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Abstract

This study aims to investigate methods for inducing document-level context awareness

in Neural Machine Translation (NMT) models for bilingual chat data. Previous research

suggests that contextual information is especially useful in the chat-domain [9]. Thus, we

used Tiedemann’s concatenation approach [41] to conduct two central experiments with

different combinations of context.

In the first experiment, source context is prepended to the sentence that gets translated.

Targeted Masking using an external language model is then applied to the source sentence,

forcing the model to use context to resolve the masked information. We used a pretrained

M2M100 model and implemented two additional training stages, first training with large-

scale, non-conversational data and then with a smaller, chat-specific dataset. Models were

trained and evaluated on English-German and English-Chinese data.

The results show that in normal inference, no document-level model can score higher

than the sentence-level baseline regarding BLEU. But the document-level model only

trained with first-stage masked data obtains a significant result in contrastive evaluation

using the ContraPro dataset. It outscores comparable Transformer-based models from the

original ContraPro work by 8 percentage points.

The second experiment exploits context from the other speaker of the conversation, to

predict the correct German formality level of a conversation. Therefore, a new dataset

is proposed, by changing the German formality level of around half of the conversations

in the existing BConTrasT chat dataset. Our results illustrate, that the model trained

with target context outscores the sentence-level baseline concerning BLEU (+3.5) and the

correct choice of formality level (+28 percentage points).
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Zusammenfassung

In dieser Thesis werden Methoden zur Induktion von Kontextbewusstsein in maschi-

nellen Übersetzungsmodellen für zweisprachige Chat-Datensätze untersucht. Vorheri-

ge Forschung haben gezeigt, dass kontextbezogene Informationen besonders bei Chat-

Konversationen nützlich sind. Daher führen wir zwei zentrale Experimente mit verschie-

denen Kombinationen von Kontext durch. Wir nutzen Tiedemann’s einfachen Ansatz, um

Kontext in den Übersetzungsprozess miteinzubeziehen.

Im ersten Experiment werden vorherige Sätze desselben Sprechers mit dem aktuell

zu übersetzenden Satz verkettet. Anschließend wird der zu übersetzende Satz mithilfe

eines externen Sprachmodells gezielt maskiert. Das Modell wird dadurch gezwungen, den

Kontext zu verwenden, um den die maskierten Wörter übersetzen zu können. Als Modell

haben wir ein vortrainiertes M2M100-System genutzt und zwei zusätzliche Trainingsstufen

implementiert. In der ersten wurde das Modell mit einem großen parallelen Datensatz

trainiert, der allerdings keine Chat-spezifischen Unterhaltungen enthält. Die zweite Stufe

wurde dann für das Finetuning mittels Chat-Daten genutzt. Die Modelle wurden mit

Englisch-Deutschen und Englisch-Chinesischen Daten trainiert und evaluiert.

Unsere Ergebnisse zeigen, dass bei Inferenz mit normalen, unmaskierten Daten kein Mo-

dell, welches mit Kontext trainiert wurde, besser abschneidet als das Modell auf Satzebene.

Allerdings erreicht das Modell, das nur mit maskierten Daten der ersten Trainingsstufe

trainiert wurde, ein signifikantes Ergebnis bei der Auswertung mit einem kontrastiven

Test-Datensatz. Es übertrifft vergleichbare Modelle aus der original Arbeit, die zum Test-

Datensatz gehört, um 8 Prozentpunkte.

Das zweite Experiment nutzt den Kontext des anderen Sprechers der Konversation, um

die korrekte deutsche Formalitätsstufe der Unterhaltung zu bestimmen. Hierfür wird ein

neuer Datensatz gebildet. Dieser basiert auf dem existierenden BConTrasT Datensatz und

modifiziert die deutsche Formalitätsstufe von etwa der Hälfte der Dialoge im ursprüngli-

chen Datensatz. Das mit Kontext des anderen Sprechers trainierte Modell erzielt deutlich

bessere Ergebnisse als ein normales, satzbasiertes Modell. Es erreicht +3.5 BLEU Punkte

mehr und bei der korrekten Wahl der Formalitätsstufe erreicht es +28 Prozentpunkte

Genauigkeit.
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1. Introduction

1.1. Motivation

Multilingual Communication plays a pivotal role in today’s globalized world. Translating

speech or text has therefore become a fundamental task in numerous areas of society.

Since manual translation done by humans is rarely available, costly and comparatively

slow, methods to automatically do the job have been subject to a whole independent field

in the research area of Natural Language Processing (NLP). So called Machine Translation

(MT) proposes systems that are able to automatically convert an input sequence into its

corresponding translation using computers in a short and efficient way. Ideally these

generated translations should match the quality of translations by humans.

First works were using rule-based approaches where manually created rules resolved

ambiguities and translated the sentence structure. These systems were soon to be found

impractical as they do not scale well in more complex settings. Corpus-based MT tech-

niques emerged as the next step. They comprise statistical MT (SMT) as well as neural MT

(NMT) and use machine learning methods to learn translation directly from training data.

NMT systems have gained popularity in this field in recent years since performance has

improved significantly. Feed-forward neural networks first started to get deployed in tradi-

tional statistical machine translation systems to re-rank possible translation results in the

target language.[33] Models that also took the source sentence into account followed soon

after [32]. Ultimately, systems using only a single neural network that directly transforms

the source sentence into the target sentence achieved better performance than statisti-

cal models, as they overcome several drawbacks of SMT (e.g. curse-of-dimensionality,

0-probabilities).

Despite the outstanding progress in NMT recently ([42]), especially downstream tasks,

like translation of conversational data, still are issues for modern systems. Generating

translations with the correct choice of pronouns, lexical consistency and general coherence

can be challenging and is particularly relevant in the task of bilingual chat translation.

Corresponding data normally consists of short, noisy messages referencing each other over

several turns. Typical phenomena occurring in discourse-based text comprise anaphoric

pronouns, word ambiguity and reference chains.

To be able to resolve ambiguities and obtain a fluent translation of high quality, it has

been pointed out that the context before the current utterance contains important infor-

mation regarding the translation of the current sentence. NMT systems thus must base

1



1. Introduction

their current prediction not only on the current input sequence, but also on previously

spoken sentences. This is called document-level (DOC) translation, in contradiction to

sentence-level (SEN) models that are only taking the present source sentence into account.

Research in how contextual information can be effectively learned to improve translation

results has become more and more important.

1.2. Goal of this work

Despite document-level context being particulary relevant in a chat-translation envi-

ronment, most NMT systems still operate on the sentence-level. They simply translate

sentence by sentence without considering previous source and target utterances. This

work’s goal is to propose methods that teach NMT models a deep comprehension of the

document-level context and the coherence between succeeding sentences.

Since we work with conversational data, numerous possible variations of contextual

information can be used. Throughout this research, fine-tuning of pretrained NMT models

is conducted using context from the same speaker (source)and the other speaker (target),

combined with targeted masking of the current source sentence. It is important to note

that these methods focus on the general objectives during training and do not imply any

structural changes of the model architecture.

2



2. Fundamentals

In this section, fundamental concepts and methods are described that are essential for

understanding the following experiments. First, the general structure and functionality

of Artificial Neural Networks (ANN) are explained. Next, the specific Encoder-Decoder

and Transformer architectures are elaborated. Finally, typical data preprocessing and

evaluation methods are presented.

2.1. Artificial Neural Networks

Artificial Neural Networks (ANN) can be seen as a nonlinear function which transforms

a set of input values to a set of output values. The specific mathematical function is

determined by a set of parameters, also called weights. The role of the weights can be best

elaborated through looking at the smallest computational unit of an ANN, the perceptron.

2.1.1. Perceptron

A perceptron takes input values 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛) ∈ R𝑛, a constant 𝑤0 ∈ R and has a

set of weights𝑊 = (𝑤1,𝑤2, ...,𝑤𝑛) ∈ R𝑛 with the same size as the input vector 𝑋 . The

transformation from input 𝑋 to output 𝑜 is conducted by taking the weighted sum 𝑣 of all

inputs 𝑥𝑖 and applying it to an activation function 𝜎 :

𝑣 = 𝑤0 +
𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖

𝑜 = 𝜎 (𝑣)

Here, 𝜎 is typically a non-linear function that maps the result of 𝑣 to a value between

(0, 1) or (−1, 1), depending on the specific activation function that was chosen. The

constant 𝑤0, also called ’Bias’, allows us to shift the activation curve up or down. The

perceptron is often used as a binary linear classifier. A classifier maps the input vector

to a predefined class as shown in Figure 2.1b. The perceptron therefore defines a (𝑛 −
1)-dimensional plane that separates two classes. This classification comprises several

drawbacks, which become evident in the case of the XOR-Problem. It is not possible to

separate the two classes correctly using only one line.

