
Classifier-free Diffusion Models for Machine Translation

Bachelor’s thesis

Yunus Demirag

Department for Computer Science
Karlsruher Institut für Technologie

Germany
01.08.2023.

Contents

1 Introduction 3
1.1 Motivation . 4
1.2 Thesis Statement . 4

2 Background 5
2.1 Variational diffusion models . 6

2.1.1 Variational autoencoders . 6
2.1.2 Markovian hierarchical variational autoencoders 8
2.1.3 Variational diffusion models with fixed noise schedule 10
2.1.4 Two alternative ways to parameterize the estimated mean 15
2.1.5 Noise schedules . 16
2.1.6 Classifier-free guidance . 16

2.2 Diffusion language models . 17
2.2.1 Diffusion-LM . 18
2.2.2 DiffuSeq . 19

2.3 Neural Machine Translation . 20

3 Classifier-free Diffusion Models for Machine Translation 21
3.1 Diffusion-LM-based Model . 21
3.2 DiffuSeq-based Models . 21

3.2.1 DiffuSeq with Autoregressive Sampling . 22
3.2.2 DiffuSeq trained for word generation . 22
3.2.3 DiffuSeq with Knowledge Distillation . 23
3.2.4 Alternate Diffusion Kernel . 24
3.2.5 Position-dependent noise scheduling . 25

4 Model Evaluation 26
4.1 Experimental Setup . 26

4.1.1 Dataset and data preparation . 26
4.1.2 The evaluated implementations . 27
4.1.3 Baselines . 28

4.2 Results . 28
4.2.1 Analysis of the results over differing lengths of the source sequence 29
4.2.2 Models which converged to trivial distributions 31

4.3 Training and decoding times of the models . 33
4.4 Conclusion . 34

5 References 35

1

Abstract

In the domain of natural language processing, specifically, the task of neural machine translation,
non-autoregressive models (NAR) have struggled to achieve results comparable to state-of-the-art
autoregressive (AR) models (Xiao et al., 2023). First attempts at applying the idea of Denoising
Diffusion Probabilistic Models Ho et al., 2020; Sohl-Dickstein et al., 2015, a type of model from the
family of diffusion models to language modeling tasks, have shown promising results Gong et al., 2023;
Li et al., 2022. Diffusion models have previously been successfully applied to various continuous domain
problems such as image generation (Sohl-Dickstein et al., 2015; Song & Ermon, 2019). For conditioning
the generation process diffusion models may rely on classifier guidance (Li et al., 2022; Luo, 2022;
Song & Ermon, 2019; Song et al., 2020) by external models, or alternatively methods of classifier-free
guidance (Ho & Salimans, 2022). This thesis explores the potential of diffusion models with classifier-
free guidance for the task of neural machine translation. In the experiments performed the evaluated
models did not match the performance of the state-of-the-art transformer model (Vaswani et al., 2017).
Further evaluations indicate that the evaluated diffusion models performed relatively worse than the
transformer model on longer sequences.

2

Introduction

For readers who are new to the field of deep generative modeling, I want to start by shallowly introduc-
ing a few concepts that will be needed in this thesis. In deep generative modeling, one generally aims
to model an intractable distribution D, by assuming a tractable underlying, unobserved distribution
Z. The generative model is then defined as a neural network gθ with parameters θ ∈ Θ, which
given Z ∼ Z, describes the distribution gθ(Z) ∼ D′ (Ruthotto & Haber, 2021). We will refer to the
random variable Z as a latent variable, meaning that it is not observed in samples drawn from D.
Training may happen by a maximum likelihood method, with the goal of maximizing the likelihood of
observed samples under D′. Deep generative modeling is often applied to image and video synthesis.
However, more recently there has been an increasing number of studies regarding the applicability in
other fields. Common approaches to deep generative modeling also include variational autoencoders
(VAE) (Kingma & Welling, 2019, 2022), generative adversarial networks (GAN) (Goodfellow et al.,
2014) and normalizing flows (NF) (Papamakarios et al., 2021; Ruthotto & Haber, 2021). Further
approaches such as hierarchical variational autoencoders may assume a hierarchy of latent variable
spaces and their respective generator functions (Wu et al., 2021). In a way, generative modeling can
be thought of as implicitly modeling probability distributions.

