resulting from their unique regional or social backgrounds. Commonly,

a dialect is also referred to as a strong accent [12].

Most current research on speech recognition neglects the difference between accent and

dialect, and frequently uses the two terms interchangeably because both indicate phonetic

variations within a given language [18, 43, 51]. Nonetheless, accent and dialect pose

different challenges for ASR [29]. Therefore, exploring the differences between accents

and dialects is beneficial in constructing datasets as well as ASR architecture.

Previous techniques have dealt with accent information by mapping accented phones

to canonical phones [18]. The recent research focuses on enhancing the robustness

of automatic speech recognition (ASR) models in handling variations in accents [18].

Several approaches have been investigated, with some of the earlier techniques have been

successful in this regard [18, 1, 35, 28, 42, 2]. Modern accented ASR approaches typically

integrate model generalization with accent feature engineering in order to improve data

efficiency and match standard ASR performance. They tried to make model architecture

better equipped to handle variations in accent and generate more accurate results [18,

35]. Through model generalization, it has been observed that acoustic information is

shared across different accent data. This allows for more efficient use of limited accent

data resources by applying a multi-task learning strategy. By using accent embedding

techniques, accent features can be first extracted with an accent identification model.

Subsequently, the input features are augmented with these embedded accent features [28].

Despite the numerous existing methods, the performance still suffers from the scarcity of

labeled data resources, which is a common problem in ASR but particularly severe and

challenging for accent ASR with significant variety [18].
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1. Introduction

Instead of focusing on the model architecture. We shift our perspective to the learning

process. The use of self-supervised learning has become a popular strategy in speech

recognition to overcome the problem of insufficient labeled data. This approach is incorpo-

rated with knowledge transfer in the leveraged fine-tuning process for downstream tasks.

Research studies [33, 3] have shown that this approach can effectively learn acoustic fea-

tures from unlabeled speech audio, subsequently excel in downstream speech recognition

tasks with limited labeled audio.

In addition, experiments conducted by [10, 27, 31] have demonstrated the effectiveness

of self-supervised learning models in accent speech recognition with a focus on different

dialects and accents. Self-supervised learning and knowledge transfer not only improve

resource-efficiency and -effectiveness, but also enhance robustness and performance.

1.2. Research questions

In this thesis, we aimed to carry out an empirical analysis of the persistent challenges

associated with acoustic variation in speech recognition and to investigate potential meth-

ods for improving the accuracy and efficiency of the model. To address these challenges,

we turned our focus to self-supervised learning. In pursuit of this aim, we carried out ASR

training on a constrained set of labeled data. Specifically, our analysis encompassed an

English dataset spanning three distinct accents, along with a Chinese dataset featuring

four dialects. Through our experiments, we aim to shed light on these pressing issues and

offer valuable insights.

Shifting our focus to a new perspective on knowledge transfer, we have identified the

following research questions to explore further. Our goal was to delve deeper into these

questions and gain a better understanding of the topic at hand. With this in mind, we have

compiled a detailed list of our RESEARCH QUESTIONS as follows:
RQ1: Does the difficulty of building speech recognition systems differ between accents

or dialects in different language systems?

This is a point that has not been considered in previous research and is also a potential

challenge for accent and dialect ASR. The accent or dialect variations in different language

systems may significantly influence the way to achieve ASR tasks. Therefore, exploring

the relationship between variants in various language systems and further investigating

its influence on ASR is crucial for improving accent and dialect ASR performance.

RQ2: What factors of the dataset can impact knowledge representation learning?

The proper selection of a dataset is crucial for optimal training of knowledge repre-

sentation in ASR. From the current study, it is clear that insufficient dataset resources

can significantly hinder the performance of accent knowledge representation learning

in ASR. Further research is required to explore other dataset factors that may affect the

capacity of knowledge representation. Identifying these factors makes the dataset selection

more efficient and effective in order to maximize the degree of match between fine-tuned

knowledge representation and the target task.

RQ3: How to improve the robustness and correctness of an accent ASR model for

speaker changes based on the properties of transfer learning?

2



1.3. Outlines

The first research question examines the challenges posed by dialect or accent variations

within various language systems. To address this issue, it is crucial to explore a model that

can improve the accuracy of automatic speech recognition (ASR) for dialects or accents

regardless of the language system. By investigating the properties of transfer learning, the

training process can be optimized and the compact model architecture can be simplified

by ignoring the differences between language systems.

Each sub-question contributes to answering our main research question.

1.3. Outlines

The rest of this thesis is structured as follows:

Background:
This chapter establishes the necessary theoretical foundations for the subsequent chap-

ters, covering the basics of speech recognition, training aspects, and the main techniques

used in this thesis.

Approaches:
This chapter presents an overview of the strategies implemented in this thesis to achieve

its objectives. This includes the modeling strategy as well as the training strategy. The

benefits of the selected strategy and its suitability for the experiments conducted in this

study are also analyzed.

Experiments:
In this chapter, the experiment’s procedure is outlined in a clear and concise manner.

Notably, novel operations that differ from traditional methods are explained in detail, with

justification for their use provided and explained.

Result and Analysis:
In this chapter, the experimental findings are summarized and listed separately. The

corresponding experimental data confirming the findings are listed and analyzed.

Conclusion:
By synthesizing the various findings and corresponding analyses from Chapter 5. this

final chapter summarizes the conclusions of this thesis and answers the research questions.
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2. Background

In this chapter, the main techniques used in this thesis will be highlighted. First of all,

some basics will be introduced about the basics of speech recognition, as well as the

training aspects. Second, the main techniques used in this thesis will be presented, in

order, transformer, Wav2vec2, CTC loss, and adapter structure.

2.1. Basic Knowledge

This chapter contains three sections focusing on some of the basics necessary to carry out

this research or for ASR.

2.1.1. Automatic Speech Recognition

Automatic speech recognition is a technology to recognize and transcribe spoken speeches

into readable text. The ASR system takes continuous audio as input and outputs the text.

It is designed to be speaker-independent and further developed as an environment-robust,

multilingual, and domain-independent system [18]. One of the major challenges in ASR is

the lack of labeled data resources for system training [41]. In this work, the ASR system

requires training on accented speeches, which are short on both audio and transcription

resources.

2.1.2. Accents/dialects and Multilingual

An accent is the way a person pronounces words in a language. It is shaped by his native

language or other languages he speaks frequently and even very personally by where he

lives or his daily social relationships. Dialect is a particular variation of a language and is

spoken only in a local region. Generally speaking, a dialect only differs from its language

in the pronunciation aspect, They still share the same grammar system and language

model. So that a dialect can be regarded as a heavily accented version of its language.

There are many factors, that can more or less influence a person’s accent, Among all

these factors, the native language or the native dialect dominates his accent. Although the

accent is only part of the acoustic component of a speech, commonly it is not extracted

from a speech. By analyzing the accent information, the complete speech audio is collected

[35]. Furthermore, a language or a dialect can represent a type of accent. Instead of

learning the language and accent separately, the accent is kept as an implicit sub-feature

space in the language feature space.

A system, holding the knowledge of multiple languages, is a multilingual system [49].

Here I propose to treat both languages and dialects as members of a multilingual system.
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Corresponding to a multilingual system, a so-called multi-accent system should hold the

acoustic knowledge of the same multiple languages.

With the help of this generalization, the task of recognizing the speech in language

A from a speaker native to dialect 1 of language B, can be transformed into the task of

recognizing the speech (in language A) with native accent a further accented by c.

The accents as well as dialects are no longer arranged in a hierarchical category structure

but are flattened. So that an accent in a foreign language and an accent in a local dialect do

not sit on different levels. Any of those accents can be mixed, dialects and basic (standard)

languages can be mixed, just like data can be mixed in the multilingual system.

One intuition here is that people are learning more and more different kinds of lan-

guages and even peculiar dialects. Besides this trend of language internationalization, the

languages and dialects originated from fewer root ancient languages where the language

category and regions were quite different from the current state. Both the future and

history imply that it is reasonable to mix resources of languages from different regions

and countries for a more general understanding of language. In ASR research, By mixing

speeches in various languages, resources are more efficiently used and performance is

further improved [49, 37, 5, 17, 50].

2.1.3. Few-shot and Zero-shot

The lack of resources, as a challenge in ASR research, remains a significant problem in

accented ASR [41, 23]. For some specific languages or dialects, only a few transcribed

speeches and a limited length of unlabeled speeches are available. The method to train the

model on a small number of labeled data in the target type is called few-shot. In the worst

case, the model even has no chance to observe data in the target type, which is called

zero-shot. The basic strategy to improve few-shot or zero-shot is a combination of the

general knowledge from various types and the auxiliary information for the specific target

type [18].

2.1.4. Seq2seq

Seq2Seq, short for "Sequence-to-Sequence", is a deep learning architecture used in natural

language processing and other sequence-based tasks [34]. Sequence-to-sequence training

simply means that both input and output data are in a sequence form, more precisely, in

a time sequence. For an ASR system, the model input is a sequence of values sampled

from a speech audio and the model output is a sequence of characters representing the

transcription of that speech. Both sequences can have different lengths and they are

implicitly aligned by the model.

2.1.5. End2end

An end-to-end model is a machine learning or deep learning architecture that aims to

solve a problem directly from raw input data to output. The end-to-end model is trained

as a whole, from input throughout the model to the output. The training data, as a pair of
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input and label, is used on both ends of the model. No intermediate processing or feature

engineering in sub-models is required.

2.1.6. Encoder-decoder

The encoder-decoder is a powerful deep-learning architecture with two components [34].

The encoder part transforms the input data into a hidden feature vector, which implies an

abstract representation. The encoded hidden features vector is further sent to the decoder

part, which produces an output representation.

The encoder usually reduces the dimension of the input data and serves to abstract the

information in a hidden feature space, While the decoder is responsible for mapping the

information back into another concrete representation similar to the label corresponding to

the input data [24, 9]. The state-of-the-art transformer model is a typical encoder-decoder

sequence-to-sequence model, which will be introduced in detail in the following section.

2.2. Transfer Learning

Transfer learning is a technique used in machine learning where a model that has already

been trained for a certain task or dataset is adapted and improved to work on a different

but related task or dataset. In the traditional approach to machine learning, models are

usually trained from scratch on specific datasets for specific tasks. However, transfer

learning makes use of the knowledge acquired during training for one task to enhance

performance for a different but related task. This technique is particularly beneficial when

there is a shortage of labeled data for the target task or when training from scratch would

be a computationally intensive process.

2.3. Transformer

A transformer architecture is fundamentally attention-based and is a type of neural network

that learns context in sequential data and the meaning by tracking relationships in the

data context [32, 48]. It was first proposed in a 2017 paper by Google Brain team titled

’Attention Is All You Need’ [40].

The model applies an evolving set of mathematical techniques, called attention or self-

attention, to detect subtle ways even distant data elements in a series influence and depend

on each other1. Transformers are among the newest and one of the most powerful classes

of models invented to date, driving a wave of advances in machine learning some have

dubbed transformer AI1. They are notable for requiring less training time than previous

recurrent neural architectures, such as long short-term memory (LSTM).

The transformer model has an encoder-decoder structure and is basically made of

attention blocks (in Figure 2.1 [40]).
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Figure 2.1.: Transformer architecture

2.3.1. Attention Mechanism

The Attention mechanism proposed in the transformer architecture is basically designed

to map from a query and a set of key-value pairs to an output [40]. The output vector

is the combination of those values in the set of pairs given from the input. In order to

compute the combination, the weights for the values need to be calculated by representing

the query in the key space corresponding to the values.

Scaled Dot-Product Attention is a basic implementation of the attention mechanism. An-

other more powerful but also more complex implementation is called multi-head attention,

which will be introduced later.

The scaled dot-product attention defines a mapping from three input matrices to an

output matrix. The input matrices are Query Q, Key K and Value V. The Query matrix Q
simply collects queries q. The Key matrix K consists of keys, which are correspondingly

mapped to values v in matrix V.
The query q is designed as the keys k. So each query in Q can be compared with all

the keys in K. Those values v, whose corresponding keys are similar to the query q, have
more chance to fit the query and contribute more to the answer as the output o for q.
The similarity between the query q 𝑗 and a key k𝑖 is evaluated by the dot-product, and
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it is further used as the weight for the value v𝑖 for k𝑖 . The output o 𝑗 for q 𝑗 is basically

calculated by the combination of values v𝑖 ∈ 𝑅𝑚 , naturally each o 𝑗 is a vector also in 𝑅𝑚 .

Finally, queries find output vectors [40].

There are different ways that the attention module can collect information to generate

the query key and value matrices. Considering a transformer model, the implementation

of this scaled dot-product attention builds three parameter blocks sitting in between the

input feature vectors and the core attention module. They are responsible for preparing

three input matrices for the attention calculation. Three trainable blocks take the same

input feature vectors, and generate the query key and value matrices correspondingly.