2.1.2. Multi-Layer Perceptron

ANNs are nothing more than multiple perceptrons connected in series in multiple layers,

so the output of one layer is the input for the next one. An exemplary structure of this

3



2. Fundamentals

(a) XOR-Problem (b) Binary Classifier

Figure 2.1.: XOR-Classification Problem: It is impossible for a perceptron to classify

each point correctly.

Binary Classifier: Input vectors left of the separating line are mapped to the

"blue" class, vectors on the right are mapped to the "red" class (Image from

[35])

so called Multi-Layer Perceptron (MLP) is depicted in Figure 2.2. Weights connect the

neurons of consecutive layers, and what was the single output value of a perceptron now

becomes a multidimensional output vector. Classification is now no longer limited to one

separation plane.

The flow of information between two layers is structurally similar to the perceptron

algorithm: We define the set of weights between two consecutive layers 𝐿𝑖−1, 𝐿𝑖 as a
𝑙𝑖 × 𝑙𝑖−1-Matrix𝑊𝑖−1,𝑖 . Having information present at layer 𝐿𝑖−1, the output, and thus the

activation with activation function 𝜎 of layer 𝐿𝑖 is calculated as follows.

𝐿𝑖 = 𝜎 (𝑊𝑖−1,𝑖𝐿𝑖−1)
The output of the whole transformation (with n Layers) can be described recursively:

𝐿1 = 𝜎1(𝑊0,1𝑥)
𝐿𝑖 = 𝜎𝑖 (𝑊𝑖−1,𝑖𝐿𝑖−1)

𝑂 = 𝐿𝑛 = 𝜎𝑛 (𝑊𝑛−1,𝑛𝐿𝑛−1)
As multiple separation planes are now possible, a MLP can conduct non-linear classifi-

cation of data and therefore solve the XOR-Problem.

2.1.3. Training of an MLP

The non-linear function performed by a MLP is determined by the weights between its

layers. All weights are typically initialized randomly. The best possible values for these

4



2.1. Artificial Neural Networks

Figure 2.2.: MLP structure with input layer 𝐿0, consecutive hidden layers 𝐿𝑖−1, 𝐿𝑖 and output
layer

weights are computed during the training process. This process is also known as fitting

the MLP to the data, which is done by different learning algorithms. Learning algorithms

are characterized by the usage of the prediction that is compared to the target output and

by the adaption of parameters as a result to the former comparison [13].

Supervised Learning requires labeled training data, meaning target output is given

for each input 𝑥 . In an iterative process, an error function is used to compare the network

output 𝑜 to the target 𝑡 for every input datum. Weights are then changed based on the

measured difference between 𝑜 and 𝑡 according to the rule of a defined learning algorithm,

such as Stochastic Gradient Descent.

Stochastic Gradient Descent aims for minimizing the error function 𝐸. In order to

find a local minimum, the gradient
𝛿𝐸
𝛿𝑤

with respect to the weights𝑤 is calculated. Each

weight𝑤𝑖 is then modified in the opposite direction of its partial derivative
𝛿𝐸
𝛿𝑤𝑖

:

𝑤 𝑡+1
𝑖 = 𝑤 𝑡

𝑖 − 𝛾
𝛿𝐸𝑡

𝛿𝑤 𝑡

Here, 𝛾 stands for the learning rate, a parameter that is set before training determining

the magnitude of the weight change. This process of backtracking the influence of each

weight on the error and modifying them accordingly is called backpropagation algorithm.

It finally stops if a pre-specified criterion is fulfilled, e.g. if the error is not decreasing or

the difference between consecutive error values is below a certain threshold.

Unsupervised Learning works without given target labels. The task is to find pat-

5



2. Fundamentals

Figure 2.3.: Transfer Learning process between two domains [39].

terns in the dataset that could indicate differences between data-clusters. These patterns

then are useful in further analysis and interpretation of the data.

2.1.4. Transfer Learning

Transfer learning is an important method for solving the problem of scarce training data

in machine learning. In contradiction to traditional machine learning, knowledge from

previously learned tasks is leveraged for training newmodels onmore specific, downstream

tasks with significantly less training data available (Figure 2.3). In the case of this paper,

models that are pre-trained on basic bilingual machine translation data are used as a

starting point. They are further trained, also known as fine-tuned, on the downstream

task of bilingual chat translation.

Models trained using a transfer learning approach were found to perform significantly

better in situations with insufficient data than models trained traditionally, isolated on the

downstream task. Additionally, training time in the target domain is reduced [39].

2.2. Sequence-to-Sequence Models

Sequence-to-sequence (Seq2Seq) models are ANNs that take a variable-length sequence

of items (e.g. letters, audio signals, words) as input and transform it to another variable-

length sequence of items. This fits various use cases. Seq2Seq models are producing

state-of-the-art (SOTA) results in numerous NLP tasks like Neural Machine Translation

(NMT), Summarization [38], Speech Recognition [4] and many more. In the particular

case of NMT, the input is a sequence of words and the output is the translated input

sequence. Seq2Seq models consist of an encoder and decoder. The corresponding structure

is explained in the following paragraphs.

Encoder-Decoder Structure Encoder-Decoder networks first got introduced by [37]. They

tackle the tasks of input representation and output generation separately. The encoder

is responsible for reading the input sequence and creating a memory vector where all
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Figure 2.4.: Encoder-Decoder architecture: The encoder reads the input sequence 𝑋 =

(𝑥1, 𝑥2, ..., 𝑥𝑚 and creates a state representation 𝑍 = (𝑧1, 𝑧2, ..., 𝑧𝑚). Memory

vector 𝑧𝑚is passed to decoder (light-blue). The decoder generates the output

sequence 𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑛) word by word. To predict output 𝑦𝑖+1 the decoder
calculates a new hidden state ℎ𝑖+1 based on the last state ℎ𝑖 as well as 𝑧𝑚 and

an embedding of the previously predicted word 𝑦𝑖 [12].

contents of the input sequence are stored. The decoder then decodes this memory vector

and generates the output sequence autoregressive word by word. The current output thus

doesn’t solely depend on the previously generated words, but also on the input sequence

read by the encoder (Figure 2.4).

A potential drawback of the basic Encoder-Decoder architecture is that all information of

the input sequence is squashed into one fixed-size memory vector. This leads to a potential

loss of valuable information and makes it hard for the network to cope with long sentences

[1]. Previous studies showed that performance plummets when working with sentences

that are longer than the sentences in the training corpus [5].

In order to address this issue, [1] proposed a technique of aligning source and target

sequences during translation. The so called "Soft-Search" or "Attention" mechanisms are

further explained in the next section.

2.3. Transformer

Many of the previously discussed drawbacks of a basic Seq2Seq system are remedied by

the so-called Transformer architecture. The Transformer is a model that relies completely

on Attention mechanisms, making the recurrent structure of a Seq2Seq model obsolete.

Functionality of Attention and the original Transformer architecture are explained below.

2.3.1. Attention

Attention mechanisms were first combined with Long Short-term Memory (LSTM) Net-

works by [1]. LSTM nets can be used in Seq2Seq architectures and are a type of recurrent

neural network (RNN) that are specifically designed to handle long-term dependencies in

sequential data. For every generated word, proposed model from [1] performs a search on
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the input sequence, looking for positions where relevant information is concentrated. It

then uses the obtained context vector associated with the source positions and predicts the

next word based on it, as well as the already generated target sequence. In contradiction to

the vanilla encoder-decoder approach, the model does not try to encode an input sequence

into a single fixed-size vector. It rather converts it into a sequence of vectors from which a

subset is chosen for generation of the next word.

[1] reported results that show better translation performance compared to basic encoder

decoder models, especially regarding the translation of long sequences. They show that the

general approach to focus only on selected parts of the input benefits translation quality

of long-term dependencies. However, some pitfalls remain. Conducting the search for

every generated word can be computationally expensive, especially for longer sequences.

In addition, the recurrent architecture is difficult to parallelize and thus slowing down

training and inference significantly.