Language modeling is the task of assigning probabilities to sequences of words P(w1:n) and
is one common task in natural language processing (NLP). Autoregressive language models ap-
proach this task by evaluating the next tokens probability conditioned on the left context i.e. the
words previously generated. Such models include the state-of-the-art transformer model (Vaswani
et al., 2017), recurrent neural networks (RNN) (Vennerød et al., 2021), but also statistical language
models such as n-Grams (Yoav, 2017). By design, autoregressive models can be used to predict likely
candidates for the continuation of a given sequence of words, by applying a search algorithm such as
beam search. In contrast, Non-autoregressive language models attempt to generate whole se-
quences in parallel, through methods such as iterative refinement (Lee et al., 2018), iterative insertion
and deletion of tokens (Gu et al., 2019) or latent-variable-models (Gu et al., 2017a) like the diffusion
language models we are focusing on (Li et al., 2022).

Diffusion models are a family of deep generative models and may refer to two common approaches
to generative modeling, which in many aspects can be viewed as equivalent. Variational diffusion
models introduced by Sohl-Dickstein et al. (2015) can be viewed as a certain class of hierarchical
variational autoencoders, while score-based diffusion models arise from score-matching combined with
the idea of sampling from intractable distributions by reversing diffusion processes (Song & Ermon,
2019). In the field of machine learning, diffusion models are generally understood to be models which
gradually remove noise from noisy data, ultimately enabling one to sample from intractable distri-
butions, by starting with pure noise (Ho et al., 2020; Luo, 2022; Song & Ermon, 2019). The theory
underlying these models will be explored in the first section of the thesis. While variational diffu-
sion models were initially proposed for both continuous and discrete data problems (Sohl-Dickstein
et al., 2015), they have most prominently been applied to continuous domain problems, with image
and video generation standing out as good examples. However, by viewing language modeling as a
continuous domain problem, Diffusion-LM (Li et al., 2022), a pioneer diffusion language model, has
recently shown some success at Plug-And-Play controllable text generation (Dathathri et al., 2019;
K. Yang & Klein, 2021), a task many autoregressive models struggle with (Li et al., 2022), introducing

3

diffusion models to Natural Language Processing (NLP).

Diffusion-LM achieves this with the help of classifier models. Such models produce a probability
vector over a set of labels (classes) given an input sequence. Given a classifier C with K classes, where
for any intermediate latent variable Zt of the denoising process, C(Zt) is a probability vector, to pro-
duce a sample of a certain class c ∈ {1, . . . ,K}, Diffusion-LM modifies its intermediate latent variable
as Z̃t = Zt+∇Zt logC(Zt)c at every step in the denoising process. In the relevant paper, this method
is justified by Bayes rule as for a probability density p : ∇x log p(x|c) = ∇x log p(x) + ∇x log p(c|x)
holds. In Diffusion-LM adding the gradient is replaced by multiple steps of the Adagrad (Duchi et al.,
2011) optimization algorithm (Li et al., 2022).

In opposition to that, classifier-free guidance is an approach, where the model itself should learn to
model conditional data distributions. Similar to Diffusion-LM, DiffuSeq (Gong et al., 2023) is a non-
autoregressive sequence-to-sequence diffusion model, implementing classifier-free guidance, relying on
the infilling capability proven by Diffusion-LM (Li et al., 2022). For that, DiffuSeq introduces changes
to the training and sampling processes, which improve sample quality on sequence-to-sequence tasks,
when compared with Diffusion-LMs infilling. Gong et al. (2023) further provide data on the diversity
of text generated by DiffuSeq, showing that the generated results are more diverse than those of
transformer or baseline non-autoregressive models. Notably, diversity is an important metric for tasks
such as paraphrasing or open-domain dialogue, with models with higher generation diversity giving
more possible paraphrased alternatives and seeming more alive in open-domain dialogue.

1.1 Motivation

Non-autoregressive models have not been able to match the autoregressive transformer models’ perfor-
mance on the task of neural machine translation so far (Ren et al., 2020; Xiao et al., 2023). Diffusion
models, having shown their modeling strengths for other domains, might serve to narrow the gap.
This thesis will explore the potential of diffusion language models for machine translation, with this
task being a prominent example of sequence-to-sequence tasks, and will try to give the reader an
understanding of the fundamentals of diffusion models. Due to the sequential nature of text, it seems
reasonable to assume that modeling text autoregressively provides strong results and that longer se-
quences might prove more problematic for diffusion language models as presented by Diffusion-LM
and DiffuSeq.

When implementing machine translation by diffusion models through an approach using external
guidance as in classifier-guidance, the model’s performance on a task will be bounded by the module
rating how well this task is performed. So in a domain like machine translation, where one expects
accurate translations, and where objectives such as answer diversity or methods of controlling the text
generation are secondary, it seems more interesting to me to study the performance of classifier-free
diffusion translation models.