Each of these blocks is typically implemented as a fully connected layer [45].

The layer for the query matrix maps each feature vector in the input sequence X into a

query vector independently and the whole input sequence X is mapped into the query

matrix. In order to represent such a mapping, this fully connected layer requires 𝑑 inputs

and 𝑛 nodes as outputs.

The layer for the key matrix K maps each in X into independently and X is mapped

into K. Same as the layer for query, the fully connected layer KM also requires 𝑑 inputs

and 𝑛 nodes as outputs.

The layer V for the value matrix maps each 𝑥 in X into v independently and X is mapped

into V. Similar to the other two layers above, the fully connected layer requires 𝑑 inputs

and𝑚 nodes as outputs.

After preparing the query key and value matrices, the scaled dot-product attention can

then perform the calculation explained in the definition above and output for each input

feature vector 𝑥 a corresponding vector 𝑜 as a combination of values in V weighted by the

similarity between the k corresponding to v and the q ∈ 𝑅𝑛 for 𝑥 . Actually, the definition

above just tells the brief calculation process, the weights for the combination are usually

scaled and operated by the softmax function [45].

𝑜 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥QM · (XKM)𝑇√
𝑛

) · XVM (2.1)

2.1 helps to pick out the outperforming weights, which are used to find those more

important values to contribute to the final output. The softmax function is usually applied

for such kind of filtering over a distribution for a backpropagation algorithm, because this

function provides good property in derivation. The scaled factor helps to compensate the

quick growth in magnitude when the degree 𝑛 is very large. In such a case, 2.1 takes the

risk of handling extremely tiny gradients in the weight distribution [40].

Compared to the traditional recurrent and convolutional neuron-network [40], the latest

attention mechanism has its advantages in both practical and theoretical aspects.

In the attention mechanism, the computation of each output for the corresponding

element query is independent of the other output. While the computation of the current

output requires the previous outputs in the recurrent network. So that all the outputs can

be calculated at the same time, and the parallelism is naturally achieved.

Although the convolutional network can also be parallelly calculated, each output

only considers the local relationship by using the convolutional kernel. However, in the

recurrent network, each output takes into account several previous outputs, which means,
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iteratively the current output is related to all the previous elements. Each output in the

attention module can even cover all the elements in the input sequence.

In conclusion, the attention mechanism combines both the parallelism and the global de-

pendency [40]. But different from the previous sub-sequence dependency in the recurrent

network, where the global relationship is obviously order-dependent, the global relation-

ship in the attention mechanism is order-independent. According to block construction

explained above, if the order of elements 𝑥 in the input sequence X is changed, the order

of key and value rows in the K and V will also be changed correspondingly. The order of

the weights computed by dot-producing the q for 𝑥 and the changed K will be changed in

exactly the same way. As a result, the combination as the output of the attention module

will stay the same. In other words, each output can be flexibly related to different elements

in the input sequence regardless of their positions.

In order to take into account the position information or sequential relations, additional

positional embedding is required in the transformer model [48]. The wav2vec model,

popular in ASR tasks and used as the basic architecture in this work, introduces an

additional grouped convolution layer for positional embeddings, which will be introduced

in the later section.

2.3.2. Multi-Head Attention

Based on the scaled dot-product attention, the multi-head attention (in Figure 2.2 [40]) is

developed and actually implemented in the transformer architecture [40, 48]. The multi-

head attention applies multiple scaled dot-product attention blocks parallel. For each

scaled dot-product attention block, the query key and value matrices are locally mapped

into specified spaces, which are independent in between blocks. The implementation of

Figure 2.2.: Multi-Head attention

multi-head attention simply takes the implementation of the scaled dot-product attention

above as a single block, which includes three layers and the scaled dot-product attention

module. So each block works independently in its own representation feature spaces,

which are regarded as subspaces of the global query key and value spaces built in the
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scaled dot-product attention. In this way, a complex analysis in one scaled dot-product

attention is separated into several independent and simpler analysis processes.

All the parallel processes are fed by the same input sequence and their outputs are con-

catenated into a long vector, which is finally projected into an output space with the same

dimension as the value vector space in each block. This multi-head attention mechanism

further pushes the parallelism of attention. The attention is not only independent of the

position but also of the feature space.

2.3.3. Encoder-decoder Architecture

The critical element of the Transformer architecture is its encoder-decoder structure [32,

48] (in Figure 2.3 [25]), which empowers the model to handle sequence-to-sequence tasks

such as machine translation and text summarization. Comprising two primary components,

namely the encoder and the decoder, each has its unique roles and attributes. The encoder

Figure 2.3.: Encoders-Decoders

takes the input sequence (e.g. a sentence in a source language) and processes it step by

step. Unlike recurrent neural networks (RNNs) or convolutional neural networks (CNNs),

transformers do not process sequences sequentially [40].

First, get the representation vector 𝑋 for each word of the input sentence, 𝑋 is obtained

by adding the embedding of the word (Embedding is the Feature extracted from the original

data) and the embedding of the word position.
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In the second step, the vector matrix (each row is a representation of a word 𝑥 ) is passed

into the encoder, and after 6 encoder blocks, the encoded information matrix 𝐶 of the

sentence can be obtained.

The matrix𝐶 has 𝑛 rows and 𝑑 columns, where 𝑛 is the number of words in the sentence,

and 𝑑 is the dimension of the vector. The dimension of the matrix output from each

encoder block is exactly the same as the input. Then the matrix 𝐶 as the output of the

encoder passed to the decoder. The decoder will translate the next 𝑤𝑜𝑟𝑑𝑖+1 according
to the currently translated sequence𝑤𝑜𝑟𝑑1, . . . ,𝑤𝑜𝑟𝑑𝑖 , and need to mask the words after

𝑤𝑜𝑟𝑑𝑖+1.

This encoder-decoder architecture is basically built by the attention blocks [48]. There

are three typical ways how attention mechanism is used here:

• Encoder self-attention Within each attention block in the transformer encoder, the

attention layer can access any element in the input sequence. By allowing each

element to attend to any position in the same sequence, the block is capable of

capturing information about the entire sequence regardless of the length of the input

sequence. This kind of attention block is also called auto-encoding. It is suitable

for tasks, where the input requires understanding, such as sentence classification

and automatic speech recognition. The latter is the topic of this work, so that the

transformer encoder and the encoder self-attention will be further discussed in a

concrete transformer called as Wav2vec model.

• decoder self-attention Within the first several attention blocks in the transformer

decoder, the attention layer can access those elements already generated in the

output sequence. In other words, each element in the final output sequence only has

chance to attend to any earlier generated elements sitting on the left in the same

output sequence. Similarly, this type of block is able to capture the information

conditioned on the earlier generated subsequence. This kind of attention block is

often called auto-regressive and is best suited for those generative tasks like text

generation.

• encoder-decoder attention In the transformer decoder, those later attention blocks

taking the output sequence from the transformer encoder follow the first several

attention blocks introduced above. This group of attention blocks sits at the end

of the transformer and collects information from both input and output sequences.

Within this type of block, the attention layer can access not only all the elements

in the sequence from the encoder but also those earlier generated elements in the

output sequence. So that it can learn from the information in both the hidden

representation of the input sequence and the previously generated subsequence.

This type of attention block can be called sequence-to-sequence. It is also good

at generative tasks which also require a given input, for example, translation and

summarization.
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2.3.4. Positional Embedding

In addition to word embedding, Transformer also needs to use positional embedding to

represent the position of the word in the sentence [40]. Since Transformer does not adopt

the structure of RNN, but uses global information, it cannot use the order information

of words. Therefore, Transformer uses position embedding to preserve the relative or

absolute position of the word in the sentence. Position embedding is represented by PE,

which has the same dimensions as word embedding, and can be obtained by training or

by using a formula. The latter is used in Transformer, and the formula is as follows:

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙 ) (2.2)

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙 ) (2.3)

where 𝑝𝑜𝑠 denotes the position of the word in the sentence, 𝑑 denotes the dimension of

𝑃𝐸 (as in Word Embedding), 2𝑖 denotes the even dimension, and 2𝑖 + 1 denotes the odd

dimension (i.e., 2𝑖 ≤ 𝑑, 2𝑖 + 1 ≤ 𝑑). Then by adding the word embedding and the positional

embedding of the word, we can get the representation vector 𝑥 of the word, and 𝑥 is the

input to the transformer.

. . .

2.4. Wav2vec

The Wav2vec 2.0 architecture is built upon the Transformer encoder and features a speech-

adapted training objective, comparable to BERT’s masked language modeling objective.

This new method enables efficient semi-supervised training by pre-training the model on

a large quantity of unlabeled speech, followed by fine-tuning on a smaller labeled dataset.

In wav2vec 2.0’s original paper [3], the authors demonstrated that fine-tuning the model

on only one hour of labeled speech data could beat the previous state-of-the-art systems

trained on 100 times more labeled data.

The pre-training and fine-tuning of a Wav2vec 2.0 model take slightly different compo-

nents in its architecture and also different procedures [3, 4, 20], which will be explained in

the following sections. The pre-trained model can be used for various speech tasks, such

as speech recognition, emotion and speaker detection, and language identification.

There are four key components: feature encoder, context network, quantization module,

and contrastive loss (used for pre-training) (in Figure 2.4 [4])

2.4.1. Feature Encoder

A feature extractor is in charge of preparing input features for audio or vision models.

This includes feature extraction from sequences, e.g., pre-processing audio files to Log-Mel

Spectrogram features, feature extraction from images e.g. cropping image image files, but

also padding, normalization, and conversion to Numpy, PyTorch, and TensorFlow tensors.

The feature extractor block is briefly optimized in the pre-training stage of a Wav2vec 2.0

model, and will usually be frozen in the following fine-tuning stage.
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Figure 2.4.: Wav2vec 2.0 Pre-training

2.4.2. Context Network

Wav2vec 2.0 has a Transformer encoder at its core, which is responsible for processing the

latent feature vectors from the previous feature encoder. The model comes in two versions,

BASE and LARGE, with the BASE version having 12 Transformer blocks and the LARGE

version having 24. These Transformer blocks are built based on attention layers and are

essential for accurately interpreting the input data and generating high-quality output.

The transformer architecture will not be described here. Unlike the original Transformer

architecture, the wav2vec model learns relative position embeddings through a newly

grouped convolution layer [26].

2.4.3. Quantization Module

Transformers face a significant challenge when it comes to processing speech due to

its continuous nature. Written language is made up of words or sub-words, resulting

in a limited vocabulary of discrete units. However, speech lacks such natural sub-units.

While we could use phones as a discrete system, it would require humans to first label

the entire dataset beforehand, which would make it impossible to pre-train on unlabeled

data. Wav2vec 2.0 solves this problem by learning distinct speech units by sampling from

the Gumbel-Softmax distribution [22]. These units consist of codewords sampled from

codebooks, which are groups of possible units. The codewords are then combined to form

the final speech unit. Wav2vec 2.0 uses two groups, each with 320 possible words, for a

theoretical maximum of 102,400 speech units. As shown in the figure, the input latent

features are combined into a matrix where each row is a latent feature, which is multiplied

with the codebooks generated above to obtain logits: a score for each of the possible
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codewords in each codebook. After subjecting the obtained logits to Gumbel softmax

(similar to the operation of 𝑎𝑟𝑔𝑚𝑎𝑥), a one-hot matrix is obtained, in which each row 𝑡

represents the position of the words referred to by 𝑍𝑡 in the codebook. After multiplying

the result with the quantization projection matrix, we get the final quantization result 𝑄

as a sequence of 𝑞𝑡 , each corresponding to the input 𝑍𝑡 .

2.4.4. Pre-training and Training Objective

In the pre-training phase, unannotated speech data is utilized to train the model via a

contrastive task. Within the latent space, approximately 50% of the projected latent feature

vectors undergo a random masking process. These masked positions are subsequently

substituted with the same pre-trained vector, denoted as 𝑍 ′
𝑀
, before being input into the

Transformer network. The quantization module joins before this masking process and it

is still fed by the unmasked feature vectors 𝑍𝑡 .

With the help of a codebook in a parallel quantization module, the training algorithm

concludes in a contrastive loss function. In order to match the dimension of the quantized

speech units 𝑄𝑡 , the final context vectors are passed through the final projection layer. In

the final output sequence of 𝐶′
𝑡 , each position referring to the masked position in 𝑍 ′

will

be compared to a true target as well as a set of distractors.