By introducing the Transformer architecture, [42] solved these issues. For their proposed
model, they combine different attention mechanisms. Similar to [1] they allow the decoder

to focus primarily on relevant parts of the source sentence while making a prediction.

Therefore, the whole encoder state representation 𝑍 is being kept to compute a context

vector 𝑐 for prediction in the decoder [12].

𝑐𝑖 =

𝑚∑︁
𝑗=1

𝛼𝑖 𝑗𝑧𝑖

Attention score 𝛼 is the result of an alignment model. This neural network model is trained

jointly with the Seq2Seq model, that measures how well input i is aligned with the input

at time step j. Scores for every input form an Attention matrix, showing intuitive relations

between input and prediction (Figure 2.5).

Multi-Head-Attention performs multiple attention functions in parallel, using mul-

tiple attention heads. Resulting context vectors are concatenated and linearly projected.

This approach was found beneficial as it allows the model to jointly attend to information

from different representation subsets at different positions. Averaging over a single at-

tention head prohibits this [42]. In contrary to calculating attention scores between two

distinct sequences, Self-Attention works on just one. Relating different positions of the

same sentence, the goal is to obtain an attention-based representation of the sequence

[42].

2.3.2. Transformer Architecture

The Transformer architecture combines an Encoder-Decoder architecture with stacked self-

attention, multi-head attention and fully connected layers depicted in Figure 2.6. Encoder

and Decoder are composed of 𝑁 identical layers (in the original paper [42] 𝑁 = 6). One en-
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Figure 2.5.: Attention matrix: Shows alignment between French source sentence and

English translation. Each pixel shows alignment scores 𝛼𝑖 𝑗 for the i-th input

and the j-th output word (black: 0 to white: 1). This graphic depicts the

different order of object and adjectives in both languages very well. (Image

from [7])

coder layer comprises two sub-layers. The first one implements a multi-head self attention

function and the second is a simple fully connected feed-forward neural network. Similarly,

a single decoder layer contains a self-attention and a feed-forward part, whereas masking

is applied at the self-attention level to prevent attention to subsequent positions. Addition-

ally, a third sub-layer is added to perform multi-head attention over encoders output. Each

sub-layer of both encoder and decoder is surrounded by residual connections, followed

by layer normalization. Thus, 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥+𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟 (𝑥)) is the output of each sub-layer.

Transformer models can be trained significantly faster than structures based on recurrent

layers and achieve outstanding results in translation tasks. They overcome the problem

of learning dependencies between distant positions by utilizing attention to reduce the

number of operations between two arbitrary input and output positions to 𝑂 (1).

2.4. Data Preprocessing

Before raw data like text or images can be used as input for an ANN, several pre-processing

steps have to be applied. In the following, the basic pipeline from raw sentences to binary

input for our ANN models are elaborated.

2.4.1. Tokenizing

Tokenization describes the process of dividing text into smaller, more basic units, called

tokens. Without these basic units clearly separated, the input can not be interpreted

9
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Figure 2.6.: Transformer architecture [42]

correctly during training phase. Identification of tokens depends on the language and the

tokenization technique used. In English, simple white space delimiters can be utilized to

split a sentence into words (White Space Tokenization), whereas in Chinese, the absence

of such delimiters enforce other tokenization approaches [44].

Subword tokenization is splitting text into even smaller units, splitting less frequent

words into subwords. Two of these methods are explained in further detail since they are

used before training different models in this work.

2.4.2. Byte-Pair Encoding

Byte-Pair Encoding (BPE) was introduced by [11] and initially served as text-compression

algorithm [36]. It was first used in a NMT context by [34].

The general functionality of BPE is to ensure that the most common words in the

data are represented as a single token in the resulting vocabulary, whereas rather rare

words are split into two or more subword tokens. The algorithm therefore first splits each

word into characters and counts their occurence. After that, the most frequent character-

pairing is searched and merged together, creating a single token out of two tokens. This is

done iteratively until a given token or iteration limit is reached. Merging finally leads to a

corpus with the least number of tokens [17].

10
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2.4.3. SentencePiece

SentencePiece tokenization uses the BPE algorithm as a basic segmentation method, but

provides additional features that benefit the overall tokenization process. The Sentence-

Piece algorithm implements tokenization on a raw input stream of unicode characters

rather than on white-space-separated words, treating spaces as normal characters. Conse-

quently, there is no language-dependent logic and tokenizing languages without explicit

space delimiters (e.g. Chinese or Japanese) is possible without additional pre-tokenization

steps. Additionally, the algorithm works with a predetermined number of unique tokens,

resulting in a fixed vocabulary size of e.g. 8k, 16k or 32k. This makes it very applicable for

typical NMT models that operate with fixed vocabulary.

Another distinctive aspect of SentencePiece is the implementation of subword regulariza-

tion. As subword segmentation is potentially ambiguous, multiple word separations are

possible even with the same vocabulary. It was found that segmentation ambiguity could

be used as a noise to improve NMT robustness and accuracy. Therefore, multiple subword

segmentations are sampled probabilistically during training [20].

2.5. Evaluation Methods

Performance of NMT models needs to be properly measurable and comparable between

different models. Human evaluation is both time-consuming and expensive. Numerous

automatic evaluation methods were proposed in the past, using individual techniques for

comparing model prediction with output target. The metrics we used during our research

are discussed below.

2.5.1. BLEU

The Bilingual Evaluation Understudy (BLEU) was proposed by [28] as a quick, inexpensive

and language-independent NMT evaluation method that correlates highly with human

evaluation. BLEU score indicates the "closeness" of a translation generated by a NMT

model to a professional human translation.

The primary function of BLEU is the comparison of n-grams of predictions with ref-

erence translations and count the number of matches. The resulting precision scores 𝑝𝑛
(see Figure 2.7) for each 𝑛-gram are combined to the Geometric Average Precision (GAP)

and penalized with a brevity penalty (BP), to punish short predictions [6].

𝐺𝐴𝑃 (𝑁 ) =
𝑁∏
𝑛=1

𝑝𝑤𝑛
𝑛

= (𝑝1)𝑤1 (𝑝2)𝑤2 · · · (𝑝𝑁 )𝑤𝑁

𝐵𝑃 =

{
1, 𝑐 > 𝑟

𝑒
1−𝑟
𝑐 , 𝑐 <= 𝑟
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Figure 2.7.: Illustration of 4-gram comparison. Here 𝑝4 =
2

5

𝐵𝐿𝐸𝑈 (𝑁 ) = 𝐵𝑃 ·𝐺𝐴𝑃 (𝑁 )
with

• 𝑁 = maximal 𝑁 -gram a precision score is calculated for

• 𝑤𝑛 = 1

𝑁
, uniform weights

• 𝑐 = length of predicted sentence

• 𝑟 = length of target sentence

Drawbacks of BLEU comprise missing consideration of the word meaning and ignoring the

importance of words. Despite that, it has become one of the most widely used evaluation

metrics, making it easier to compare results with other work.

2.5.2. COMET

COMET (Crosslingual Optimized Metric for Evaluation of Translation) was proposed by

[30]. It serves as a framework for training individual NMT evaluation models, but also

provides pretrained models implementing different kinds of metrics. Additional to the

hypothesis of an NMT model and the reference sentence, COMET estimator models also

take the source sentence into account during evaluation.

Using a neural network for evaluation purposes alleviates the problem of exact word

matches, on which metrics like BLEU rely on. The basic architecture of an estimator model

is depicted in Figure 2.8. [30] use a pretrained XLM-RoBERTa model for the encoder and

train a system on top of that for scoring. Source sequence, hypothesis and reference are

fed into the pretrained cross-lingual encoder. Resulting word embeddings are then passed

through a pooling layer, generating sentence embeddings for each of the three input

sequences. The following concatenation layer combines and concatenates the sentence

embeddings into one single vector that is finally fed to a feed-forward regressor. Basic

Mean Squared Error (MSE) is calculated and minimized to train the model.

When training a COMET model, a target evaluation score is necessary to compare model

output to. Thus, by striving for a specific metric, models can be trained to implement

different types of human judgements. In the original work, three exemplary models were

trained on scores generated by Direct Assessments, Human-mediated Translation Edit Rate
and Multidimensional Quality Metrics [30].