1.2 Thesis Statement

Diffusion language models currently struggle with training and sampling speed (Li et al., 2022), so
one aim of this thesis is to provide some insight into why these models train so slowly. To understand
the impact that parallel generation of the whole sequence has on the quality of the results, a further
goal is to evaluate whether non-autoregressive models perform relatively worse on longer sequences,
compared to autoregressive models. To improve the performance of diffusion language models on long
source sequences, this thesis proposes and evaluates a method of autoregressive sampling for diffusion
language models and a diffusion language model utilizing a new position-dependent noise schedule.
To that end, this thesis should provide insights on how these compare to baseline models for different
lengths of the source sequence. Lastly, this thesis should evaluate how training diffusion models with
knowledge distillation impacts their performance.

4

Background

Before looking at the more specific implementations of diffusion models (i.e. Diffusion-LM & DiffuSeq),
this chapter will serve as a short introduction to one common type of diffusion model. The great success
diffusion models had in the domain of image and video generation (L. Yang et al., 2023) prompted the
family to branch out into a vast ecosystem of different models, sampling methods, and approaches (L.
Yang et al., 2023), so this introduction will only scratch the surface of the field of diffusion models. In
Section 2.1 we will look at the class of variational diffusion models which the most prominent example
of diffusion models, Denoising Diffusion Probabilistic Model (DDPM) by Ho et al. (2020), falls under.
Section 2.2 will elaborate on how this concept is adapted by diffusion language models, and in Section
2.3 I want to provide a short introduction to neural machine translation, the task at hand.

Notation

λd The Lebesgue measure on (Rd,Bd)
P,Q Probability measures
p, q Probability densities, where P = pλd,Q = qλd for some d ∈ N
X,x Random variable and a realization thereof

P[·|A] Conditional probability with regards to a σ-algebra A
σ(X) Sigma algebra generated by X

P[·|X] := P[·|σ(X)] Conditional probability with regards to random variable X
P[·|X = x] Conditional probability with regards to a realization x

PX The image measure P ◦X−1

pX The marginal density of X

p|Z(·|z) The conditional density where Z = z

pX|z Shorthand for pX|Z(·|z), used where interpretation is unambiguous

p(x|z) Shorthand for pX|Z(x|z), used where interpretation is unambiguous

5

2.1 Variational diffusion models

Figure 2.1: Latent variables and encoder-
decoder transitions in a variational au-
toencoder

QX∼ X

pθ(x|z)

Z

qϕ(z|x)

pθ(z)

To properly define variational diffusion models, I quickly
want to go over the definitions of variational autoen-
coders (VAE) and hierarchical variational autoen-
coders (HVAE). A variational autoencoder is a deep
generative model, that tries to model the distribution
QX of an observed variable X by assuming that there
exists an unobserved variable Z (latent variable) in
some kind of dependency with X. It then models three
densities, a prior density pθ(z), the decoder pθ(x|z),
and the encoder qϕ(z|x) (Figure 2.1), with ϕ ∈ Φ being
the parameters of the encoder and θ ∈ Θ the parameters
of the decoder. The parameters θ, ϕ are then jointly opti-
mized, such that the encoder encodes observations with
as little loss of information as possible, the prior density
approximately samples from the latent encoding space,
and lastly such that the decoder decodes the encodings
given by the encoder with as little loss of information as
possible.

2.1.1 Variational autoencoders

The following presentation of variational autoencoders is based on the work by Kingma and Welling
(2019).

First let (ΩX ,AX , µX) and (ΩZ ,AZ , µZ) be two measure spaces, and QX ≪ µX with QX = qXµX

be a probability measure. To ensure that all conditional densities exist, we assume that both ΩX and
ΩZ are Polish spaces and that the σ-algebras are the Borel-σ-algebras generated by their respective
open sets. Let the random variable X be the identity id : ΩX → ΩX ;x 7→ x on the measure space
(ΩX ,AX ,QX). Now we choose a Markov kernel Qϕ;Z|X : ΩX ×AZ → [0, 1], which for every x ∈ ΩX

has a parametric density Qϕ;Z|X(x, ·) = qϕ(·|x)µZ . In this qϕ(·|x) should not be read as a conditional
density yet, but more as a parametric mapping from ΩX to the space of density functions on the
measure space (ΩZ ,AZ , µZ).

Then by Qϕ = QX⊗Qϕ;Z|X we define a (parametric) probability measure on the measurable space
(ΩX × ΩZ ,AX ⊗AZ) with:

Qϕ(AX ×AZ) =

∫
ΩX×ΩZ

1AX×AZ
dQϕ =

by definition

∫
AX

Qϕ;Z|X(x,AZ)QX(dx)

=

∫
AX

qX(x)

∫
AZ

qϕ(z|x)µZ(dz)µX(dx) =

∫
AX×AZ

qϕ dµX ⊗ µZ .