Obviously, the quantization result 𝑄 will be used as the positive true target and marked

as 𝑄𝑝 . While the model will uniformly sample one hundred negative distractors from

other positions out of those masked ones in the same output sequence and mark them

as 𝑄𝑛̃ . Then, the comparison is proceeded by calculating the similarity (cosine similarity)

[46] between the projected context vector 𝐶′
𝑡 and the true positive target 𝑄𝑝 , as well as all

negative distractors 𝑄𝑛̃ .

In the contrastive loss function, high similarity with the true positive target is rewarded

but high similarity with negative distractors is penalized, in order to evaluate the quality

of the retrieval for those masked positions.

In pre-training, diversity loss is used to ensure that the model uses all codewords equally.

This prevents the model from consistently selecting a small subset of codebook entries

and encourages a more diverse use of the available options [3].

2.5. Connectionist Temporal Classification

Connectionist Temporal Classification(CTC) is a mathematical framework that is widely

used in various sequence-to-sequence tasks, including automatic speech recognition (ASR)

[15, 44]. Its primary function is to align input sequences (like speech signals) of different

lengths with output sequences of varying lengths. The great thing about CTC is that

it doesn’t require a one-to-one correspondence between the input and output elements

[16]. In the realm of speech recognition, the task of aligning the characters in a transcript

to their corresponding audio presents a significant challenge during training due to the

natural variation in people’s speaking rates. This issue must be taken into consideration

when devising effective methodologies for aligning audio and text. Consider mapping

input sequences 𝑋 = [𝑥1, . . . , 𝑥𝑇 ] to the corresponding output sequences 𝑌 = [𝑦1, . . . , 𝑦𝑈 ],
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such as transcripts. The model should maximize the probability it assigns to the correct

answer by computing the conditional probability 𝑝 (𝑌 |𝑋 ) and then using gradient descent.

And by using the model to try to solve:

𝑌 ∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑌

𝑝 (𝑌 |𝑋 ) (2.4)

then ideally 𝑌 ∗
can be found efficiently. It doesn’t need to align the input and output in

CTC, but it is crucial to understand how the input path maps to the output to calculate the

probability. This is because multiple output paths may correspond to a single output result.

A naive approach for aligning 𝑋 and 𝑌 is to allocate an output character for every input

step and combine the duplicates. However, in speech recognition, silence can occur within

the input without corresponding output. Therefore, it is illogical to align every input step

to an output. And it is impossible to generate outputs with consecutive characters by

collapsing repetitions. To get around these problems, CTC introduces 𝜖 as a blank token

to the set of allowed outputs. With that said, the CTC provides the probability expressed

as follows:

𝑝 (𝑌 |𝑋 ) =
∑︁

𝐴∈A𝑋,𝑌

𝑇∏
𝑡=1

𝑝𝑡 (𝑎𝑡 |𝑋 ) (2.5)

If we calculate the score for each alignment directly and add them all up, there could be

an enormous number of alignments, which would be too slow. To solve this problem we

merge two alignments if they have reached the same output simultaneously. Now that the

loss function can be computed efficiently, the subsequent step is to calculate the gradient

and commence training the model. The CTC loss function is differentiable concerning the

per time-step output probabilities as it only involves the summation and multiplication

of these probabilities. For a given training set 𝐷 , the model’s parameters are adjusted to

minimize the negative log-likelihood: 𝑠𝑢𝑚(𝑋,𝑌 )∈𝐷 − log𝑝 (𝑌 |𝑋 )

2.6. Adapter

The adapter module is usually associated with the adapter tuning technique [19]. It is often

used in pre-trained language models like the state-of-the-art transformer model. When the

language knowledge learned by the attention layers in the pre-training is transferred into

a downstream task, the adapter modules stand in and are fine-tuned. In the fine-tuning

process, because only these adapter modules with less amount of trainable parameters

are optimized and those attention layers with tons of parameters are frozen, this kind of

tuning is also known as parameter efficient fine-tuning [19] and the adapters are called

attention adapters. For different downstream tasks, only the training on the parameters in

the adapter modules makes a difference. Which means that, it is only necessary to switch

the adapter modules while switching different tasks.

The two major objectives of the adapter are: 1. to speed up the training for a new

language representation. 2. to preserve the memory of those old (or previous) language
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representations. Both objectives are achieved by allowing only the training on the parame-

ters in adapter modules. So that every time there comes a dataset with new language repre-

sentation, instead of the whole large transformer model, only a new set of light-weighted

adapter modules needs to be optimized. And for those previous language representations,

by switching back to the previous corresponding set of adapter modules, the state of the

whole model turns exactly back to the previous one. The memory separated in the frozen

attention layers and the corresponding old set of adapter modules can be simply retrieved.

In this work, the attention adapter from the massively multilingual speech project is

used [36]. So in the following section, the MMS attention adapter will be briefly explained.

The Massively Multilingual Speech project is developed by a Facebook team [36]. That

project dramatically increases the supported languages from hundreds to thousands within

some speech-related tasks. They tried to leverage a huge amount of self-supervised learning

into smaller pieces and guarantee data- as well as time efficiency at the same time. Among

all speech technologies, automatic speech recognition is the exact topic focused on in this

work. So the training approaches and the modeling proposed for ASR in that project will

be introduced here.

For an ASR system, the basic model architecture used in that project is also a wav2vec

model and a CTC head is typically added for the fine-tuning stage. In the pre-training

stage, the original wav2vec model shares all attention layers across different languages,

but within further fine-tuning, it exposes only the weights within the additional adapter

blocks to each language correspondingly.

In that MMS project, the adapter module architecture is inspired by Houlsby’s approach

[19], where the adapter consists of a feedforward down-project layer, a nonlinearity layer,

and a feedforward up-project layer and also contains a residual connection. Similarly,

the adapter in the MMS project keeps all those layers as well as the connection, takes a

layer norm layer before the feedforward down-project layer, and applies a ReLU activation

for the nonlinearity. In both approaches, the adapter modules are set up within each

transformer block. The difference between them is how the adapters are added to each

block. In Houlsby’s approach, after both the attention layer and the feedforward layer in the

transformer block, there will be an adapter module added before the layer normalization.

Furthermore, an additional feedforward layer is inserted directly before each adapter

module, in order to reshape the feature vector before it is fed to the following adapter.

In this way, any adapter is guaranteed to take an input feature vector whose size is the

same as the input of the whole transformer layer. However, in the approach of the MMS

project, the adapter module is simply put at the end of each transformer layer. All the layer

normalizations here are preprocessed. Two layernorm layers sit before the attention layer

and the feedforward layer respectively in the Wav2vec transformer layer. The layernorm

layer in the adapter module also sit before the feedforward down-project layer as well. So

the adapter actually sits right after the last feedforward layer in each Wav2vec transformer

layer.
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3. Knowledge Transfer from
Self-Supervised Learning

This chapter presents an overview of the thesis’s implemented strategies of knowledge

transfer learning to achieve accent and dialect ASR downstream tasks. It analyzes the

benefits of the selected strategy and its suitability for the experiments conducted in this

study, with a specific emphasis on the selection process and the underlying rationale.

The training process, in this work, started from a pre-training stage followed by fine-

tuning stages. The first part provides a detailed explanation of self-supervised learning

in the pre-training stage, which was utilized in the upcoming experiments. The thesis

discusses the benefits of this technique and how it was applied in this experiment.

In the second part, the training stages were categorized into pre-training- and fine-

tuning-stage. Themultilingual system is introduced here. Two subsections provide detailed

descriptions and benefits of multilingual representation in pre-training and fine-tuning

stage respectively, along with reasons for their suitability for use in this research.

The third part describes the innovative knowledge transfer strategies in fine-tuning

stages used to improve model performance. It starts by giving an objective overview of

the functionality and advantages of fine-tuning as a widely used method for knowledge

transfer. This is followed by a detailed analysis of the research question, highlighting the

possibilities of using fine-tuning for experimental purposes and the reasons behind this

approach.

3.1. Self-Supervised Learning

Before commencing training, it is essential to determine the appropriate baseline model for

the main purposes. Thus, in this report, the pre-trained wav2vec2 transformer model was

chosen as the baseline. As highlighted in Chapter 2.4, the wav2vec2 technique enables self-

supervised learning on an extensive range of unlabelled voices. Self-supervised learning

trains the model on the input data without labels. In order to improve the parameters based

on the loss- or reward-function, the value predicted on part of the input is evaluated by

comparing it to the other part of the input instead of to the corresponding label. Generally

speaking, the model is trained on the input with concealed part to learn that concealed

part in the same input, which is so-called self-supervised learning. The self-supervised

learning actually optimizes the wav2vec2 encoder as an acoustic model. This process is

commonly referred to as pre-training.

The advantages of implementing this pre-training process are the following:
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• Efficiency: Training deep neural networks from scratch requires significant com-

puting resources, including powerful GPUs and large amounts of data. Pre-trained

models save time and resources because they are already trained on large datasets.

• Generalization: Pre-trained models typically require large amounts of unlabeled data

to generalize well across tasks and domains. In this thread, it is generally accepted

that models need to generalize well to perform better ASR, and thus the use of

pre-training enhances the generalization ability of models to maximize performance.

At the same time, the overfitting is naturally avoided.

• Reduced Need for Labeled Data: Fine-tuning a pre-trainedmodel requires less labeled

data than training from scratch, making it ideal for situations where labeled data

is expensive or time-consuming. In this experiment, we have shown in Chapter 1

that the scarcity of speech data is a problem facing ASR today, and that the use of

pre-training can effectively alleviate this problem by reducing the need for data.

3.2. Multilingual Representation Learning

The training process, in this work, was a leveraged downstream fine-tuning process, which

started from a pre-training stage and followed by fine-tuning stages. We observed on the

transfer of the mono- and multi-lingual knowledge representation along the pre-training

as well as the fine-tuning stages. In the section, the multilingual representation is focused

and discussed within both types of training stages respectively.

For accented speech recognition, a multilingual system can be extended to a multi-accent

or multi-dialect system, which is previously explained in Chapter 2 2.1.2. Multi-lingual or

-accent representation learning requires the multi-lingual or -accent datasets to share the

same block of parameters during the training process so that the parameters in this specific

block can learn knowledge from all those different kinds of data resources in order to

form a so-called multi-lingual or -accent representation. By using the wav2vec 2.0 model,

the set of all the attention blocks is responsible for learning the acoustic representation.

As the core of the acoustic model, attention blocks hold the multi-lingual or -accent

representation.

The wav2vec 2.0 model has the chance to learn multi-lingual or -accent representation

in the pre-training stage as well as in the fine-tuning stage. In order to have a better

view of multilingual representation learning, the model also learned some comparable

mono-lingual or -accent representations in our approaches.

3.2.1. Multilingual Representation in Per-training

After determining the baseline structure, various pre-trained models were acquired based

on the given pre-training data, which can be found on Huggingface [21]. For the purpose

of comparison, I had opted for two diverse models as the baseline based on the variety of

pre-trained languages. One of the models was referred to as the multilingual model. This

involved utilizing a speech dataset sourced from various languages in the pre-training

phase without labels. In contrast, the alternative baseline was a monolingual model, which
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implies that the model only received a single unlabelled dataset from one language during

the pre-training phase.

Because the input datasets provided acoustic knowledge in different degrees of variety

during the pre-training stage, the pronunciation representations learned by the model may

also have variation. Amultilingual model learning from a greater number of pronunciations

had the potential to reach a more general representation compared to a monolingual

model. The purpose of selecting these two pre-trained model variants was to determine

the effect of training on multiple languages in the pre-training phase on speech recognition

performance.

3.2.2. Multi-accent Representation in Fine-tuning

The pre-trained models were further fine-tuned on several languages separately, each

consisting of transcribed speech datasets containing various accents or dialects. For the

purpose of comparison, the baseline was trained on two kinds of datasets. One kind

was referred to as the multi-accent dataset. It collected as many types of accents in the

same target language system as possible into one dataset. Another kind, in contrast, was

the mono-accent dataset, which took only a single type of accent in the target language

system.

Although the training datasets were labelled in fine-tuning stage instead of unlabelled

in the previous pre-training stage, the learning of accent knowledge happened only within

the wav2vec 2.0 encoder as the acoustic model. Similar to the situation in the pre-training

stage, a model could learn different accent representations from these two kinds of datasets.

A model learning from a variety of accents may be able to form a more general accent

representation than that learning only from a mono-accent dataset. We built these two

kinds of datasets in order to show the effect of training on multiple accents or dialects

of the same language in the fine-tuning phase on the performance of accented speech

recognition.

Although the effectiveness of a multi-lingual or -accent representation system depended

on the model architecture of our baseline, the quality of our training datasets, and our

leveraging fine-tuning strategies introduced in the next section for improving the response

accuracy to the multiple accents or dialects. We still expected a better performance of the

multi-lingual or -accent representation learned from a variety of languages or accents [49],

based on the following advantages of a multilingual system in ASR:

• Shared Semantic Space: Multilingual systems create hidden word representations in

a shared semantic space across multiple languages. This framework enables positive

parameter transfer, which is particularly useful for languages with limited resources.