12



2.5. Evaluation Methods

Figure 2.8.: Estimator model architecture, graphic from [30]
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3. Document-level Pretrained Chat-MT

This section showcases the different approaches to include document-level (DOC) context

in Neural Chat Translation (NCT) systems. First, the used datasets are presented. After

that, the M2M100 model is introduced as the central model on which the following training

methods are implemented. Next, we explain how we incorporated context in the training

process. Finally, the two major experiments of this study are elaborated: Targeted masking

and exploiting target context.

3.1. Datasets

In the following, more information about the datasets used to train NMT models in this

work is given. All of them are so-called parallel, bilingual datasets. In NMT, parallel data

refers to a collection of texts that are aligned with each other. This means each sentence

has a corresponding translation in another language.

3.1.1. News-Commentary

One very popular parallel dataset is the News-Commentary corpus from OPUS [40]. It

comprises 15 languages and 109 parallel bitexts. The set consists of news articles and

their corresponding commentaries, covering a wide range of topics, including politics,

economics, science, and technology, among others. Since experiments in this work are

conducted on language pairs {en, de} and {en, zh}, the corresponding stats can be found in

Table 3.1. We used the dataset version provided by the Huggingface Hub.

News-related texts contain various discourse phenomena that are common in natural lan-

guage (e.g. anaphoric pronouns, ambiguous words or other types of referring expressions).

Hence, this corpus was used in several papers studying translation of conversational data

(e.g. in [14]). Anaphoric pronouns, in particular, are frequently used to refer back to

previously mentioned entities or concepts, making them an important phenomenon in the

course of this work.

3.1.2. BConTrasT

Moving to conversational datasets, more specifically chat conversations, BConTrasT is

used to finetune the models in this work on the downstream task. The corpus was intro-

duced in the WMT 2020 shared task on chat translation [9]. It is based on the monolingual

English Taskmaster-1 set [3] and includes task-based dialogs in six different domains:
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News-Commentary en,de en,zh

#Sentence Pairs 223K 69K

Table 3.1.: Size of news-commentary dataset

en-de de-en en-zh zh-en

lines dialogs lines dialogs lines dialogs lines dialogs

Training 6.216 550 7.629 550 5.560 1.036 4.427 1.036

Dev 862 78 1.040 78 567 108 517 108

Test 967 78 1.133 78 1.466 274 1.135 274

Table 3.2.: Size of chat datasets

1. ordering pizza

2. setting appointments at an auto repair garage

3. booking an Uber

4. buying movie tickets

5. ordering coffee

6. making restaurant reservations

A subset of the monolingual corpus was translated into German using the Unbabel Trans-

lation Service. To produce data with explicit discourse phenomena, the selected conversa-

tions contain the English anaphoric pronoun it at least once[9]. Since all dialogs concern
sevices between two parties, speakers are either customer or agent. In BConTrasT, the

customer is always the German speaker, requesting a certain service. The responding

agent speaks English. Size and statistics can be found in Table 3.2.

3.1.3. Formality-BConTrasT

This work additionally proposes a new dataset obtained by switching formality level of

pronouns in about half of the dialogs in BConTrasT. The Formality level of a German

sentence refers to the two possible translations for the English pronoun you. For example,

the sentence And what time would you like your reservation? can be translated to one of

the succeeding German translations:

Und für welche Zeit möchten Sie Ihre Reservierung? (2)

Und für welche Zeit möchtest du deine Reservierung? (3)

Translation (2) depicts the polite form, {𝑦𝑜𝑢 → 𝑆𝑖𝑒,𝑦𝑜𝑢𝑟 → 𝐼ℎ𝑟𝑒} whereas (3) would be

used if both speakers are on a first-name basis {𝑦𝑜𝑢 → 𝑑𝑢,𝑦𝑜𝑢𝑟 → 𝑑𝑒𝑖𝑛𝑒}. In the next
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Können Sie bitte bestätigen, dass Sie diese Adresse haben?

↓
Kannst du bitte bestätigen , dass du diese Adresse haben ?

Figure 3.1.: Original Sie-level-sentence and modified sentence. Marked are the 3 verbs, the

first two get modified correctly whereas the third one is falsely conjugated

(right form would be hast).

sections, sentences that are on the same formality level as (2) will be referred to as "Sie-
level"-sentences, contrary to sentences like (3) which will be called "Du-level"-sentences.
Sentences without the use of the pronoun you are regarded as neutral and are insignificant

for the production of Formality-BConTrasT.

Originally, the BConTrasT corpus comprises conversations on Sie-level only. Since the
choice of formality level normally is agreed on in the beginning between the two involved

speakers, randomly switching half of the dialogues pronouns provides a more realistic

setting.

Basic steps of the dataset-transformation include iterations over all conversations, each

of which has a 50% chance of getting selected for level-switch. As the switch exclusively

affects German sentences, only source sentences of the customer as well as target sentences

of the agent need to be modified. Sie-level-sentences in selected conversations are altered

by a basic, greedy algorithm using regex to substitute matching patterns. Hence, gram-

matical mistakes occur occasionally regarding the correct conjugation of verbs (Figure

3.1). This is considered ignorable for evaluation on pronoun precision, but could affect

automatic metrics like BLEU and COMET in small manners.

3.1.4. BMELD

BMELD (bilingual MELD) [22] is a bilingual English-Chinese chat translation corpus based

on the MELD (Multimodal EmotionLines Dataset) dataset. The original monolingual MELD

corpus is a combination of the EmotionLines dataset, which consists of dialogues from

movies annotated with emotional labels, and corresponding audio data from the TV show

Friends. It has been used in a wide range of research on multimodal sentiment analysis

and emotion recognition.

Monolingual English data was automatically translated and manually post-edited to obtain

a parallel bilingual corpus. BMELD provides conversations between two or more speakers.

We want to simulate only two speakers, like the setting in BConTrasT. Thus, we divided

the several different speakers into two groups with around the same number of utterances

per group. One group of speakers then got assigned the "customer" language direction

(Chinese→English) and the other group the "agent" language direction. Additional meta-

information like sentiment or emotion of the utterance are existent but ignorable. That’s

because this study conducts no experiments concerning sentiment analysis or bilingual

conversational characteristics. Stats can be found in Table 3.2.
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source It could get tangled in your hair.
reference Sie könnte sich in deinem Haar verfangen.
contrastive Er könnte sich in deinem Haar verfangen.
contrastive Es könnte sich in deinem Haar verfangen.

antecedent en: a bat

antecedent de: eine Fledermaus (f.)

antedecent distance: 1

Table 3.3.: Contrastive Evaluation: It refers to a bat or Fledermaus (f.) which makes sie the
correct reference translation. Example taken from [26]

3.1.5. ContraPro

ContraPro is a large-scale test set with focus on specific discourse phenomena like pronoun

translation. More specifically, it automatically evaluates the accuracy with which NMT

models translate the English pronoun it to its German counterparts er, sie and es [26].
This ambiguity can only be resolved using contextual information, making ContraPro a

well-suited corpus for testing the context-awareness of models.

ContraPro provides data for contrastive evaluation. For each English source sentence,

three German target translations are provided, each with a different translation of it. The
correct translation is defined by the antecedent, the object which the pronoun refers to.

Antecedents occur in the context sentences provided by the dataset and are categorized

by their distance to the source sentence. A distance of 1 means that the antecedent is part

of the directly preceding context sentence.

To obtain a pronoun accuracy, each reference and contrastive translation needs to be

scored and compared. Since NMT models are in fact language models of the target lan-

guage conditioned on the source input, they can be used to calculate a probability score

for an existing translation. If the model assigns a higher probability score to the actual

reference translation than to the contrastive examples, this case is referred to as a "correct

decision" by the model. It is important to note that this refers only to the right pronoun

choice. When letting the model generate a new translation given the source sentence, it

may produce a completely different target sequence compared to the reference.

Another possible evaluation method is generative evaluation (e.g. used in [29]). Here, the

words before the pronoun are given, and it is checked if the model generates the correct

pronoun. This is not part of the metrics used in this work.

3.2. Baselines

This section describes the M2M100 as it serves as the base-model for various fine-tuning

approaches in this thesis. Furthermore, models evaluated in the beginning of this research

are shortly introduced.

18



3.2. Baselines

3.2.1. General Baselines

In the beginning of the research, several popular Seq2Seq models have been evaluated

on chat data to have a greater set of comparable systems. These models have not been

fine-tuned on the news-commentary, BConTrasT or BMELD dataset. Instead, a pretrained

checkpoint available from Huggingface was used during inference. Next are short descrip-

tions of the different models.