Using the additivity of both the integral and the probability measure, this can be extended to the
countable unions of products from AX and AZ , and by the good sets principle then to the product σ-
algebra. Therefore qϕ(x, z) := qϕ(z|x)qX(x) is the density of Qϕ with regards to the product measure
µX ⊗ µZ by

Furthermore, the Markov kernel is the regular version of the conditional distribution by

∀AX ∈ σ(X) : EQϕ
[1Z∈AZ

1AX
] =

∫
AX

∫
ΩZ

1z∈AZ
Qϕ:Z|X(x,dz)QX(dx) =

∫
AX

Qϕ;Z|X(x,AZ)Q(dx)

for AZ ∈ AZ so Qϕ(Z ∈ AZ |X) = Qϕ;Z|X and we can now speak of qϕ(z|x) as the conditional density.

6

By the same method, we now describe the parametric prior distribution Pθ;Z ≪ µZ with pθµZ =
Pθ;Z and a Markov kernel Pθ;X|Z which for every z ∈ ΩZ has a density pθ(·|z)µX . As before, we
obtain a distribution Pθ = Pθ;Z⊗Pθ;X|Z for which pθ(x, z) := pθ(z)pθ(x|z) is the density with regards
to the product measure.

With this framework, we can derive a marginal density pθ(x) :=
∫
ΩZ

pθ(x, z)µZ(dz) and for a given
sample x from QX we want to maximize the log-likelihood of x, log pθ(x). To this end, we can derive
a lower bound of the log-likelihood under the assumption that pθ(x) > 0.

log pθ(x) = log pθ(x)

∫
ΩZ

qϕ(z|x)µZ(dz)︸ ︷︷ ︸
=1

=
(I)

EQϕ;Z|X(x,·)

[
log

pθ(x, Z)

pθ(Z|x)

]
with pθ(z|x) :=

pθ(z, x)

pθ(x)
and by pθ(x, z) = pθ(x)pθ(z|x)

= EQϕ;Z|X(x,·)

[
log

pθ(x, Z)

qϕ(Z|x)
qϕ(Z|x)
pθ(Z|x)

]
= EQϕ;Z|X(x,·)

[
log

pθ(x, Z)

qϕ(Z|x)

]
︸ ︷︷ ︸

A

+EQϕ;Z|X

[
qϕ(Z|x)
pθ(Z|x)

]
︸ ︷︷ ︸

B

≥
B is non-negative

EQϕ;Z|X(x,·)

[
log

pθ(x, Z)

qϕ(Z|x)

]

The equation (I) also assumes that p(z|x) > 0 Qϕ;Z|X(x, ·)-a.e. which I will denote as a constraint
[VAE1]. Term A is called the Evidence Lower Bound, and commonly appears in latent variable models
such as this one. Term B is a Kullback-Leibler divergence and we will show its non-negativity after a
brief definition.

The Kullback-Leibler divergence of two densities p, q given a measure µ on a measurable space
(O,A), where pµ≪ qµ, is defined as DKL(p||q) :=

∫
O p(x) log p(x)

q(x)µ(dx).

To show the non-negativity of the Kullback-Leibler divergence, we use the inequality log t ≤ (t−1)

for t > 0. Then −DKL(p||q) ≤
∫
O p(x)(q(x)p(x) − 1)µ(dx) =

∫
O
q(x)µ(dx)−

∫
O
p(x)µ(dx)︸ ︷︷ ︸

=0

, reminding

ourselves that pµ≪ qµ and therefore q(x)
p(x) > 0 pµ-a.e..

So as the joint density pθ(x, z) in the Evidence Lower Bound is the product of the prior density
and the decoder conditional density, by maximizing the Evidence Lower Bound over both θ and ϕ,
we maximize the model’s ability to both encode and decode the sample x from QX with as little loss
of information as possible, while also maximizing the log-likelihood of possible encodings under the
prior density (Kingma & Welling, 2019).

Example. As a short example, let the observed distribution QX be a mixture distribution of
N(µ1,Σ), N(µ2,Σ),Σ ∈ R2×2 and let the Gaussian encoder kernel be Qϕ(x, ·) = N(µϕ(x), σϕ(x)).
Then one could choose an appropriate prior distribution Pθ;Z as a mixture distribution of
N(µ1;θ, σ1;θ), N(µ2;θ, σ2;θ) and decoder Pθ;X|Z(z, ·) = N(µθ(z),Σθ(z)). For this, µϕ, σϕ, µθ and Σθ

need to be measurable for ϕ ∈ Φ and θ ∈ Θ so that we have well defined Markov kernels. Moreover,
the marginal distribution PX

θ is absolutely continuous with regards to QX , and the constraint [VAE1]
is fulfilled.