• Handling Low-resource Languages: Multilingual systems can benefit from trans-

fer learning by utilizing the knowledge obtained from languages with abundant

resources to learn languages with fewer resources. This technique proves to be

particularly effective when there exists a substantial amount of parallel data that can

aid in establishing useful mappings between languages. By facilitating cross-lingual

transfer, this process can ultimately enhance the performance of other languages
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that typically lack resources. Additionally, the effectiveness of the multilingual

model usually rises along with the quantity of incorporated languages.

• Unsupervised Learning: Some multilingual systems utilize unsupervised learning

methods to improve low-resource language representation across different languages.

This involves creating word translation pairs from monolingual text to enhance

pre-trained language model alignment.

• Zero-Shot Learning: Multilingual systems can address the zero-shot problem by

using multilingual data to acquire knowledge of translation directions not included

in the available training material. This is accomplished through an iterative self-

training process that gradually improves the system’s ability to handle zero-shot

directions by relying solely on monolingual data.

• Increased Training Data: Expanding the amount of training data can greatly benefit

multilingual models, especially since they are structured to integrate acoustic data

from diverse source languages. Such an approach allows for a more comprehensive

contextual range, which is crucial for achieving precise and significant results.

• Cross-lingual Task Adaptation: Multilingual models can benefit from optimiza-

tion through fine-tuning on a high-resource language for a particular task before

application to that same task in a low-resource language. This multilingual sys-

tem approach produces superior outcomes compared to training directly on the

low-resource language.

• Robustness: During training, exposure to a variety of languages can enhance the

model’s robustness by requiring it to generalize across different linguistic structures

and nuances.

3.3. Knowledge Transfer

In order to observe how the knowledge representation behaved along the leveraged transfer

learning on downstream accent ASR tasks, various approaches are proposed and explained

in the section.

The above two sections have shown that the amount as well as the variety of the training

data resources can improve the performance of accented speech recognition by learning a

more general language acoustic representation. The more general knowledge we have, the

more various phenomena we can understand. General knowledge supports our analysis

and understanding in a specific task, which was to transcribe the accented speeches in this

work. For this purpose, we proposed several leveraging fine-tuning strategies to transfer

the general language acoustic knowledge gradually into more specific accented speech

recognition tasks.

fine-tuning, as a kind of transfer learning, further optimizes the weights in a pre-trained

or fine-tuned model based on the new dataset [47]. It can be performed on the entire

neural network, or on only a subset of its layers, in which case those layers that are

not being fine-tuned require to be "frozen", so that they will not be updated during the
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backpropagation phase. Since the selected baseline model was pre-trained, subsequent

approaches were grounded on these baselines for fine-tuning. Additionally, incorporating

an adapter into the architecture involved fine-tuning certain parameters while freezing

the rest, just like in the preceding tip when the adapter was introduced.

The following approaches endeavored to employ various fine-tuning strategies to en-

hance the model’s performance. Of course, different kinds of datasets mentioned in the

next section were also applied within each approach for comparison.

3.3.1. One-Step Fine-tuning

The first fine-tuning approach was the one-step fine-tuning(1-step-FT), which is the most

popular and straightforward approach. According to the wav2vec 2.0 approach [3], due to

semi-supervised learning, with only a limited number of labeled voices, the model can be

pre-trained and fine-tuned (in Figure 3.1 [14]), resulting in far superior outcomes than if

the model was directly fine-tuned using a hundred times more labeled voices.

Figure 3.1.: Pre-training and Fine-tuning

In light of the limited accent data currently available, as previously mentioned in

the initial section, pre-training with wav2vec might significantly enhance training. We

expected that, multilingual acoustic knowledge transferred from the pre-trained model

could help the learning of the accent representation in this one-step fine-tuning approach.

In this approach, datasets for different languages were selected to fine-tune the baseline

model as the pre-trained model. By doing this, we could observe the relationship between

the model’s performance and the dataset used. This approach also enabled us to compare

the performance of different models on a common test target.

3.3.2. Two-Step Fine-tuning

After completing the one-step fine-tuning process, several fine-tuned models were gen-

erated, which could be used as the basis for the next step of fine-tuning. This procedure

was the two-step fine-tuning(2-step-FT). To begin with, an appropriate basis needed to be

chosen within those result models from the one-step fine-tuning, because when running

two-step fine-tuning, one wants to maximize the level of the generality of knowledge

migrated through transfer learning from the basis and thus improve model performance
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in the specific task. We expected that, the more general the transferred multi-accent

knowledge was, the more helpful that knowledge could be for further learning the specific

accent representation. Therefore, such kind of model was preferred as a baseline, that had

been one-step fine-tuning on the dataset containing more various accents. This implies

that those models that had achieved the ability to recognize the speech in the language

of the accent in the one-step fine-tuning, were more capable of improving their accent

recognition by further refining or specifying the accent knowledge, especially on the

pronunciations of some typical accented words in the two-step fine-tuning.

During the second fine-tuning stage, the objective was to enhance the model’s efficiency

and performance solely for a specific accent. Therefore, only these mono-accent datasets

instead of multi-accent datasets were employed for two-step fine-tuning.

3.3.3. Adapter Fine-tuning

Furthermore, we tried to change the model at the structure level by incorporating the

adapter structure, with the expectation of enhancing the model’s performance. As outlined

in Chapter 2.6, adapters have several advantages when used in conjunction with a pre-

trained model. Typically, the parameters of the pre-trained model are frozen during fine-

tuning, with only the parameters of the Adapter, LayerNorm, and task-related layers being

updated during the fine-tuning stage. This approach reduces the number of parameters

during fine-tuning, thus maintaining the efficiency of the model. The paper shows that

parameters can be reduced without compromising model performance [39, 38].

Based on the aforementioned article, we can discern the adapter structure. An adapter

added following the attention block is commonly designated as an attention adapter.

Correspondingly, an encoder adapter is incorporated directly after the whole encoder

block.

The difference between this adapter fine-tuning approach and the one-step fine-tuning

approach is that the accent knowledge learned from the new data used in the adapter

approach was actually only stored in the adapter component, but the knowledge from

the new data used in the one-step fine-tuning could actually influence the entire model

including the pre-trained language knowledge kept in the attention layers. Because the

pre-trained knowledge is general enough to directly support the further learning of accent

knowledge, we expected that the further optimization of the general knowledge could be

saved for higher efficiency with little loss on performance.

3.3.4. Two-Step Fine-tuning with Adapter

The same as the 2-step-FT introduced above, this approach with adapter also tried to

transfer the multi-accent knowledge from 1-step-FT to ease the learning of specific dialect

representation. Considering that, the dialect learned in the 2-step-FT is a kind of variation

on the phonetics learned in the 1-step-FT. By retaining as much of the memory on the

multi-accent knowledge transferred from the first step as possible, the 2-step-FT on

the relevant dialect knowledge could maintain efficiency without compromising on the

performance. With a similar motivation in the previous adapter fine-tuning approach,

which was designed based on the characteristics of the adapter, I decided to use the
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attention adapter again for the training during the second stage of fine-tuning and kept

the rest of the process the same as a normal 2-step-FT.

Knowledge transfer has similar properties to transfer learning, which shares the gener-

alization and efficiency advantages with pre-training and offers more.

• Generalization: The technique of transfer learning is useful for allowing a model

to recognize and apply general patterns within data. Fluctuations in the data can

occasionally cause complications for a model; transfer learning mitigates the impact

of these fluctuations by accounting for real-world data’s dynamic nature.

• Efficiency: Transfer learning can save time and energy when training a newmodel in

a related problem domain with limited training data. The transfer learning approach

allows knowledge to be transferred from a previously trained model to a new model,

resulting in enhanced performance.

• Overcoming Data Deficit: In real-world scenarios, it is common to encounter tasks

with data deficits and models that lack generalization. Transfer learning mitigates

these challenges by enabling us to use pre-trained models for other tasks.

• Domain Adaptation: It enables domain adaptation, where a model trained in one

domain can be adjusted for use in another domain. This study transfers knowledge

from a multi-lingual domain to a multi-accent domain.

In conclusion, the utilization of knowledge transfer may enhance the efficiency of the

experiment when data is unavailable.
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In this chapter, the experiment’s procedure is outlined in a clear and concise manner.

Notably, novel operations that differ from traditional methods are explained in detail, with

justification for their use provided.

The first section primarily describes the data processing procedure preceding the experi-

ment. Then the used model is described. Finally, this section presents the model evaluation

criteria and the process for using them.

4.1. English and Chinese Data Setup

This section first provides a detailed description of two selected resources to give more

information about English and Chinese datasets including the reasons for choosing. Then

the operations performed on the experimental datasets are described.

4.1.1. Dataset Resource

Two resources of datasets were chosen for training: Common Voice [7] and Magic Hub

[30].

Firstly, the Common Voice database is publicly accessible, easily downloadable, and

can be used for training purposes. The dataset offers a wide variety of languages, thereby

providing an extensive range of language options for the main thesis. In addition, Common

Voice allows for the recording of audio with subtitles by anyone, facilitating the inclusion

of multiple accents, including non-native ones, within the same language. Additionally,

all datasets are labeled to indicate the type of accent, the speaker’s gender, and age. The

audio is sent to various speakers for confirmation of subtitle-audio alignment. The goal

is to have strong accents where appropriate for clarity and comprehension. The accent

markers enable easier manipulation of the dataset to obtain the desired parameters for

the main thesis. However, Common Voice has limitations; in certain Asian languages, the

audio prioritizes standard pronunciation and it is not feasible to ascertain the presence of

accents.

Another selected resource is Magic Hub, an open-source data platform developed by

Beijing Magic Data Technology Company Limited to assist AI developers with model

training. Magic Hub contains datasets for different tasks, and the dataset used for this

thesis can be easily found. This resource was chosen because it features numerous Asian

audios and differentiates between various accents and dialects, which can compensate for

the lack of Asian accents in Common Voice.

Once the data source to be used had been identified, the exact language(s) to be selected

from the data source to be used for the dataset could be determined.
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Here I chose English and Chinese datasets for the experiment. There were several

reasons for choosing English: in Common Voice, the English dataset is the largest, which

can prevent the dataset from being too small. English is a very widely used language,

spoken in different parts of the world, even as a second language in many countries, so

English accents are relatively rich, the accents available in the English dataset are also

diversified. On the other hand, there are now more available models trained in English,

and when using these languages for training, there is a greater variety of models to choose

from, and it is also easier to compare with existing studies.

Since this thesis aimed to study the interaction between languages and their correspond-

ing accents, it is necessary to select languages with large differences in pronunciation

styles. In summary, Chinese was chosen as the second language for training.

4.1.2. Audio Process

After determining the language for experiments and the data resource, the datasets from

these resources could be loaded. By perspective the details in each dataset, the datasets

from Common Voice have a mixture of accented with the non-accented dataset for English

and a non-accented dataset for Chinese. For the mixture English dataset we call it EN-

dataset following, and call the non-accent Chinese dataset CN-dataset. So the first step

was to derive the accent audio from the EN-dataset.

For this purpose, the dataset was loaded from huggingface. Then the accent of each audio

was shown under the label ‘accent’. According to this label, a table of EN-dataset shows

information about the accents and the corresponding audio durations (see EN-dataset

time length in the table in A.7). The speakers are either native or non-native. They can be

from any area of the world and carry their own accents from their dialect or their native

language. That means one speech can contain one or more accents. There are various types

of accents, including non-native speaker accented speech, English-as-a-Second-Language

(ESL) accents, and English-as-a-Native-Language (ENL) accents from different regions.

The regions could refer to different parts of a country or various countries. The time

length of each audio was calculated by dividing the length of the array, which contained

the resampled signal in float type, by the corresponding sampling rate.

The other different accents dataset was extracted from this origin dataset. The most

widely used US accent English(accents from the United States) was chosen as the first

accent dataset to be extracted, whose accent label contained ’United States English’.

With a similar method, we selected audio that contained ‘India’ as an IN-dataset, because

IN-accent English is also widely used and has pronunciation differences from US-accent

English. These two accents have their own characteristics and the audio duration is not

too short compared to other accents. These two accents are relatively well-defined in the

table and do not create too much ambiguity.

In addition, I selected another English data from Magic Hub with a more pronounced

accent: Pakistani English (PAK), which, unlike the other two accent datasets, is a dataset

used by non-native speakers.