MBART (Mulitlingual Bidirectional and Auto-Regressive Transformers) was presented in

[23] and is a multilingual Seq2Seq model primarily trained for the translation task. It was

trained on large-scale monolingual data in various languages using the BART objective.

The original BART model used a denoising auto-encoding objective, meaning the model

was trained to reconstruct the original input sequence from a corrupted version.

FSMTwmt19 (FairSeq Machine Translation) is Facebook’s submission to the 2019 WMT

News-Translation task [27]. It is a transformer-based architecture trained with the Fairseq

sequence modeling toolkit. The model achieved state-of-the-art performance on multiple

language pairs, including English-German.

Raw-Transformer is a NMT model built purely like the architecture described in the

original "Attention is all you need" paper [42], using an annotated version from [18]. It

was not pretrained in any manner.

3.2.2. M2M-100

M2M100 is a multilingual Transformer-based model trained for Many-to-Many (M2M)

multilingual translation. It was proposed by [8] with the aim to overcome drawbacks

of typical english-centric NMT-models by conducting translation directly between 9,900

directions of 100 languages. M2M-100 is not specifically trained for conversational data but

achieves good scores with automatic metrics. It was also used as a baseline for comparison

in the WMT 2022 shared task on chat translation [10]. It is pretrained on the language

pairs used in this work and functions as a starting point for the models fine-tuned on

downstream data. Note that [8] provide three different model-"sizes" regarding the number

of parameters. The following studies are all based on the small model with 418 million

parameters.

Since utilization of context is the central point of this study, two separate baselines were

trained:

• Sentence-level (SEN): Each sentence is passed separately to the model

• Document-level (DOC): Along with the sentence 𝑠 that gets translated, N context sen-

tences are passed to the model. Context either fully consists of the last N utterances

of the same direction as 𝑠 (source-context) or the opposite direction (target-context).

Only 𝑠 gets translated by the model.
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Solely training on scarce chat-data (BConTrasT/BMELD) was not sufficient for learning to

use information out of the context. Thus, an additional training stage with a larger but

non-conversational dataset (news-commentary) was implemented to enable DOC-level

learning.

3.3. Concatenation Approach

To achieve the aim of document-level understanding, we first must be able to feed previous

sequences to an NMT model. There are numerous methods to do that. A few of them are

mentioned in section 5.2. This section describes a simple concatenation approach which is

later used during training and inference of the M2M100 model.

The simplest way to incorporate contextual information in the current translation is

to prepend context from the previous utterances to the sentence to be translated. It was,

among others, done by [41]. This approach does not change the model structure, and

implementation is easy and straightforward. Concatenated context can comprise either

previous sentences from the same speaker (source-context, same language) or from the

other speaker (target-context, different language) only.

Practical implementation is depicted in Figure 3.2. Sentences are separated by a special

token SEP. To avoid ambiguities, SEP should be used exclusively for separation and should

not occur in any of the languages of the sentences. Additionally, SEP should already have

an embedding in the pretrained system. This is ensured by choosing a single Korean char-

acter out of the vocabulary used during pretraining. Thus, otherwise needed enlargement

of the embedding layer is prevented.

Prior to any preprocessing step, data is provided in raw text files with one utterance

per line. At this state, there is no syntactical way to distinguish end and beginning of con-

secutive dialogs. But clear boundaries are needed for selecting only sensible context when

concatenating. E.g. the first sentence of a conversation does not have any prior available

contextual information, so no utterances should be prepended during the concatenation

process. An EOD token (End-Of-Dialog) inserted at the end of each conversation provides

is used to make data distinguishable. As with the SEP token, EOD is a single symbol out of

the pretraining vocabulary.

We hypothesize that in the domain of chat messages, relevant context mostly occurs in

the utterances directly before the current source sentence. In order to limit computational

cost, context size should be chosen as efficiently as possible. Hence, in the experimental

setup of this work, two to four context units are used. Models trained with corresponding

context size are marked with the keyword 3to1, referring to the number of sentences on

the source and target side.
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Hi, how are you? <SEP> Great, thanks for asking, how can I help you?

↓
Sehr gut, danke für die Nachfrage, wie kann ich Ihnen helfen?

Figure 3.2.: Source sentence with one context sentence. Gets translated to one target

sentence (2to1). A seperation token divides the sentences on the source side.

3.4. Experiments

With the method to include context in NMT systems set, we can move forward to explain

the two central experiments conducted in this work. The following section first describes

the targeted masking approach, a masking algorithm based on probabilities assigned by a

LM. Targeted masking is evaluated on English-German and English-Chinese data. Follow-

ing, using target utterances as context is explained. This is done in the English→German

direction only, using the Formality-BConTrasT dataset.

3.4.1. Targeted Masking

Masking is an efficient data-augmentation method to obtain a more generalized model.

Previous work proposed masking of random tokens in the source sentence to force the

model to recover the missing information when translating [21]. Targeted masking how-

ever implies that choice of tokens for masking should rather be selective than random.

We examine a selection based on language models (LM) for training data of both stages.

LMs are pretrained but not finetuned on our downstream data. For German and English

data, fairseq’s pretrained neural language models were used.

General methodology of the masking algorithm is explained in Fig 3.4. The idea is

to mask words that a LM would assign a higher probability value to if context is provided,

compared to without any context. The resulting augmented data contains masked tokens.

They should be resolvable by a NMT model using information given in inter-sentential

context.

Since the LM calculates scores on the token level, several points have to be ensured

during postprocessing to obtain valid masking:

• Only "real" words were masked, excluding tokens like sentence punctuation, phone-

numbers, times, etc.

• Masking was applied to full words, meaning if any sub-token of a word was chosen

for masking, the whole word was masked.

• Masking was only implemented on sentences to be translated, not on context sen-

tences.
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3. Document-level Pretrained Chat-MT

Scores without context

𝑤1 𝑤2 𝑤3 𝑤4

0.71 0.34 0.54 0.12

Scores with context

𝐶 𝑤1 𝑤2 𝑤3 𝑤4

0.68 0.92 0.57 0.10

Table 3.4.: Targeted Masking: LM iterates the same data twice, the first time on SEN-, the

second time on DOC-level. During each iteration, LM calculates the positional

probablility scores 𝑝𝑖 of each word 𝑤𝑖 in a sentence 𝑆 = (𝑤1,𝑤2, ...,𝑤𝑛). The
result are two scores per word: 𝑝𝑆𝐸𝑁𝑖 and 𝑝𝐷𝑂𝐶𝑖 . Finally, masking is applied to

word𝑤𝑖 if 𝑝
𝐷𝑂𝐶
𝑖 − 𝑝𝑆𝐸𝑁𝑖 > 𝑇 with 𝑇 as a constant threshold.

Through the value of threshold 𝑇 , the number of masked words can be influenced. Whilst

also inspecting effects of more masking, the results presented in Section 4.2 are based on

data with statistics shown in Table 3.5.

3.4.2. Using target context

One characteristic property of bilingual chat-conversations is the division of utterances

between two or more speakers. References across different speakers and languages are

not uncommon. Hence, context-aware models should not only be incorporating source

side, but also target side context from other speakers. Similary to source context being

able to disambiguate pronouns or other words, target sentences can contain important

information concerning gender of pronouns or formality level.

Formality-BConTrasT provides sentences with different German pronoun translations

concerning the formality-level of the conversation. It basically implements the fact that

translation of the pronoun you should depend on the pronoun that is being used by the

German speaker (Sie or du), making it perfect for showcasing the use of target context.

Context is prepended to the source sentence by using the concatenation approach elabo-

rated earlier. A 3to1 model considers the last two German target utterances before the

current source sentence as context. It does not matter if sentences of the source speaker

occur between the sentences of the target speaker.

Models To demonstrate the effectiveness of target-context awareness, the central model

that is actually trained with target context on Formality-BConTrasT is compared to fol-

lowing other systems:

• SEN-Baseline: A baseline trained on sentence-level data during both training stages.