More generally, due to normal distributions having positive density over all of Rd with the respec-
tive d, Gaussian transition kernels fulfill most of the constraints on such models by default, making
them a common choice (Kingma & Welling, 2019).

7

2.1.2 Markovian hierarchical variational autoencoders

A Markovian hierarchical variational autoencoder extends this concept to multiple layers of latent
variables Z1, . . . , ZT , in such a way that each layer 0 ≤ i ≤ T − 1 can be interpreted as a variational
autoencoder, with the lower tier latent variable X for i = 0 or Zi for 1 ≤ i ≤ T − 1 as the observed
variable (X in the description of the VAE) and Zi+1 as the latent variable (Z in the description of
the VAE above). For that we again assume Polish spaces ΩX ,ΩZ1 , . . . ,ΩZT

their respective Borel-σ-
algebras AX ,AZ1 , . . . ,AZT

, and measures µX , µZ1 , . . . , µZT
.

Note. As by Klenke (2020), theorem 14.8, countable products of Polish spaces are Polish spaces and
the product σ-Algebra is the Borel-σ-algebra on the product space.

As in the VAE we choose transition Markov kernels Qϕ;Zi|Zi−1
for 2 ≤ i ≤ T , Qϕ;Z1|X and we also

denote the observed distribution by QX . Each kernel and the observed distribution has a conditional
density denoted by q(x),qϕ(z1|x),qϕ(z2|z1), . . . , qϕ(zT |zT−1) respectively.
Similarly, we also choose the prior distribution as a parametric distribution Pθ;ZT

≪ µT , the Markov
kernels of the backward process Pθ;Zi|Zi+1

for 1 ≤ i ≤ T − 1 and Pθ;X|Z1
which have densities with

regards to the respective measures which will be denoted by pθ(zT),pθ(zi|zi+1),pθ(x|z1). Then at every
step 1 ≤ t ≤ T − 1 this describes a VAE with the observed space (ΩZt ,AZt) and the latent space
(ΩZt+1 ,AZt+1). The distribution of the observed space and the prior distribution can then be obtained
as follows (for reference see corollary 14.24 by Klenke (2020)):

Qϕ;Zt = (QX ⊗
t⊗

i=1

Qϕ;Zi|Zi−1
)πt the observation distribution

where πt : ΩX ××t
i=1ΩZi → ΩZt , (x, z1, . . . , zt)) 7→ zt

Pθ;Zt+1 = (Pθ;ZT
⊗

t⊗
i=T−1

Pθ;Zi|Zi+1
)π

′
t the prior distribution

where π′
t : ×T

i=tΩZi → ΩZt , (zt, . . . , zT)) 7→ zt

With the encoder kernel Qϕ;Zt+1|Zt
and the decoder kernel Pθ;Zt|Zt+1

.

By the same method demonstrated above, for 1 ≤ t ≤ T the joint distributionQX⊗
⊗t

i=1Qϕ;Zi|Zi−1

has the density q(x)qϕ(z1|x)
∏t

i=2 qϕ(zi|zi−1) with regards to the product measure, and the marginal
distribution has the marginal density accordingly. The same applies to the prior distribution and the
decoder kernels.

Furthermore, using the marginal densities and the conditional densities from the joint density, we
can derive:

qϕ(zi+1|zi, x) =
qϕ(zi+1, zi, x)

qϕ(zi, x)

=
Fubini

∫
ΩZ1
· · ·
∫
ΩZi−1

qϕ(zi+1, . . . , z1, x)µZi−1(dzi−1) . . . µZ1(dz1)∫
ΩZ1
· · ·
∫
ΩZi−1

qϕ(zi, . . . , z1, x)µZi−1(dzi−1) . . . µZ1(dz1)

=

∫
ΩZ1
· · ·
∫
ΩZi−1

q(x)qϕ(z1|x)
∏i+1

j=2 qϕ(zj |zj−1)µZi−1(dzi−1) . . . µZ1(dz1)∫
ΩZ1
· · ·
∫
ΩZi−1

q(x)qϕ(z1|x)
∏i

j=2 qϕ(zj |zj−1)µZi−1(dzi−1) . . . µZ1(dz1)

=
q(x)qϕ(zi+1|zi)