Using the same method of calculating audio duration, the total length of the CN-dataset

was also calculated. But unlike the EN dataset, there are no accents in the CN-dataset,

so there was no need to categorize the dataset. The accented dataset was available by
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downloading from Magic Hub. We selected the ‘ASR’ dataset for training. Because in

Magic Hub, there exist three kinds of datasets for ASR: mandarin, accents, and dialect. And

the usable resources of accent data are less. On the other hand, dialect is also known as a

heavy accent, so we first chose a dialect dataset for training. Another thing that we needed

to consider was that, in China there exist many different dialects, even in one region

there are different dialects. So we only selected 4 representative dialects Guangzhou(GZ),

Shanghai(SH), Zhengzhou(ZZ), and Sichuan(SC) from the four regions of China: south,

east, north, and southwest respectively. And the total length of each dataset was listed in

the table 4.2.

In addition to analogizing the EN-dataset (which contains various accents), we also

mixed all our selected Chinese datasets together, called CN-MIX-dataset, which contained

the dialects of various places in Chinese and also non-accented-dataset.

4.1.3. Dataset Splitting

For training, datasets were divided into three parts: the training dataset used to allow

the model to learn, the evaluation/validation dataset used during the training process

to determine if training is sufficient, and the testing dataset used to test the model’s

performance after the training has been finished. These three datasets must not overlap

with each other. Thus, in order to ensure that the experiment was not biased, the complete

dataset was partitioned into three splits, and the samples in each split were randomly

disrupted first.

all accented US accented indian accented pakistani accented
(EN) (US) (IN) (PAK)

Resource CommonVoice CommonVoice CommonVoice MagicData

Training length(h) 1503.2 378.53 123.61 2.79

Evaluation length(h) 27.31 1.6 0.62 0.8

Test length(h) 26.89 1.24 0.58 0.41

Table 4.1.: EN dataset split time length.

Chinese Zhengzhou Sichuan Shanghai Guangzhou
(CN) (ZZ) (SC) (SH) (GZ)

Resource CommonVoice MagicData MagicData MagicData MagicData

accent no(mandarin) dialect dialect dialect dialect

Training length(h) 41.05 3.52 4.95 3.08 2.88

Evaluation length(h) 15.68 1.02 1.4 0.88 0.82

Test length(h) 17.26 0.51 0.69 0.44 0.41

Table 4.2.: CN dataset split time length.

Huggingface [7] offers methods to automatically split the dataset for Common Voice.

Whereas the dataset in Magic Hub [30] must be manually split. The dataset was segmented

into train, validation, and test splits with a ratio of approximately 7 : 2 : 1 .

Time length after splitting the dataset was shown in the table 4.1 for English datasets

and the table 4.2 for Chinese datasets.
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4.1.4. Vocabulary

After getting the dataset, there was one more thing that needed to be done before training,

which was to create a vocabulary. Vocabulary, as the name suggests, is a dictionary of

characters and their corresponding numerical numbers, which allows the transformer to

encode the reference words one by one according to the generated vocabulary, and also to

decode the predicted words by the decoder when using the model. When using the model,

the predicted words are decoded by the decoder, so how the vocabulary was constructed

is also very important.

The first step in building a vocabulary was to extract the transcription from the dataset

and separate them into a character hierarchy. The dataset was loaded into a dataset object

as a table form, where all the transcriptions were sitting under the transcription column.

After the transcriptions were extracted, some special characters(in Figure A.1) that were

not helpful for speech understanding were removed, and then all the characters were

transferred in lowercase.

These transcriptions were later used as labels for supervised learning. For English labels,

the filtered transcriptions needed an additional step to merge consequent white spaces,

while for Chinese labels, every Chinese character in the filtered transcriptions needed

to be separated from both neighboring characters by a single white space respectively.

These filtered transcriptions needed further operations for building the vocabulary. Those

duplicated characters were removed by merging the list of characters obtained from a

filtered transcription into a set. Finally, a vocabulary was completed by adding pad tokens

[pad] and unknown tokens [unk], replacing the white spaces with the delimiters | in the

set, and numbering each element in the set.

By default, each dataset has its own vocabulary. Different vocabularies for English

datasets don’t differ much, because all of them contain those 26 characters. But for

Chinese, the number of characters is huge, and there is still no clear indication of how

many characters there are in total. Then the coverage of characters in different Chinese

datasets is different. In order to understand how many characters are the same in different

Chinese dialect datasets, I made a vocabulary for each Chinese dataset and compared how

many characters were the same in different vocabularies as well as how many characters

were different, and summarized the information in table A.6. In this table, the numbers in

each grid represent the number of identical characters in the dataset of the row and the

dataset of the column. The diagonal lines are then the total number of characters in each

dataset.

The point to note here is that, in Chinese, the same pronunciation can correspond to

many different characters. In the dialect dataset, the same piece of audio corresponds to

two different transcripts, one that is semantically the same as the audio, and the other that

is phonetically the same as the audio. The second kind of transcript was chosen, because

the first kind of character does not correspond to the audio in terms of pronunciation.

It can be seen that the vocabulary of different datasets can be very different, which may

cause the model to be trained to perform poorly on another test target and to predict a

large number of unknown [unk] tokens. Therefore, for the Chinese dataset, I extracted all

the characters of the Chinese dataset (CN and the four dialect datasets) and fused them

together, eliminated the recurring characters, and made the final vocabulary.
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4.2. Mono- and Multi-lingual Pre-trained Models

After processing the data, according to the model-building strategy in Chapter 3, the model

to be used for training needed to be specified. According to the approaches in Chapter

3.2.1, two pre-trained models needed to be selected.

For the one pre-trained in a monolingual language, I chose the ’facebook/wav2vec2-

large’ model, which used the English dataset in librispeech for pre-training. In subsequent

experiments, this model was called mono-model. Accordingly, I chose ’facebook/wav2vec2-

large-xlsr-53’ as multi-model, which is also a large model pre-trained in 53 languages

[8].

In this model, the feature encoder contains seven blocks and the temporal convolutions

in each block have 512 channels with strides (5,2,2,2,2,2,2) and kernel widths (10,3,3,3,3,2,2).

This results in an encoder output frequency of 49 Hz with a stride of about 20ms between

each sample, and a receptive field of 400 input samples or 25ms of audio. The convolutional

layer modeling relative positional embeddings has kernel sizes of 128 and 16 groups.

The large model contains 24 transformer blocks with model dimension 1,024, inner

dimension 4,096 and 16 attention heads. We used dropout 0.1 in the Transformer, at the

output of the feature encoder and the input to the quantization module. Layers were

dropped at a rate of 0.2 for large [3].

4.2.1. Model Configuration

Both pre-trained models introduced above were loaded as checkpoints from the remote

server. Furthermore, a fine-tuned model was also loaded in the same way but locally,

which was quite convenient in implementing the two-step fine-tuning approaches.

Together with the model, a processor needed to be loaded or initialized for preprocessing

the audio pieces and transcriptions in the dataset. At the same time, a feature extractor

and a tokenizer were required. In order to preprocess the audio pieces and transcriptions

in the dataset, the processor object needed to be called properly. To resample a piece of

audio and transform the sampled signal into an array in float type, the feature extractor

set in the processor was applied in the background. The tokenizer helped to encode a

transcription by token ids kept in the vocabulary file and then add paddings in the encoded

array of ids.

After loading a Wav2vec2 model, some additional modifications were performed to

change or freeze the parameters.

4.2.2. Training Details

A trainer object is responsible for managing the whole training or evaluation process.

Before running this automatic trainer, the trainer needed to be configured. In all the

following experiments, ’Adafactor’ was set as the optimizer. For the one-step-fine-tuning

approach on accented English datasets, the learning rates were set to 1𝑒 − 4. For the rest

of the experiments in this work, the learning rates were always 5𝑒 − 5. The number of

warm-up steps was set as 1000, and the decay ratio was 0.005 static in all the experiments.
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4. Experiments

4.3. Evaluation Metrics

This section sets out the criteria for judging the quality of a model.

4.3.1. Word Error Rate

Word error rate (WER) is a common metric of the performance of an automatic speech

recognition system. WER assesses recognition by measuring the dissimilarity between the

recognized word sequence and the reference word sequence. In normal, the difficulty of

performance measurement is due to the different lengths of the recognized and reference

sequences (e.g. distance measurements). This problem is solved by first aligning the

recognized word sequence with the reference (spoken) word sequence using dynamic

string alignment. And the Word error rate can then be computed as following:

𝑊𝐸𝑅 =
𝑆 + 𝐷 + 𝐼

𝑁
=

𝑆 + 𝐷 + 𝐼

𝑆 + 𝐷 +𝐶 , (4.1)

where 𝑆 is the number of substitutions, 𝐷 is the number of deletions, 𝐼 is the number of

insertions,𝐶 is the number of correct words, and 𝑁 is the number of words in the reference

(𝑁 = 𝑆 + 𝐷 +𝐶).
This value indicates the average number of errors per reference word. ASR performance

is best when WER is 0.

4.3.2. Character Error Rate

Another evaluation method is the character error rate(CER). CER is similar to Word Error

Rate (WER). The formula is the same as WER formula (4.1). Unlike WER, CER is computed

at the character level. CERs are typically used to evaluate character-based language. T
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5. Results and Analysis

In this chapter, the findings based on the results of the experiment were summarized

and listed separately in the following sections. The corresponding experimental data

confirming the findings were collected and analyzed. The complete experimental data

tables were located in the appendix.A

5.1. Difficulty of Accent and Dialect for ASR

Dialects and accents are able to bring a completely different level of difficulty to speech

recognition.

It is easy to see from the experimental results 5.1that the worst model in the English

experiment was fine-tuned with the PAK dataset, and the best results were obtained when

tested with the PAK accent. All other accents were tested with worse results, averaging

around 55%. In the Chinese test results 5.2, except for the test results on the same dialect

as fine-tuning, which are very good, the test results on other dialects are around 90%, and

such an error rate is not meaningful for ASR. (Model fine-tuned by CN-mix performed

well on each test dataset, it explained in section 5.3.

The huge gap between the worst two outcomes demonstrates that Chinese dialects and

English accents have different levels of difficulty in speech recognition, with accents being

significantly easier than dialects.

PT-model FT-dataset Test-dataset WER(%)

Mono

PAK

EN 59.0

US 57.4

IN 59.7

PAK 28.9

Multi

EN 49.0

US 48.0

IN 46.2

PAK 17.6

Table 5.1.: Experimental results after one-step fine-tuning on mix accented English. This

table is the bottom-right block in the table A.1 The row in each local part

indicates the test dataset and the last column indicates the corresponding result

in WER(%).

This is due to the fact that an accent is merely a small modification in pronunciation,

while a dialect may have grammatical distinctions. On the other hand, the vast differences
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5. Results and Analysis

SH ZZ SC GZ CN CN-mix

Mono

SH 10.8 88.7 91.6 95.7 98.3 95.6

ZZ 83.5 13.7 67.0 94.9 82.4 79.4

SC 88.6 59.2 18.8 92.7 80.2 77.3

GZ 95.0 97.2 96.4 6.2 102.0 99.1

CN 88.2 68.8 75.4 95.8 28.5 34.9

Multi

SH 24.5 87.5 90.0 94.5 98.5 95.7

ZZ 80.7 11.6 62.1 92.5 78.1 75.5

SC 86.0 57.1 25.3 91.9 76.1 73.9

GZ 94.3 96.8 97.2 5.4 103.6 100.6

CN 85.6 65.6 72.6 94.0 22.3 29.3

Table 5.2.: Experimental results after 1-step-FT on SH,ZZ,SC,GZ,CN. The row in each

local part indicates the fine-tuning dataset and the column indicates the test

dataset. The bold values are optimal in the corresponding column. The results

are presented in CER(%).

between the various Chinese dialects make it impossible for the model to generalize

common features across all dialects, each dialect is more akin to an individual language.

This highlights the need to distinguish between dialects and accents in speech recognition.

Sometimes it is necessary to consider different dialects within the same language system

separately as the variation between them can be significant, requiring a reliance on

established linguistic knowledge.

5.2. Multilingual vs Monolingual Model

The multilingual- and the monolingual-model show different generalites of the knowl-

edge representation learned in the pret-raining stage. In this section, only the 1-step-FT

approach3.3.1 was used for experimental comparisons.

The superiority of the multilingual model over the monolingual models was apparent by

comparing the multilingual and monolingual models fine-tuned on the same datasets. This

outcome was predicted before the experiment, and result table 5.3 depicted the outcomes

after utilizing the EN-dataset as the fine-tuning dataset and conducting tests on each

dataset. This observation was consistently reflected in the other test results when other

English datasets were used for fine-tuning. In addition, similar trends were observed in

the Chinese results. Table 5.4 showcases the results of the model fine-tuned on CN-mix

tested on different Chinese datasets. An identical conclusion can be drawn from these

results.
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5.2. Multilingual vs Monolingual Model

PT-model FT-dataset Test-dataset WER(%)

Mono

EN

EN 32.5

US 29.2

IN 34.1

PAK 26.3

Multi

EN 23.4

US 20.8

IN 23.5

PAK 20.6

Table 5.3.: Experimental results after 1-step-FT on mix accented English. This table is

the upper-left block in table A.1 for the experimental results after 1-step-FT

on English accents. Mono indicates monolingual pre-trained model and Multi

indicates the multilingual pre-trained model. The upper part is pre-trained by

monolingual dataset and the bottom part is pre-trained by multilingual dataset.