• Sie-Baseline: A baseline that simulates a model translating conversations to Sie-level
only. Instead of training a whole new system, the model’s translation of the test
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3.4. Experiments

en→de news-commentary BConTrasT

train valid test train valid test

#masked 156K 33K 33K 6.5K 862 1K

#total 3.5M 748K 757K 73K 9.5K 10.5K

Table 3.5.: Number of masked words in both training stages for (𝑒𝑛 → 𝑑𝑒) direction

de→en news-commentary BConTrasT

train valid test train valid test

#masked 152K 33K 33K 4K 586 668

#total 3.5M 748K 759K 41K 5.5K 6K

Table 3.6.: Number of masked words in both training stages for (𝑑𝑒 → 𝑒𝑛) direction

zh→en news-commentary BMELD

train valid test train valid test

#masked 62K 3.5K 3.5K 3.5K 368 1K

#total 7M 390K 394K 80K 8.5K 22K

Table 3.7.: Number of masked words in both training stages for (𝑧ℎ → 𝑒𝑛) direction

en→zh news-commentary BMELD

train valid test train valid test

#masked 59K 3K 1.6K 3K 347 756

#total 3M 147K 79K 40K 4.5K 10.5K

Table 3.8.: Number of masked words in both training stages for (𝑒𝑛 → 𝑧ℎ) direction
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3. Document-level Pretrained Chat-MT

Customer Agent

Hallo, kann ich Sie zu Ihnen sagen?
Wie kann ich Ihnen helfen? How can I help you?

Hallo. Ich suche nach Kinokarten. Hi. I am looking for movie tickets.

Okay welchen Filem wollten Sie? Okay what film did you want?

Glass Glass

Der ist sehr beliebt That’s really popular

Table 3.9.: Example conversation from Formality-BConTrasT with added introducing sen-

tence. The corresponding translations are depicted in blue.

set is synthetically constructed. This is done by taking the output of SEN-Baseline

and modifying the pronoun formality level using the same technique as during the

construction of Formality-BConTrasT.

• Du-Baseline: A baseline that simulates a model translating conversations to Du-level
only. Similar to Sie-Baseline, no new model was trained, but output was produced

manually.

• Mixed-Baseline: This is a mixture of Sie-/Du-Baselines. It randomly selects 50% of

dialogs to change to Du-level, whereas the other half is modified to be on Sie-level.

• Rule-Based-Model: Acts as an upper limit for pronoun accuracy by simulating perfect

context-awareness. As with Sie- and Du-Baseline, it modifies SEN output. The

system scans the German context for pronouns or conjugated verbs that indicate the

level of formality and changes the prediction accordingly. Assuming the algorithm

is perfectly reliable in detecting the correct formality level, the resulting accuracy is

the highest achievable with the used context size.

• DOC-TGT-Model: System that is trained with target utterances as context in the

second training stage using Formality-BConTrasT. The first training phase was

conducted on news-commentary using two source context sentences. Context size

was increased in the second phase (5to1) to overcome the little use of pronouns by

the target speaker.

Challenges lie in the structure of the BConTrasT corpus. Due to the service-oriented

nature of the dialogs, the German-speaking customer generally does not use a lot of pro-

nouns in his utterances. Sentences are rather short, and often are questions for information

about restaurants, movies, etc. The use of pronouns was synthetically increased by adding

a sentence at the beginning of each conversation (Fig. 3.9). The added sentence simulates

a typical German introduction, which is defining the formality level by asking the other

speaker for permission to use the according pronouns. A bigger context window was also

used (5to1 in second stage training), to maximize the source sentences with a pronoun in

their context, that reveals the formality-level of the dialog.
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3.4. Experiments

Summary In this section, we elaborated the two central experiments of this study: Tar-

geted masking and using target context to detect the right formality level. We therefore

took a look at the Tiedemann approach [41] to include preceding utterances in the trans-

lation process. In addition, the datasets we used for training were introduced and our

baselines as well as the M2M100 model were discussed. The results of the experiments are

now presented in the following chapter.
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4. Evaluation and results

The following part of this paper moves on to present the results of the conducted exper-

iments. Evaluation of the models trained with targeted masking and target context are

being reported, among several other results that were obtained during the execution of

this research.

4.1. General baselines

As a starting point of this research, several pretrained or untrained models were evaluated

on the BConTrasT chat data. MBART and FSMTwmt19 models were pretrained models

loaded and evaluated from Huggingface. MBART-50 is a MBART model extended to

comprise pretraining of 50 languages (original MBART was only pretrained on 25). A

score for the pretrained checkpoint of M2M100 before any fine-tuning was applied is also

reported.

BLEU

Model en-de de-en

mBart50 36.57 47.8

FSMTwmt19 42.87 49.05

Raw-Transformer 36.22 36.05

m2m100-418 32.16 34.01

Table 4.1.: General Baselines that were evaluated on BConTrasT at the very beginning of

this research

4.2. Targeted Masking

Next are the results of training with targeted masking. Since training consisted of two

training stages, all possible combinations of masked and unmasked data were evaluated.

Different models are depicted by different two-character-combinations. E.g. NM refers

to the model that was first trained with normal (unmasked) news-commentary data in

the first stage, and after that was trained with masked chat data in the second stage. The

following scores were obtained by evaluating with the test split from the chat datasets

(BConTrasT and BMELD). Inference was also split into inference with normal data and
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4. Evaluation and results

inference with masked data. Models were trained with context (DOC) as well as without

(SL). All DOC-level models were trained with 2 context sentences (3to1). Inference of

these models was also conducted with 2 context sentences. NN models are the SL-/DOC-

Baselines.

4.2.1. Evaluation on Chat Data

English-German: As can be seen from Table 4.2, for normal inference the SL-Baseline

outperforms other models regarding BLEU scores. The DOC-Baseline scores about −0.7
BLEU points lower. It seems raw context without any masking is causing more noise

than it benefits the translation. With masked training in one of the two stages, better

performance shifts to DOC-level models with the DOC-NM surpassing the corresponding

SEN-level model by around +1.3 BLEU. Surprisingly, DOC-MM achieves the best COMET

score in normal inference.

Unsurprisingly,MM models perform best in masked inference. Regarding BLEU, DOC-MM
gains +0.4 points compared to the same model without context. But concerning COMET,

SEN-MM achieves the best score by +1.6 points. DOC-NN scores way lower than SEN-NN.
It seems to be overburdened by preceding context and masking tokens it has never seen

during training.

Sentence-Level Document-Level

Inference NN (BL) NM MN MM NN NM MN MM

Normal (BLEU) 53.7 52.01 52.76 53.12 53.02 53.35 53.39 52.88

Normal (COMET) 90.22 90.06 90.26 90.33 89.72 90.03 90.82 90.92
Masked (BLEU) 43.57 49.01 47.66 49.8 30.56 49.51 47.71 50.29
Masked (COMET) 81.56 88.03 85.65 88.04 72.52 85.74 84.26 86.36

Table 4.2.: Results of targeted masking 𝑒𝑛 → 𝑑𝑒

Regarding German→English direction (Table 4.3), results are similar to the other direc-

tion. The sentence-level baseline performs best in normal inference concerning BLEU

and COMET scores. The document-level baseline achieves about −2 BLEU points less.

Document-level models with masking apparent in at least one training stage score slightly

higher than DOC-NN. DOC-MM obtains the best BLEU score in masked inference, signifi-

cantly surpassing all sentence-level systems.

English-Chinese: Looking at the English→Chinese direction, no document-level model

can perform better than its sentence-level counterpart. Surprisingly, the SEN-NN model

also obtains the best BLEU score for masked inference. So inheriting context and masking

during the training process harmed the general translation quality of the other systems

significantly. Here, no sign of sensible usage of contextual information can be seen.
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Sentence-Level Document-Level

Inference NN (BL) NM MN MM NN NM MN MM

Normal (BLEU) 56.93 52.43 56.17 51.84 54.72 55.33 54.88 55.89

Normal (COMET) 92.42 91.9 92.12 91.8 92.06 92.06 92.11 91.65

Masked (BLEU) 43.45 46.94 48.68 44.41 24.1 50.0 46.04 51.33
Masked (COMET) 80.21 89.0 88.97 88.76 71.73 89.18 86.93 88.93

Table 4.3.: Results of targeted masking 𝑑𝑒 → 𝑒𝑛

Sentence-Level Document-Level

Inference NN (BL) NM MN MM NN NM MN MM

Normal (BLEU) 24.42 23.56 23.02 23.52 22.58 21.93 21.53 21.91

Normal (COMET) 81.76 81.51 81.54 81.15 80.94 80.78 80.73 80.68

Maksed (BLEU) 22.25 20.83 20.21 21.03 19.44 19.72 19.48 19.96

Masked (COMET) 79.04 79.15 78.92 78.91 77.45 78.61 77.88 78.65

Table 4.4.: Results of targeted masking 𝑒𝑛 → 𝑧ℎ

A similar pattern can also be observed in Chinese→English. Sentence-level models gener-

ally achieve better scores than document-level. The SEN-NM model performs best in all

inference categories.