∫
ΩZ1
· · ·
∫
ΩZi−1

qϕ(zi|zi−1)qϕ(zi−1|zi−2)µZi−1(dzi−1) . . . qϕ(z1|x)µZ1(dz1)

q(x)
∫
ΩZ1
· · ·
∫
ΩZi−1

qϕ(zi|zi−1)qϕ(zi−1|zi)µZi−1(dzi−1) . . . qϕ(z1|x)µZ1(dz1)

= qϕ(zi+1|zi)

8

Figure 2.2: Latent variables and encoder-decoder transitions in a Markovian hierarchical variational
autoencoder

QX∼ X Z1

qϕ(z1|x)

pθ(x|z1)

...

qϕ(z2|z1)

pθ(z1|z2)

ZT

qϕ(zT |zT−1)

pθ(zT−1|zT)

pθ(ZT)

Given a sample x from QX we can now attempt to maximize the log-likelihood of the marginal
density pθ(x) :=

∫
×T

i=1ΩZi
pθ(x, z1:T)

⊗T
i=1 µZi(dz1:T) by a maximizing a lower bound. This lower

bound can be derived in a similar manner as for the VAE.

log pθ(x) = log pθ(x)

∫
ΩZ1

qϕ(z1|x)µZ1(dz1) (2.1a)

= EQϕ;Z1|X(x,·)

[
log

pθ(x, Z1)

pθ(Z1|x)

]
(2.1b)

= EQϕ;Z1|X(x,·)

[
log

pθ(x, Z1)

qϕ(Z1|x)
qϕ(Z1|x)
pθ(Z1|x)

]
(2.1c)

= EQϕ;Z1|X(x,·)

[
log

pθ(x, Z1)

qϕ(Z1|x)

]
︸ ︷︷ ︸

A

+EQϕ;Z1|X

[
qϕ(Z1|x)
pθ(Z1|x)

]
︸ ︷︷ ︸

B

(2.1d)

≥
B is non-negative

EQϕ;Z1|X(x,·)

[
log

pθ(x, Z1)

qϕ(Z1|x)

]
(2.1e)

= EQϕ;Z1|X(x,·)

[
log

pθ(x|Z1)

qϕ(Z1|x)

]
+ EQϕ;Z1|X(x,·) [log pθ(Z1)] (2.1f)

Moreover, for any 1 ≤ i ≤ T − 1 we can do the same calculation:

EQϕ;Z1:i|X
(x, ·) [log pθ(Zi)] = EQϕ;Z1:i|X

(x, ·)

[
log pθ(Zi)

∫
ΩZi+1

qϕ(zi+1|Zi)µZi+1(dzi+1)

]
(2.2a)

= EQϕ;Z1:i|X
(x, ·)

[
EQϕ;Zi+1|Zi

(Zi, ·)
[
log

pθ(Zi, Zi+1)

pθ(Zi+1|Zi)

]]
(2.2b)

= EQϕ;Z1:i+1|X
(x, ·)

[
log

pθ(Zi, Zi+1)

pθ(Zi+1|Zi)

]
(2.2c)

= EQϕ;Z1:i+1|X
(x, ·)

[
log

pθ(Zi, Zi+1)

qϕ(Zi+1|Zi)

]
+ EQϕ;Z1:i+1|X

(x, ·)
[
log

qϕ(Zi+1|Zi)

pθ(Zi+1|Zi)

]
(2.2d)

So by induction, we can see that:

9

log pθ(x) ≥ EQϕ;Z1|X(x,·)

[
log

pθ(x|Z1)

qϕ(Z1|x)

]
+

T−1∑
i=1

EQϕ;Z1:i+1|X
(x, ·)

[
log

pθ(Zi|Zi+1)

qϕ(Zi+1|Zi)

]
+ EQϕ;Z1:T |X (x, ·) [log pθ(ZT)]

(2.3a)

= EQϕ;Z1:T |X (x, ·)

[
log

(
pθ(x|Z1)

qϕ(Z1|x)

T−1∏
i=1

pθ(Zi|Zi+1)

qϕ(Zi+1|Zi)
pθ(ZT)

)]
(2.3b)

= EQϕ;Z1:T |X (x, ·)

[
log

(
pθ(ZT)pθ(x|Z1)

qϕ(Z1|x)

T−1∏
i=1

pθ(Zi|Zi+1)

qϕ(Zi+1|Zi, Z0)

)]
(2.3c)

= EQϕ;Z1:T |X (x, ·)

[
log

(
pθ(ZT)pθ(x|Z1)

qϕ(Z1|x)