The row in each local part indicates the test dataset and the last column indicates

the corresponding result in WER(%).

There was still the exception of certain cases. In the Chinese experiment, the mono-

lingual model outperformed the multilingual model when it was fine-tuned with the SH

dialect. The same results occurred with ZZ and SC dialects. The table 5.5 below illustrated

these results.
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PT-model FT-dataset Test-dataset CER(%)

Mono

CN-mix

SH 18.1

ZZ 16.2

SC 15.3

GZ 9.3

CN 28.2

CN-mix 27.9

Multi

SH 12.1

ZZ 10.7

SC 10.0

GZ 4.8

CN 21.4

CN-mix 21.3

Table 5.4.: Experimental results after 1-step-FT on mix Chinese dialects together with

accented mandarin. This table is the bottom-right block in the table A.1 for the

experimental results after 1-step-FT on English accents. The row in each local

part indicates the test dataset and the last column indicates the corresponding

result in CER(%).

SH SC

Mono

SH 10.8 91.6

SC 88.6 18.8

Multi

SH 24.5 90.0

SC 86.0 25.3

Table 5.5.: Experimental results after 1-step-FT on Chinese dialects: SH, SC. SH, ZZ, The

row in each local part indicates the fine-tuning dataset and the column indicates

the test dataset. The results are presented in CER(%).

Utilizing a multilingual model that has been pre-trained on a wide range of linguistic

data, encompassing various phonetic and phonological properties from diverse languages,

can significantly improve the model’s ability to generalize. These linguistic variations can

substantially enhance the model’s performance. Additionally, multilingual models possess

greater adaptability to languages that were not included in the training set, as they can

transfer across languages by sharing certain linguistic features from the pre-training stage.

For fine-grained tasks requiring in-depth understanding or recognition of very specific

linguistic nuances, a monolingual model, fine-tuned with substantial data for that language,

might be preferable. In this experiment, SH and SC dialects are more difficult than the

other dialects from a linguistic point of view, especially since the gap in pronunciation is

more subtle compared to the other, so the monolingual model performed better.
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5.3. Similarity and Variety of Accents/dialects

5.3. Similarity and Variety of Accents/dialects

The similarity and the variety describe the relation between the knowledge contained in

accent- or dialect-datasets. A training dataset similar to the target dataset contains accents

of the same kind as the target accent. In other words, similar datasets can be regarded as

sampled from the same common dataset. The variety, however, measures how different

the accents can differ from each other. A dataset as a various mixture of the target dataset

collects different accents that vary from but are still related to the target accent. For the

test-split of the US-dataset, the train-split of the US-dataset was a similar one, and the

train-split of EN-dataset was a varied version.

Considering the target accent, a similar training dataset performs better than a general

one, and a various mixture training dataset works even better than a similar one.

Typically, the top-performing model was fine-tuned with the same accent as the test

target. Figure 5.6 demonstrated the performance of various models using EN- and PAK-

datasets as test datasets.

The same results were found in the experiment on the Chinese. The table 5.7 displayed

the results of different models tested on SH-dataset and CN-mix-dataset, and the optimal

results were highlighted.

EN PAK

Mono

EN 32.5 26.3

US 30.9 28.4

IN 35.2 24.7

PAK 59.0 28.9

Multi

EN 23.4 20.6

US 28.8 27.1

IN 33.1 20.1

PAK 49.0 17.6

Table 5.6.: Experimental results after 1-step-FT on English accents. This table is tested on

EN- and PAK- datasets. The row in each local part indicates the fine-tuning

dataset and the last column indicates the corresponding result in WER(%).

There were still some test results that did not follow the pattern above. Regarding

the test targets of US-accent and IN-dataset, the best model performance results were

obtained using the EN-dataset for fine-tuning. In the Chinese experiments, the model

utilized CN-mix as the fine-tuning dataset yielded superior results when the test dataset

comprised ZZ, SC, GZ, and CN datasets. Table 5.8 presented the test results of the model

on the US-dataset and IN-dataset. And table 5.9 presented the test results on Chinese

dialects.
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5. Results and Analysis

SH CN-mix

Mono

SH 10.8 95.6

ZZ 83.5 79.4

SC 88.6 77.3

GZ 95.0 99.1

CN 88.2 34.9

CN-mix 18.1 27.9

Multi

SH 24.5 95.7

ZZ 80.7 75.5

SC 86.0 73.9

GZ 94.3 100.6

CN 85.6 29.3

CN-mix 12.1 21.3

Table 5.7.: Experimental results after 1-step-FT on Chinese dialects. The row in each local

part indicates the fine-tuning dataset and the column indicates the test dataset.

The bold values are optimal in the corresponding column. The results are

presented in CER(%).

US IN

Mono

EN 29.2 34.1

US 27.3 37.9

IN 33.3 28.8

PAK 57.4 59.7

Multi

EN 20.8 23.5
US 24.4 33.5

IN 28.9 24.7

PAK 48.0 46.2

Table 5.8.: Experimental results after 1-step-FT on English accents. This table is tested

on US- and IN- datasets. The row in each local part indicates the fine-tuning

dataset and the last column indicates the corresponding result in WER(%).

The model performs best when the fine-tuning accent and the test target accent are the

same. This is very reasonable because each accent has its own set of phonemes, morphemes,

syntax, and semantics. Training a model on the specific accent characteristics of one

language ensures that it becomes highly familiar with the nuances of that accent, leading

to superior performance on test data in the same accent. In addition, the same accent has

consistent acoustic properties across training and testing datasets. This consistency helps

the model make better predictions.

By observing the same tables 5.1 and 5.2 as already analyzed in the section 5.1, these

results may be due to the low similarity of accents or dialects. Understanding through

English and Chinese knowledge illuminates that PAK-accented English differs significantly

from the commonly heard US or UK English. Similarly, various Chinese dialects vary

greatly, giving rise to this phenomenon.
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ZZ SC GZ CN

Mono

SH 88.7 91.6 95.7 98.3

ZZ 13.7 67.0 94.9 82.4

SC 59.2 18.8 92.7 80.2

GZ 97.2 96.4 6.2 102.0

CN 68.8 75.4 95.8 28.5

CN-mix 16.2 15.3 9.3 28.2

Multi

SH 87.5 90.0 94.5 98.5

ZZ 11.6 62.1 92.5 78.1

SC 57.1 25.3 91.9 76.1

GZ 96.8 97.2 5.4 103.6

CN 65.6 72.6 94.0 22.3

CN-mix 10.7 10.0 4.8 21.4

Table 5.9.: Experimental results after 1-step-FT on Chinese dialects. The row in each local

part indicates the fine-tuning dataset and the column indicates the test dataset.

The bold values are optimal in the corresponding column. The results are

presented in CER(%).

However, PAK-accent and IN-accent English are similar in terms of pronunciation in

theory, because both regions use the same language family: Hindi. Theoretically speaking,

the test result of IN-dataset should be very good, but in reality, it is very bad, because the

PAK-dataset is from Magic Hub, while the other English The PAK-dataset is from Magic

Hub, while the other English datasets are from Common Voice, although they are labeled

as daily language, the recording environment and application scenarios are not guaranteed.

Therefore, the domain difference is also a reason. Moreover, a limited dialect/accent dataset

could lead to overfitting of the model.

However, when training with mixed accent data, sometimes the model performance

exceeded that of training with the corresponding accent. The mixed accent dataset, as a

various mixture can exhibit varied but related acoustic properties. By training on various

mixture accent datasets, the ASR system was exposed to a wide range of acoustic patterns,

leading to better learning of acoustic.

General knowledge transfer learning helps the model to learn specific accents. The

General knowledge transferred from that model is eventually learned from some general

data resources. By learning on a dataset containing not only the specific accent but also

various accents closely related to this target accent, the general knowledge and the specific

knowledge are learned at the same time, and the general one can already help to learn the

specific one even without extra transferring.

Compared to learning on the specific accent only, learning on a variety of related

accents is not only processed on that specific accent but also enhanced by a local general

knowledge transfer. So that the learned representation in the model can hold a deeper and

more precise understanding and perform better in recognizing the target accent.
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5. Results and Analysis

5.4. Two-step Fine-tuning vs One-step Fine-tuning

We used the 2-step-FT approach in chapter 3 3.3.2 and compared it with 1-step-FT. The

general knowledge in 1-step-FT helps the model to learn the specific knowledge presen-

tation in 2-step-FT. Compared to the 1-step-FT, the general knowledge transferred from

pre-training has a chance to be specified on the information in an additional fine-tuning

stage. This attended specified general knowledge is still enough general for but more

related to the target task than that knowledge directly transferred from pre-training. We

first used both monolingual and multilingual models for 2-step-FT and compared it with

1-step-FT, the data presented in the table 5.10 leads to the conclusion that the multilingual

model performs better than the monolingual model in 2-step-FT. This finding aligns with

the results obtained in the section5.2. The general knowledge representation formed in

the pre-training stage benefits the downstream task all along the fine-tuning process. In

the Chinese experiments, only the multilingual model was used for the 2-step-FT. 5.11

EN US IN PAK

Mono

1-Step-FT

US 30.9 27.3 37.9 28.4

IN 35.2 33.3 28.8 24.7

PAK 59.0 57.4 59.7 28.9

2-Step-FT

US 27.8 24.5 29.6 24.0

IN 28.3 26.5 26.5 23.9

PAK 33.6 30.5 33.5 21.1

Multi

1-Step-FT

US 28.8 24.4 33.5 27.1

IN 33.1 28.9 24.7 20.1

PAK 49.0 48.0 46.2 17.6

2-Step-FT

US 21.6 19.2 22.2 19.6

IN 22.7 21.5 20.1 18.6

PAK 24.3 22.1 24.3 16.1

Table 5.10.: Experimental results after 2-step-FT on English accents vs experimental results

after 1-step-FT. 1-Step-FT indicates the model directly based on the mono- or

multi-lingual pre-trained model and 2-Step-FT indicates the model already

fine-tuned by EN-dataset based on the mono- or multi-lingual pre-trained

model. The upper part is a 1-Step-FT model and the bottom part is a 2-Step-FT

model. The row in each local sub-part indicates the fine-tuning dataset and

the column indicates the test dataset. The results are presented in WER(%).

Notably, the 2-step-FT approach outperformed the 1-step-FT approach in all aspects.

The previous findings from 1-step-FT demonstrate that transferring multilingual repre-

sentations from a pre-trained model could improve the fine-tuning process on accented

datasets. The current finding not surprisingly confirmed that, also the multi-accent rep-

resentation transferred from 1-step-FT could support further fine-tuning on the specific

accent or dialect.

It is also observed in the 2-step-FT for English, that starting from a pre-trained model

holding amore general multilingual representation outperformed the training starting from
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SH ZZ SC GZ CN

1-Step-FT

SH 24.5 87.5 90.0 94.5 98.5

ZZ 80.7 11.6 62.1 92.5 78.1

SC 86.0 57.1 25.3 91.9 76.1

GZ 94.3 96.8 97.2 5.4 103.6

2-Step-FT

SH 12.3 77.5 80.9 94.6 69.2

ZZ 81.2 9.7 52.5 93.0 60.6

SC 85.4 43.4 9.5 91.7 57.3

GZ 92.7 92.0 89.8 4.7 79.8

Table 5.11.: Experimental results after 2-step-FT onChinese dialects vs experimental results

after 1-step-FT. The row in each local part indicates the fine-tuning dataset

and the column indicates the test dataset. The results are presented in CER(%).

a less general monolingual representation. The current fine-tuning is not only influenced

by the knowledge learned in the last fine-tuning, The general knowledge transferred along

the leveraged down-streaming tasks will actually impact all the following fine-tunings.

Considering the target as US accent, such kind of 2-step-FT with the first fine-tuning on

the EN-dataset exclusive US accent and the second fine-tuning on the US accent dataset

should be competitive to the 1-step-FT on the EN-dataset, which also outperformed the

1-step-FT on the US-dataset (in table ??).
The improvements until now observed in our findings are basically brought by the

generality of the knowledge either as the raw information contained in the current training

dataset or as the knowledge representation directly transferred from a previously trained

model.

In the first case, the composition of the training dataset decides the generality of the

knowledge inside. In this work, the multilingual and monolingual datasets for pre-training

typically represented a more general and a less general example respectively.