Sentence-Level Document-Level

Inference NN (BL) NM MN MM NN NM MN MM

Normal (BLEU) 16.69 17.59 16.58 16.98 15.98 16.84 12.48 16.86

Masked (COMET) 77.71 78.15 77.65 77.96 76.28 77.24 75.33 75.83

Normal (BLEU) 11.90 16.16 13.69 15.35 12.89 15.00 12.76 15.02

Masked (COMET) 71.93 76.64 74.30 76.31 71.11 74.50 71.05 74.14

Table 4.5.: Results of targeted masking 𝑧ℎ → 𝑒𝑛

Looking generally at the evaluation of the experiments with targeted masking, nothing

too surprising can be seen. Models trained on English-Chinese language pair show no

tendency of improvements on the document-level side. This could be due to the quite

noisy and especially short character of messages uttered in the BMELD conversations.

Compared to the synthetic service dialogs in BConTrasT, BMELD provides more informal

and realistic dialogs. The English-German pair provides a bit more promising results. Here,

document-level models generally achieve better results in masked inference. These find-
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ings suggest that contextual information is being used to improve the correct unmasking

capability.

4.2.2. Contrastive Evaluation

Following are the results of the contrastive evaluation on the ContraPro dataset. Since

ContraPro comprises (𝐸𝑛𝑔𝑙𝑖𝑠ℎ → 𝐺𝑒𝑟𝑚𝑎𝑛) data only, the corresponding models trained

with the targeted masking objective are evaluated here. Similar to the other tables, the

character combinations refer to masked or normal data in the respective training stage.

Furthermore also scores of models with only first stage training are reported.

It can be seen that DOC-M achieves the highest total accuracy, gaining +6 percentage
points compared to the second best SL-M. Contextual information may play a vital role in

the accuracy increase. This supports the thesis that translation of anaphoric pronouns

benefits from information in previous utterances.

Also, a strong tendency to translate it to es (n.) becomes visible. Every model scores

higher than 60% accuracy on the neutral pronoun, whereas er (m.) and sie (f.) scores are
significantly lower. DOC-M however, achieves the highest accuracy in both non-neutral

pronouns, outscoring the next best model by +19 percentage points concerning er (m.).
Another observation is the fact that DOC-M/DOC-MM systems beat unmasked systems

DOC-N /DOC-NN.

Model Total Accuracy es (n.) er (m.) sie (f.)

DOC_N 0.51 0.68 0.49 0.35

DOC_NN 0.45 0.81 0.23 0.29

DOC_M 0.57 0.65 0.69 0.38

DOC_MM 0.50 0.78 0.45 0.28

SL_N 0.51 0.69 0.50 0.33

SL_NN 0.43 0.81 0.36 0.22

SL_M 0.52 0.77 0.49 0.30

SL_MM 0.45 0.84 0.27 0.23

Table 4.6.: Pronoun Accuracy: Contrastive evaluation results on ContraPro. Note that four

exemplary two-stage trained models are shown here to simplify the table. Other

two-stage models show similar performance like the ones depicted here (total

accuracy ≤ 50% and high accuracy regarding es)

Figure 4.1 shows the results of the original study by [26]. Except for the last part of the

table, all models are recurrence based. These contain specific architectural changes to

comprehend context sentences, like multiple encoders with hierarchical attention (s-hier)

and weight tying (s-hier.tied). The s-hier baselines are taken, or slightly adapted from [2],

of whom s-hier-to-2 achieves the best accuracy.
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Figure 4.1.: Results from the original ContraPro paper [26].

Since our work did not suggest any structural changes to the network itself, and is based

on the Transformer architecture, corresponding results seem more interesting to compare

to ours. The tested concat21 and concat22 models were taken from [41]. In general, our

models show comparable performances regarding total accuracy. They also behave similar

concerning the individual pronouns, with a relatively high score for the neutral, and low

scores for the gender-specific ones. DOC-M outscores the best transformer by +8 points
total, achieving worse scores for neutral, outstanding scores for masculine and average

scores for feminine pronouns.

These findings provide support for the hypothesis that targeted masking in pretrain-

ing is promoting the model’s use of contextual information. We used [41] approach to

concatenate context, and our masked model outscores all of their context-aware trans-

formers. It remains uncertain specifically how great the targeted approach contributes to

the accuracy rise. Future work should therefore examine random masking techniques for

comparability. Nonetheless, LM-based masking is preferably selecting words occurring, or

being referenced in context sentences. It could be argued, that this is also affecting the

results positively.

4.3. Target Context

This section reports results of the experiments with context from target side. The models

compared in the following table are elaborated in section ??. Our proposed Target-Context
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model and the basic SL-Baseline are the only “real” NMT models in the table. Others just

modify the pronouns of the sentence-level output according to their designation.

Besides the normal BLEU and COMET scores, the share of correctly predicted sentences

regarding level of formality is being reported. This pronoun accuracy was calculated

manually by comparing each hypothesis sentence to their respective reference in the test

split. Table 4.7 shows that 100%-Sie, 100%-Du and Mixed-Sie/Du models perform similar to

the SL-Baseline in every reported metric. This is not surprising, as they are just modified

versions of the actual sentence-level output. The 100% models also confirm the expected

results regarding pronoun accuracy, since Formality-BConTrasT contains approximately

half Sie-level, half Du-level conversations.

The Target-Context and Rule-based model are indicating a positive correlation between

pronoun accuracy and BLEU score. They score about +3 BLEU points better than the

baseline, while achieving a notably higher accuracy (around +30 percentage points). The
most important finding is that the proposed model acts nearly as good as the assumable

perfect Rule-based model in pronoun translation, even reaching a slightly better BLEU

score.

Model BLEU COMET Pronoun Accuracy

SL-Baseline 48.27 89.2 50.48%

100% Sie 48.49 89.53 50.47%

100% Du 47.9 89.12 49.53%

Mixed Sie/Du 48.28 89.39 49.82%

Target-Context model 51.9 89.19 78.47%

Rule-based model 51.48 89.42 80.1%

Table 4.7.: Results of experiments with target context. Target-Context and Rule-based model

operate with 2 target context sentences.

According to these results, we can infer that contextual information from the target side

is beneficial for resolving anaphoric pronouns like “you”. Although a simple rule-based

model works better in this case, the data supports the idea of utilizing target utterances to

gain higher translation quality in conversational settings like chats. For use cases much

more complicated than a simple binary decision about formality level, rule-based systems

will suffer from the growing dimensionality and won’t be able to scale. Therefore NMT

models with the ability of handling target context are suggested to succeed in more general

experiments.
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Since this work aims at forcing models to exploit contextual information in a chat envi-

ronment, there are multiple lines of research leading to our experiments. An exemplary

list of previous publications is thus given below.

5.1. Conversational Characteristics

Conversational translation aims to capture the nuances and typical discourse phenomena

present in chat or dialogue-based interactions. In addition to the rather short and noisy

style, existing literature has presented several key characteristics that make conversational

data differ from normal text corpuses.

[16] worked out that unlike isolated, unrelated sentences, a discourse normally con-

sists of collocated, structured and coherent groups of sentences. They consider coherence

to be a main aspect of discourse-based texts (e.g. dialogs, news-texts, Wikipedia articles).

Another important difference is that conversations not only consist of utterances but

also actions. This is stated in [25]. Actions can be questions, made promises, paid compli-

ments and much more. Their study also mentions co-references across several sentences

as a substantial part of discourse, and thus conversations.

In their survey paper about DOC-NMT, [24] listed mulitple attributes of discourse data.

Among other things, they mention anaphoric pronouns and cohesion. Cohesion refers to

the way textual units are linked together grammatically or lexically.

[22] highlights additional chat-related characteristics such as role-preferences (e.g. emo-

tions, style, humor). Different speakers can have different emotions and therefore express

themselves differently than others. It was found that explicitly modeling these features

through designated latent variables can boost NMT performance over strong baselines.