T−1∏
i=1

qϕ(Zi|x)pθ(Zi|Zi+1)

qϕ(Zi+1|x)qϕ(Zi|Zi+1, x)

)]
(2.3d)

= EQϕ;Z1:T |X (x, ·)

[
log

(
pθ(x|Z1)

pθ(ZT)

qϕ(ZT |x)

T−1∏
i=1

pθ(Zi|Zi+1)

qϕ(Zi|Zi+1, x)

)]
(2.3e)

With that, we have described a lower bound for the log-likelihood of the Markovian HVEA for a
sample x from QX , and although this can also be derived easily by Jensen’s inequality, the calculation
above also tells us that the gap in the inequality (2.3) is given by

EQϕ;Z1|X

[
qϕ(Z1|x)
pθ(Z1|x)

]
+

T∑
i=2

EQϕ;Z1:i|X

[
qϕ(Zi|Zi−1)

pθ(Zi|Zi−1)

]

= DKL(qϕ(·|x)∥pθ(·|x)) +
T∑
i=2

EQϕ;Z1:i−1
[DKL(qϕ(·|Zi−1)∥pθ(·|Zi−1)]

2.1.3 Variational diffusion models with fixed noise schedule

The following presentation of variational diffusion models is based on the model as described by (Luo,
2022).

Based off of the previous calculations, variational diffusion models arise from placing a number of
constraints on Markovian hierarchical variational autoencoders. These constraints are:

[D1] (ΩX ,AX , µX), (ΩZ1 ,AZ1 , µZ1), . . . , (ΩZT
,AZT

, µZT
) = (Rd,Bd, λd), meaning all random vari-

ables are of the same dimension. We will also denote Z0 = X, (ΩX ,AX , µX) = (ΩZ0 ,AZ0 , µZ0).

[D2] ∀i ∈ {1, . . . , T} : Zi =
√
αiZi−1 +

√
1− αiεi where εi ∼ N(0, Id) for a noise schedule (αi)

T
i=1,

so this corresponds to the choice of Qϕ;Zi|Zi−1
(zi−1, ·) = N(

√
αizi, (1− αi)Id). For a parametric

noise schedule, this would mean ϕ = (αi)
T
i=1 however we will constrain ourselves to considering

models with a fixed noise schedule.

[D3] ᾱT ≃ 0, where ∀i ∈ {1, . . . , T}: ᾱi :=
∏i

t=1 αt and αi ∈ (0, 1)

Due to [D2] I will also refer to Q = Qϕ;X,Z1:T
as the true distribution and in our further

calculations, expectation values will implicitly mean expectation values in regards to Q unless
specified otherwise.

The process described by this corresponds to a steady adding of noise coining the name diffusion
model. Due to the last constraint, one finds that approximately ZT ∼ N(0, 1) and therefore to sample
from the model, one draws zT from N(0, 1) and samples from p(z0, . . . , zT−1|zT) =

∏T−1
i=0 p(zi|zi+1).

As with hierarchical variational autoencoders, we can derive a loss function from the Evidence Lower

10

Bound (ELBO), which can easily be derived by applying Jensen’s inequality.

log pθ(Z0) =
by definition

log

∫
×T

i=1Rd

pθ(Z0, z1:T)
T⊗
i=1

λd(dz1:T) (2.4a)

= log

∫
×T

i=1Rd

pθ(Z0, z1:T)
q(Z1:T |Z0)

q(Z1:T |Z0)

T⊗
i=1

λd(dz1:T) (2.4b)

= logEQϕ

[
pθ(Z0:T)

q(Z1:T |Z0)
|Z0

]
(2.4c)

≥
(Jensens Ineq.)

EQϕ

[
log

pθ(Z0:T)

q(Z1:T |Z0)
|Z0

]
(2.4d)

=
(Markovian)

EQϕ

[
log

pθ(ZT)pθ(Z0|Z1)
∏T

t=2 pθ(Zt−1|Zt)

q(Z1|Z0)
∏T

t=2 q(Zt|Zt−1, Z0)
|Z0

]
(2.4e)

=
(Bayes)

EQϕ

[
log

pθ(ZT)pθ(Z0|Z1)
∏T

t=2 q(Zt−1|Z0)
∏T

t=2 pθ(Zt−1|Zt)

q(Z1|Z0)
∏T

t=2 q(Zt|Z0)
∏T

t=2 q(Zt−1|Zt, Z0)
|Z0

]
(2.4f)

= EQϕ

[
log pθ(Z0|Z1) + log

pθ(ZT)

q(ZT |Z0)
+

T∑
t=2

log
pθ(Zt−1|Zt)

q(Zt−1|Zt, Z0)
|Z0

]
(2.4g)