In the second case, by transfer learning, the training process is leveraged into successive

steps, for example, the 1-step or 2-step fine-tuning in this work. Instead of improving

the generality of the knowledge transferred through the leveraged fine-tuning process,

more fine-tuning stages offer more flexibility to deploy the leveraged datasets mentioned

in the first case, so that we have more chances to intentionally orient or impact the

changing of the knowledge representation. In this work, we mainly tried to deploy a mixed

dataset like EN-mix or CN dataset in an additional fine-tuning stage to offer more related

accent information. By leveraging the training, general and focusing datasets are used

successively. General datasets can go first to save energy for later focusing datasets, which

can be under-resourced.

5.5. Adapter

In this section, the two kinds of adapters previously introduced in chapter 3.3.3 were

integrated into the model according to the approaches 3.3.4 and were compared. It can be
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5. Results and Analysis

inferred that the multilingual model was more effective than the monolingual model5.2.

Therefore, only the multilingual model was utilized in this section for experiments.

Considering the knowledge gap caused by the dialect information in the downstream

task, it is hard to keep the performance by saving the further optimization on the general

knowledge transferred from upstream. The transferred general knowledge can surely

enhance further fine-tuning, but the learning ability of the model needs to at least fit the

downstream task.

SH ZZ SC GZ CN CN-mix

Enc-Adapter

SH 43.3 89.9 91.7 92.4 96.3 93.7

ZZ 89.9 51.0 75.4 92.8 85.1 83.6

SC 91.2 69.7 44.9 93.9 83.2 81.3

GZ 94.2 95.1 96.1 33.7 98.2 95.7

CN 89.6 75.0 77.9 95.3 35.5 43.3

Attn-Adapter

SH 41.6 88.3 90.7 92.8 96.2 93.4

ZZ 82.5 32.8 62.8 92.1 80.8 78.3

SC 86.8 59.2 33.6 91.8 78.5 76.1

GZ 92.4 94.5 94.1 18.7 98.8 95.6

CN 87.7 72.6 76.0 95.9 33.5 41.4

No-Adapter

SH 24.5 87.5 90.0 94.5 98.5 95.7

ZZ 80.7 11.6 62.1 92.5 78.1 75.5

SC 86.0 57.1 25.3 91.9 76.1 73.9

GZ 94.3 96.8 97.2 5.4 103.6 100.6

CN 85.6 65.6 72.6 94.0 22.3 29.3

Table 5.12.: Experimental results using 1-step-FT on SH, ZZ, SC, GZ, CN based on the

multilingual pre-trained model. Enc-Adapter indicates the model with encoder

adapter and Attn-Adapter indicates the model with attention adapter. The

upper part is fine-tuned on encoder adapter and the bottom part is fine-tuned

on attention adapter. The row in each local part indicates the fine-tuning

dataset and the column indicates the test dataset. The bold values are optimal

in the corresponding column. The results are presented in CER(%).

The model was equipped with the encoder adapter and attention adapter, and then

1-step-FT was performed to compare the obtained results with those from the original

model, resulting in the table 5.12 being obtained. The results showed that the model

with the attention adapter experienced a performance reduction of about 10%, while the

performance of the model with the encoder adapter experienced a reduction of 12%. It

was difficult to maintain performance while saving further optimization on the general

knowledge transferred in the attention blocks.

Then the results of 2-step-FT with adapter and 2-step-FT without adapter were in table

5.13, it was found that the unfrozen attention block with additional adapter layers improved

results when the target dialect differed from the fine-tuning dialect. However, the results

decreased when the target dialect was the same as the fine-tuning dialect.
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SH ZZ SC GZ CN CN-mix

No-Adapter

SH 12.3 77.5 80.9 94.6 69.2 68.8

ZZ 81.2 9.7 52.5 93.0 60.6 59.9

SC 85.4 43.4 9.5 91.7 57.3 56.4

GZ 92.7 92.0 89.8 4.7 79.8 78.9

Attn-Adapter

SH 23.2 78.0 81.1 90.0 62.5 63.5

ZZ 81.2 18.8 50.8 89.2 47.7 49.3

SC 84.3 43.3 22.5 91.2 46.8 48.3

GZ 90.7 87.3 89.2 15.4 74.6 74.6

Table 5.13.: Experimental results using 2-step-FT without adapter on Chinese dialects vs

experimental results after 2-step-FT with adapter. The model in this table

is always a multilingual pre-trained model further 1-step-FT by accented

Chinese mandarin dataset. No-Adapter indicates the model without adapter

and Attn-Adapter indicates the model with attention adapter. The upper

part is fine-tuned without adapter and the bottom part is fine-tuned on the

attention adapter. The row in each local part indicates the fine-tuning dataset

and the column indicates the test dataset. The bold values are optimal in the

corresponding column. The results are presented in CER(%).

We hoped that by fine-tuning the adapter instead of all the parameters of a pre-trained

ASR model, adapters allowed for task-specific adaptation with a much smaller number of

parameters. This could lead to efficient transfer learning with fewer resources. By freezing

the attention layers (in table 5.12), the learning simply relies on the adapter lays, which

are light-weighted but also weaker than the attention layers in learning. The reduction in

performance is probably because the knowledge required to specify the representation from

a multi-lingual to an accented representation is significantly larger than the knowledge

gap between the multi-lingual and the standard language representation according to

the accent. However, an adapter is simply constructed by fully connected down- and

up-projection layers, and is not competitive enough to fill the gap formed by accent or

dialect in speech.

Even by releasing the attention layers to join the learning together with adapter layers (in

table 5.13), the performance was only enhanced by less than 5%. The results implied again

the weak learning ability of the adapter. Nevertheless, the learning of accent information

is concentrated within the first several layers of the attention block [35]. However, the

adapter was added at the end of each attention block, in this work, referring to the MMS

project.

In addition, adapters can be particularly useful in scenarios where the training accent

varies from but still similar to the target task (like a specific dialect or a domain-specific

vocabulary). We are aware of significant differences between its various dialects5.1, such

as disparities in vocabulary4.1.4 and pronounced phonetics. This reality implies that an

adapter cannot simply solve the problem. So the success of the attention adapter is hard

to replicate here.
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By synthesizing the various findings and corresponding analysis from Chapter 5, I sum-

marize the conclusions for this thesis and answer the research questions, in this chapter.

RQ1: Does the difficulty of building speech recognition systems differ between accents

or dialects in different language systems?

First, the experiments5.1 were conducted using languages that are in different language

systems. In 5.1 models performed barely badly when using PAK- and IN- accents as test

targets, which were heavily accented in cognition. However, the error rate would be

more than 90% in the Chinese experiment if the test target dialect and the fine-tuning

dialect were not the same. Such a result doesn’t even make sense in ASR. It indicates

that English accents and Chinese dialects in speech present a large difference in levels of

difficulty, which causes a huge gap in the performance of ASR and brings varying levels of

difficulty in training. Moreover, because the operation of vocab creation was also different,

wrong vocab operation could also lead to worse test results, so it can be concluded that the

difficulty of ASR caused by accent and dialect is obviously different in different language

systems.

RQ2: What factors of the dataset can impact the knowledge representation learning?

Secondly, based on 5.1 it can be understood that, in addition to the low resources of

the dataset, the significant difference between the accent/dialect of the test target and

the fine-tuning dataset also affectes the model’s performance. In addition, 5.3 shows the

domain match between the test dataset and the training dataset had an impact on the test.

It is crucial to use similar datasets as possible for training.

The dataset doesn’t only have its focused area or domain. In 5.3, although the EN-mix

dataset didn’t totally match to test target accent, it achieved better performance, because a

various mixture dataset indicated more generality or variety of pronunciation knowledge.

A perfect dataset is supposed to vary as much as possible but remain related to the target.

Another option is to apply leveraged datasets within a leveraged learning process, in order

to gradually specify the knowledge representation targeting a refined downstream task,

where the knowledge gap is also refined and the adapter is capable of maintaining the

performance.

RQ3: How to improve the robustness and correctness of an accent ASR model for

speaker changes based on the properties of transfer learning?

Further on the knowledge transfer, according to 5.4, using a 2-step fine-tuning ap-

proach could enhance the performance of automated speech recognition (ASR) for various

language systems, without a direct focus on the language system. This indicates that

teaching an ASR system basic pronunciation information in advance and then providing
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target-focused training can improve its ability to recognize dialects and accents. Based on

the 5.5, the adapter is weak in learning complex language knowledge, and it is challenging

to optimize the model by adding adapters. Further experiments are necessary to verify the

trade-off between its learning ability for performance and retaining previously learned

knowledge for efficiency.

In conclusion, it is currently best to consider utilizing separate approaches to handle

accents and dialects due to their differing levels of difficulty.

A model’s ability to understand audio is enhanced by the generality of its knowledge and

broad understanding of various language systems. For constructing a dataset, it’s crucial

to consider a specific accent in mind, while also ensuring that it has enough variety. This

concentration helps the model’s knowledge to converge towards the target accent, rather

than deviate from it. The diversity, on the other hand, offers a higher level of abstraction,

reducing the risk of overfitting. Subsequent experiments are required to confirm the degree

of disparity between a specific accent and the target accent, as well as the level of diversity

of various accents.

The model’s performance can be improved by increasing the diversity of dialects and the

amount of training data. Therefore, collecting datasets labeled with accents and conducting

effective qualitative and quantitative analyses of the datasets remains a challenge.

Secondly, the model can learn accents effectively in conjunction with existing general

knowledge during transfer learning and demonstrates high performance. Thus, combining

general knowledge with target-related accent pronunciation information is critical for the

model’s success in transfer learning.

Furthermore, exploring the feasibility of transferring general knowledge over multi-

accents or -dialects dataset or even over a multilingual and multi-accent dataset helps to

reduce the knowledge gap in the further fine-tuning. Although adapters do not currently

significantly improve model performance, it is still worthwhile to explore their potential

role. Possible approaches can adjust the deployment of the adapter to the beginning of

each attention block [35], to fit the accented ASR task by considering the distribution of

the model parameters which are typically optimized for learning accent.

For feature research, in leveraged knowledge transfer, the generality of knowledge con-

tained in the datasets can be adapted for different approaches according to the composition

of mixed training dataset. How variances in accent similarity within a mixed training

dataset can affect the model’s performance still needs to be explored.
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A.1. Tables

PT-

model

FT-

dataset

Test-

dataset

WER

%

PT-

model

FT-

dataset

Test-

dataset

WER

%

Mono

EN

EN 32.5

Mono

US

EN 30.9

US 29.2 US 27.3

IN 34.1 IN 37.9

PAK 26.3 PAK 28.4

Multi

EN 23.4

Multi

EN 28.8

US 20.8 US 24.4

IN 23.5 IN 33.5

PAK 20.6 PAK 27.1

Mono

IN

EN 35.2

Mono

PAK

EN 59.0

US 33.3 US 57.4

IN 28.8 IN 59.7

PAK 24.7 PAK 28.9

Multi

EN 33.1

Multi

EN 49.0

US 28.9 US 48.0

IN 24.7 IN 46.2

PAK 20.1 PAK 17.6

Table A.1.: Experimental results after 1-step fine-tuning on English accents. EN, US, IN

and PAK represent mix accented English, American accented English, Indian

accented English and Pakistan accented English, respectively. The upper-left

block is fine-tuned by mix accented English dataset. The upper-right block is

fine-tuned by American accented English dataset. The bottom-left block is fine-

tuned by Indian accented English dataset. The bottom-right block is fine-tuned

by Pakistan accented English dataset. Mono indicates monolingual pretrained

model and Multi indicates the multilingual pretrained model. Within each

block, the upper part is pretrained by monolingual dataset and the bottom part

is pretrained by multilingual dataset. The row in each local part indicates the

test dataset and the last column indicates the corresponding result in WER(%).
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PT &