5.2. Incorporating Context in NMT

Context plays a crucial role in preserving coherence of conversations during translation. In

addition to the concatenation approach or masking, which was used in this work, previous

papers provide several ways of incorporating context in the NMT workflow modifying

model architecture.
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Multiple Encoders The first steps were made by adding additional encoders for source-

only context. [15] modified the attentional RNN-based NMT architecture with an additional

encoder and a corresponding attention element for handling one context sentence. They

achieved moderate improvements over small corpuses. To control the information flow

from the previous utterance, [19] later used an inter-sentence gate to combine the two

context vectors and feed the combination to the decoder. They were able to show that the

gate worked effectively in capturing cross sentence-dependencies and lexical cohesion

phenomena.

Hierachical Encoders [43] proposed a two-level hierachical RNN to encode the information

of three previous source sentences. The resulting vector was then either used to initialize

decoder state, as an additional input to decoder state, or after passing through a special

context gate. They reported results that surpasses a strong attention-based NMT system

by up to +2.1 BLEU points in Chinese-English translation. A combination of hierarchical

encoding and the transformer architecture was introduced by [45]. Their proposed encoder

first abstracts sentence-level information from context sentences in a transformer-like,

self-attentive way, and then hierarchically encodes context-level information. In English-

{German, Korean, Turkish} they achieved strong results concerning BLEU scores.

Document-level Training Objectives There has been also more literature trying to imple-

ment effective training objectives to exploit contextual information. [31] presented an

interesting reinforcement learning approach by utilizing approximated document BLEU

as a cost function during training. They demonstrate improvements in English→German

for document-level evaluation using TER and BLEU. Recently, [46] proposed the idea of

learning "contextualized" embeddings of the source sentence. Therefore, the model was

forced to predict the local source context besides the target sentence. These embeddings

were then used in a fine-tuning stage. Results better than their transformer baseline were

reported concerning Chinese→English and English→German.
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6.1. Conclusion

This study set out to research methods for inducing document-level context awareness

in pretrained NMT models for the task of chat translation. Therefore, multiple popular

pretrained NMT systems were evaluated on chat data, from whom Facebook’s multilingual

M2M100 model (418M parameters) was selected as a starting point for further experiments.

For the purpose of this work, several parallel datasets were found and used, including

News-Commentary, a non-conversational dataset consisting of news text and commentary.

In Addition to two existing chat-specific datasets (BConTrasT, BMELD), a new variation

of the BConTrasT data was proposed with modified formality levels and thus, modified

pronoun translations.

This research comprised two central experiments, refering to two different training

objectives: Targeted Masking as well as target context utilization. For Targeted Masking,

the M2M100 model was trained using 2 consecutive fine-tuning stages, first using non-

conversational, and then chat-specific data. Context-agnostic (sentence-level) and context-

aware systems were trained, with a context size of 2 previous sentences. Furthermore,

masking was applied based on a selection made by a LM, with the aim to mask words that

could be resolved by the model using information present in context sentences. All possible

combinations of masked and unmasked data were trained, both for English-German and

English-Chinese language pairs.

Regarding the second experiment, a document-level model with target context was

trained, also with the 2-stage set up described above. For that, the newly created Formality-
BConTrasT was used during second-stage fine-tuning. The goal was to show that the model

can exploit the target context beneficially for predicting the correct German formality

level in a conversation. In Addition to a normal sentence-level baseline, several systems

with different behaviors regarding pronoun translation were simulated.

Model evaluation was done using automatic metrics BLEU and COMET. In the Targeted

Masking setting, no model could outscore the sentence-level baseline concerning BLEU.

With masked test data, the document-level model trained with masking in both stages

performed best for the English-German language pair. English→German methods were

additionally evaluated on a test set with contrastive translations of the anaphoric pronoun

it (ContraPro). Here, the document-level model trained only on first-stage masked data

achieved notable improvements in pronoun accuracy, even outscoring comparable models

from the original ContraPro paper.

The proposed model trained with target context performs slightly better regarding

BLEU (+3) and similar regarding COMET than the sentence-level baseline. In a manually
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calculated pronoun accuracy score, it nearly reaches the performance of a perfect rule-

based model.

In summary, it could be shown that the methods used for training in this work are

promoting context-awareness in resulting NMT models. In the case of Targeted Masking,

the effect has not been enough to surpass a basic sentence-level model in the chat domain.

But results in contrastive evaluation show, that the document-level models are able to

resolve typical conversational challenges like anaphoric pronouns. And results with target

context show how context can be beneficial in a concrete chat setting.

6.2. Future work

A number of suggestions could be derived from the experiments conducted in this work.

A few of them are listed below.

Further context variations Although this work covers a lot of different combinations of

context, there are still more than enough for future research. Mixed source and target

context could combine the advantages of contextual information from both sides. Proceed-

ing utterances (in settings where the whole chat is available) could be useful to resolve

cataphoric pronouns, to just give a few ideas.

New Datasets An NMT model is just as good as the datasets it was trained with are. In a

downstream task like chat-translation, the amount and size of available datasets is very

limited. Especially datasets with more than two speakers are rare, BMELD being one of few.

Therefore, developing new datasets is indispensable whenwanting to promote performance

of models over time. New datasets should retain a few minimum standards, like short and

noisy messages. They should ideally be taken out of real world chat conversations.

More language pairs As with the point above, this is necessary to build a sophisticated

translation system for multilingual conversations. In the WMT 2022 shared task on chat

translation, English-French and English-Portuguese was added in comparison to WMT

2020. This development is to be supported.
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A. Appendix

A.1. Training Params

Here is additional information about the training params we used to train M2M100 using

Fairseq. Parameters slightly differ in patience values regarding training stage. Most of the

parameters were initially taken from here and modified by comments of this issue.

A.1.1. First Stage

fairseq-train $path_2_data --finetune-from-model $pretrained_model \

--task translation_multi_simple_epoch --encoder-normalize-before \

--save-dir checkpoints_zh_3to1_M_a \

--lang-pairs $lang_pairs --batch-size 4 \

--decoder-normalize-before --sampling-method temperature \

--sampling-temperature 1.5 --encoder-langtok src \

--decoder-langtok --criterion label_smoothed_cross_entropy \

--label-smoothing 0.1 --optimizer adam \

--adam-eps 1e-06 --adam-betas ’(0.9, 0.98)’ \

--lr-scheduler inverse_sqrt --lr 3e-05 \

--warmup-updates 4000 --dropout 0.3 --weight-decay 0.0 \

--update-freq 2 --validate-interval-updates 5000 \

--no-epoch-checkpoints --no-last-checkpoints \

--seed 222 --log-interval 10 --patience 5 \

--arch transformer_wmt_en_de_big --encoder-layers 12 --decoder-layers 12 \

--encoder-layerdrop 0.05 --decoder-layerdrop 0.05 \

--share-decoder-input-output-embed \

--share-all-embeddings --ddp-backend no_c10d \

--tensorboard-logdir ./tensorboard_zh_3to1_M_a
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A. Appendix

(a) Agent Training (b) Customer Training

Figure A.1.: Exemplary illustrations of the negative log-likelihood loss during the first

training stage. Models were trained for 20-25 Epochs, using early stopping

after 5 validation turns without loss improvement.

A.1.2. Second Stage

fairseq-train $path_2_data --finetune-from-model $pretrained_model \

--task translation_multi_simple_epoch --encoder-normalize-before \

--save-dir ./checkpoints_zh_3to1_MM_a \

--lang-pairs $lang_pairs --batch-size 4 \

--decoder-normalize-before --sampling-method temperature \

--sampling-temperature 1.5 --encoder-langtok src \

--decoder-langtok --criterion label_smoothed_cross_entropy \

--label-smoothing 0.1 --optimizer adam \

--adam-eps 1e-06 --adam-betas ’(0.9, 0.98)’ \

--lr-scheduler inverse_sqrt --lr 3e-05 \

--warmup-updates 4000 --dropout 0.3 --weight-decay 0.0 \

--update-freq 2 --validate-interval-updates 1000 --no-epoch-checkpoints \

--seed 222 --log-interval 10 --patience 3 \

--arch transformer_wmt_en_de_big --encoder-layers 12 --decoder-layers 12 \

--encoder-layerdrop 0.05 --decoder-layerdrop 0.05 \

--share-decoder-input-output-embed \

--share-all-embeddings --ddp-backend no_c10d \

--tensorboard-logdir ./tensorboard_zh_3to1_MM_a
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A.1. Training Params

(a) Agent Training (b) Customer Training

Figure A.1.: Exemplary illustrations of the negative log-likelihood loss during the second

training stage. Models were trained for 5-10 Epochs, using early stopping

after 3 validation turns without loss improvement.
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