1-step-FT

2-step-

FT

Test-

dataset

WER

%

PT &

1-step-FT

2-step-

FT

Test-

dataset

WER

%

Mono & EN

US

EN 27.8

Mono & EN

IN

EN 28.3

US 24.5 US 26.5

IN 29.6 IN 26.5

PAK 24.0 PAK 23.9

Multi & EN

EN 21.6

Multi & EN

EN 22.7

US 19.2 US 21.5

IN 22.2 IN 20.1

PAK 19.6 PAK 18.6

Mono & EN

PA

EN 33.6

US 30.5

IN 33.5

PAK 21.1

Multi & EN

EN 24.3

US 22.1

IN 24.3

PAK 16.1

Table A.2.: Experimental results after 2-step fine-tuning on English accents. This table is

constructed in a similar way how the table for the experimental results after

1-step fine-tuning is constructed. But in this table, there are only three datasets

used in the 2-step fine-tuning. In each block, the first column combines the

type of pretrained model and the dataset used in the 1-step fine-tuning, which

is always the mix accented English dataset in this table. All the four accented

English datasets are still tested like in the table for the results after 1-step

fine-tuning. The results are also represented in WER(%).
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PT-

model

FT-

dataset

Test-

dataset

CER

%

PT-

model

FT-

dataset

Test-

dataset

CER

%

Mono

SH

SH 10.8

Mono

ZZ

SH 83.5

ZZ 88.7 ZZ 13.7

SC 91.6 SC 67.0

GZ 95.7 GZ 94.9

CN 98.3 CN 82.4

CN-mix 95.6 CN-mix 79.4

Multi

SH 24.5

Multi

SH 80.7

ZZ 87.5 ZZ 11.6

SC 90.0 SC 62.1

GZ 94.5 GZ 92.5

CN 98.5 CN 78.1

CN-mix 95.7 CN-mix 75.5

Mono

SC

SH 88.6

Mono

GZ

SH 95.0

ZZ 59.2 ZZ 97.2

SC 18.8 SC 96.4

GZ 92.7 GZ 6.2

CN 80.2 CN 102.0

CN-mix 77.3 CN-mix 99.1

Multi

SH 86.0

Multi

SH 94.3

ZZ 57.1 ZZ 96.8

SC 25.3 SC 97.2

GZ 91.9 GZ 5.4

CN 76.1 CN 103.6

CN-mix 73.9 CN-mix 100.6

Mono

CN

SH 88.2

Mono

CN-mix

SH 18.1

ZZ 68.8 ZZ 16.2

SC 75.4 SC 15.3

GZ 95.8 GZ 9.3

CN 28.5 CN 28.2

CN-mix 34.9 CN-mix 27.9

Multi

SH 85.6

Multi

SH 12.1

ZZ 65.6 ZZ 10.7

SC 72.6 SC 10.0

GZ 94.0 GZ 4.8

CN 22.3 CN 21.4

CN-mix 29.3 CN-mix 21.3

Table A.3.: Experimental results after 1-step fine-tuning on Chinese dialects. SH, ZZ, SC,

GZ, CN and CN-mix represent Shanghai dialect, Zhengzhou dialect, Sichuan

dialect, Guangzhou dialect, accented Chinese mandarin and mix Chinese di-

alects together with accented mandarin, respectively. The upper-left block is

fine-tuned by Shanghai dialect dataset. The upper-right block is fine-tuned

by Zhengzhou dialect dataset. The middle-left block is fine-tuned by Sichuan

dialect dataset. The middle-right block is fine-tuned by Guangzhou dialect

dataset. The bottom-left block is fine-tuned by accented Chinese mandarin

dataset. The bottom-right block is fine-tuned by mix Chinese dialects together

with accented mandarin dataset. Mono indicates monolingual pretrained model

and Multi indicates the multilingual pretrained model. Within each block, the

upper part is pretrained by a monolingual dataset and the bottom part is pre-

trained by a multilingual dataset. The row in each local part indicates the test

dataset and the last column indicates the corresponding result in CER(%).
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PT or

FT model

FT-

dataset

Test-

dataset

CER

%

PT or

FT model

FT-

dataset

Test-

dataset

CER

%

Multi & CN

SH

SH 12.3

Multi & CN

ZZ

SH 81.2

ZZ 77.5 ZZ 9.7

SC 80.9 SC 52.5

GZ 94.6 GZ 93.0

CN 69.2 CN 60.6

Multi

SH 24.5

Multi

SH 80.7

ZZ 87.5 ZZ 11.6

SC 90.0 SC 62.1

GZ 94.5 GZ 92.5

CN 98.5 CN 78.1

Multi & CN

SC

SH 85.4

Multi & CN

GZ

SH 92.7

ZZ 43.4 ZZ 92.0

SC 9.5 SC 89.8

GZ 91.7 GZ 4.7

CN 57.3 CN 79.8

Multi

SH 86.0

Multi

SH 94.3

ZZ 57.1 ZZ 96.8

SC 25.3 SC 97.2

GZ 91.9 GZ 5.4

CN 76.1 CN 103.6

Table A.4.: Experimental results after 2-step fine-tuning on Chinese dialects vs experi-

mental results after 1-step fine-tuning. This table is constructed in a similar

way how the table for the experimental results after 1-step fine-tuning is con-

structed. But in this table, there are only four datasets used in the fine-tuning.

Within each block, the upper part is a multilingual pretrained model further

fine-tuned by accented Chinese mandarin dataset and the bottom part is just

pretrained by a multilingual dataset. All four Chinese dialects and accented

Chinese mandarin dataset are still tested like in the table for the results after

1-step fine-tuning. The results are also represented in CER(%).
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2-step-

FT

model

with

2-step-

FT

dataset

Test-

dataset

CER

%

2-step-

FT

model

with

2-step-

FT

dataset

Test-

dataset

CER

%

no adapter

SH

SH 12.3

no adapter

ZZ

SH 81.2

ZZ 77.5 ZZ 9.7

SC 80.9 SC 52.5

GZ 94.6 GZ 93.0

CN 69.2 CN 60.6

adapter

SH 23.2

adapter

SH 81.2

ZZ 78.0 ZZ 18.8

SC 81.1 SC 50.8

GZ 90.0 GZ 89.2

CN 62.5 CN 47.4

no adapter

SC

SH 85.4

no adapter

GZ

SH 92.7

ZZ 43.4 ZZ 92.0

SC 9.5 SC 89.8

GZ 91.7 GZ 4.7

CN 57.3 CN 79.8

adapter

SH 84.3

adapter

SH 90.7

ZZ 43.3 ZZ 87.3

SC 22.5 SC 89.2

GZ 91.2 GZ 15.4

CN 46.8 CN 74.6

Table A.5.: Experimental results after 2-step fine-tuning without adapter on Chinese di-

alects vs experimental results after 2-step fine-tuning with adapter. This table

is constructed in a similar way how the table for the experimental results after

1-step fine-tuning is constructed. But in this table, there are only four datasets

used in the 2-step fine-tuning. The model in this table is always a multilin-

gual pretrained model further 1-step fine-tuned by accented Chinese mandarin

dataset. Within each block, the upper part is 2-step fine-tuned without adapter

and the bottom part is 2-step fine-tuned with adapter. All four Chinese dialects

and accented Chinese mandarin dataset are still tested like in the table for the

results after 1-step fine-tuning. The results are also represented in CER(%).
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overlap
char

number

Mandarin Shanghai Zhengzhou Sichuan Guangzhou

Mandarin 4850 1567 2268 2586 1357

Shanghai 1645 1432 1418 1099

Zhengzhou 2358 2022 1237

Sichuan 2636 1232

Guangzhou 1450

Table A.6.: The coverage in between the vocabularies of CN datasets. The table displays

the number of characters that intersect between the horizontal and vertical

dataset vocabularies. The number on the diagonal then indicates the amount

of words per vocab.
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continent country length
(in s)

length
(in H)

’ ’ 2167949 602.208

2nd Language 99

Africa East Africa 485

Kanya

(East Africa)

96

South Africa 23901 6.639

Afrikaan

(West Germanic language

of South Africa)

18

West Africa 61

Nigeria

(West Africa)

83

Pacific Australia 185435 51.510

New Zealand 29438 8.177

United

Kingdom

England 439502 122.084

Ireland 67624 18.784

Scotland 69258 19.238

Wales 3506 0.974

Europe

(continent)

fluent,

ESL,European

51

Russia 241

Poland 179

Ukraine 214

Slavs

(North east Europe)

792

East Europe 510

West Europe 427

German 286527 79.591

Austria 482

France 221

Spain 329

Dutch 950 0.264

Sweden 44

Norway 30

Italy 188

Greece 18

Serbia

(east south europe)

82

Midwest Europe 32
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Asia India and

South Asia

446936 124.149

India 35

Bangladesh

(south Asia)

444

Singapore 14437 4.010

Philippines 21859 6.072

Malaysia 6381 1.773

Thailand 403

Japan 61

Hong Kong 16206 4.502

Guangdong

(China)

99

South

America

Latin America 203

Colombia 23

Atlantic North-Atlantic 1792 0.498

South-Atlantic 8

North

America

Canada 255363 70.934

United States 1368594 380.165

Global international

english

23

Table A.7.: Commen voice: EN time length of accent.

L3_Dialect L2_Dialect L1_Dialect L0_Dialect
(Region:

province)

L0_Length
(in s)

L2_Length
(in s)

Northeastern

Mandarin

Northeastern

Mandarin

Northeastern

Mandarin

（Jiaoliao

Mandarin）

210000-

辽宁省
4300

2.85%

16304

10.79%

Northeastern

Mandarin

220000-

吉林省
928

0.61%

Northeastern

Mandarin

230000-

黑龙江省
11076

7.33%

Beijing

Mandarin

Beijing

Mandarin

Beijing

Mandarin

110000-

北京市
13082

8.66%

13082

8.66%
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Jilu

Mandarin

Jilu

Mandarin

Jilu

Mandarin

（Central

Plains

Mandarin）

120000-

天津市
2380

1.58%

17271

11.44%

Jilu

Mandarin

Beijing

Mandarin

130000-

河北省
5720

3.79%

Jilu

Mandarin

（Jiaoliao

Mandarin，
Central Plains

Mandarin）

370000-

山东省
9171

6.07%

Central

Plains

Mandarin

（Jin

Chinese，
Lanyin

Mandarin）

Jin Chinese Jin

Chinese

（Central

Plains

Mandarin）

140000-

山西省
3556

2.35%

3556

2.35%

Central

Plains

Mandarin

Central

Plains

Mandarin

410000-

河南省
8766

5.80%

10506

6.95%

Central

Plains

Mandarin

610000-

陕西省
1740

1.15%

Central

Plains

Mandarin

（Tibetic

languages）

630000-

青海省
0

0.00%

Lanyin

Mandarin

Lanyin

Mandarin

（Northeastern

Mandarin，
Jilu

Mandarin）

150000-

内蒙古自
治区

1023

0.68%

2793

1.86%
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Lanyin

Mandarin

（Central

Plains

Mandarin，
Tibetic

languages）

620000-

甘肃省
452

0.30%

Lanyin

Mandarin

640000-

宁夏回族
自治区

144

0.10%

Lanyin

Mandarin

（Central

Plains

Mandarin）

650000-

新疆维吾
尔自治区

1174

0.78%

Tibetic

languages

Tibetic

languages

Tibetic

languages

540000-

西藏自治
区

0

0.00%

0

0.00%

Lower

Yangtze

Mandarin

Lower

Yangtze

Mandarin

Lower

Yangtze

Mandarin

（Central

Plains

Mandarin）

340000-

安徽省
5319

3.52%

17749

11.75%

Lower

Yangtze

Mandarin

Wu Chinese

320000-

江苏省
12430

8.23%

Wu Chinese Wu Chinese Wu Chinese 330000-

浙江省
10081

6.67%

20774

13.75%

Wu Chinese 310000-

上海市
10693

7.08%

Southwestern

Mandarin

Xiang

Chinese

Xiang

Chinese

（Southwestern

Mandarin）

430000-

湖南省
2995

1.98%

2995

1.98%

Southwestern

Mandarin

Southwestern

Mandarin

420000-

湖北省
5845

3.87%

20028

13.26%

Southwestern

Mandarin

500000-

重庆市
4503

2.98%

Southwestern

Mandarin

510000-

四川省
8374

5.54%

Southwestern

Mandarin

520000-

贵州省
600

0.40%
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Southwestern

Mandarin

530000-

云南省
706

0.47%

Yue-

Min-

Hakka

Chinese

（Gan

Chinese）

Gan

Chinese

Gan

Chinese

（Hakka

Chinese）

360000-

江西省
6255

4.14%

6255

4.14%

Min

Chinese

Min

Chinese

350000-

福建省
3801

2.52%

3801

2.52%

Yue

Chinese

Yue

Chinese

（Min

Chinese，
Hakka

Chinese）

440000-

广东省
9135

6.05%

15513

10.27%

Yue

Chinese

Southwestern

Mandarin

(Hakka

Chinese）

450000-

广西壮族
自治区

5030

3.33%

Yue

Chinese

（Min

Chinese）

460000-

海南省
1244

0.82%

Yue

Chinese

810000-

香港特别
行政区

104

0.07%

Yue

Chinese

820000-

澳门特别
行政区

0

0.00%

Hakka

Chinese

Hakka

Chinese

（Min

Chinese）

710000-

台湾省
442

0.29%

442

0.29%

151069 s 41.96 h

Table A.8.: Commen voice: CN time length of accent.
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A.2. Figures

Figure A.1.: Special characters
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