= EQϕ
[log pθ(Z0|Z1)|Z0]︸ ︷︷ ︸

[KL1]

−DKL(q
ZT |Z0 ||pZT)︸ ︷︷ ︸
[KL2]

(2.4h)

−
T∑
t=2

EQϕ

[
DKL(q

Zt−1|Zt,Z0 ||pZt−1|Zt

θ)|Z0

]
︸ ︷︷ ︸

[KL3]

(2.4i)

Thereby, the [KL3] term results from rewriting the expectation as an integral and by log p(zt−1|t)
q(zt−1|zt,z0) =

− log q(zt−1|zt,z0)
p(zt−1|t) :

E
[
log

p(Zt−1|Zt)

q(Zt−1|Zt, Z0)
|Z0

]
=

∫
Rd

∫
Rd

q(zt, zt−1|Z0) log
p(zt−1|t)

q(zt−1|zt, Z0)
λd(dzt)λd(dzt−1) (2.4j)

=

∫
Rd

∫
Rd

q(zt−1|zt, Z0)q(zt|Z0) log
p(zt−1|t)

q(zt−1|zt, Z0)
λd(dzt)λd(dzt−1) (2.4k)

Lastly, we can apply Jensen’s inequality in the equation above by:

E
[
| pθ(Z0:T)

q(Z1:T |Z0)
|
]
=

∫
×T

i=0Rd

| pθ(Z0:T)

q(Z1:T |Z0)
|q(Z1:T |Z0)

T⊗
i=0

λd(dz0:T) (2.4l)

=

∫
×T

i=0Rd

pθ(Z0:T)
T⊗
i=0

λd(dz0:T) = 1 <∞ (2.4m)

The lower bound we derived by this is the same as we already derived in the inequality (2.3) and
as noted there, the derivation above also tells us how tight this inequality is.

So equation (2.4i) defines a lower bound on the log-likelihood pθ(Z0) of the model for some
Z0 drawn from the intractable distribution QZ0 . Training the variational diffusion model con-

sists of maximizing the log-likelihood assigned to a set of samples (Z
(1)
0 , . . . , Z

(N)
0) drawn from

QZ0 , which is done by maximizing the lower bound we derived as equation (2.4i). Maximizing the
lower bound can for instance be achieved by stochastic gradient descent (of the negative log likelihood).

11

Notably, under a static noise schedule, the term [KL2] has no trainable parameters (is independent
of θ), and can therefore be ignored in the optimization process.

Note. As the noise added in each step is independently drawn, using ε̄i ∼ N(0, Id) we can derive
Zi ∼

√
ᾱiZ0+

√
1− ᾱiε̄i as a closed form equation for sampling Zi. We will call this the α reparam-

eterization.

Proof. Proof by induction: This holds trivially for i = 1, so for i > 1: Zi =
√
αiZi−1 +

√
1− αiεi ∼√

αiᾱi−1Z0 +
√

αi(1− ᾱi−1)ε̄i−1 +
√
(1− αi)εi ∼

√
ᾱiZ0 +

√
1− ᾱiε̄i as αi(1 − ᾱi−1) + (1 − αi) =

1− ᾱi

So far we didn’t need to define what the backward model pθ should look like concretely and it is
sensible to choose:

pθ(zt−1|zt) = N

(
zt−1|µθ(zt, t),

(1− αt)(1− ᾱt−1)

1− ᾱt
Id

)
(2.5a)

for t ∈ {1 . . . T}, so that pθ resembles the true density conditioned on z0 and zt

q(zt−1|zt, z0) = N

(
zt−1|

√
αt(1− ᾱt−1)zt +

√
ᾱt−1(1− αt)z0

1− ᾱt
,
(1− ᾱt−1)(1− αt)

1− ᾱt
Id

)
. (2.5b)

By choosing pθ in this manner, the Kullback-Leibler divergence terms in equation (2.4i) reduce to a
simple form by applying the following lemma.

Lemma 1 (Kullback-Leibler Divergence of two multivariate normal Distributions):
Given two normal distributions on Rd: Ni = N(µi,Σi), i = 1, 2 and their corresponding densities
n1, n2 with respect to λd, the Kullback-Leibler divergence is given as:

DKL(n1||n2) =
1

2

(
tr(Σ−1

2 Σ1)− d+ (µ2 − µ1)
TΣ−1

2 (µ2 − µ1) + log

(
det(Σ2)

det(Σ1)

))
(2.6)

Proof. For X ∼ N1:

DKL(n1||n2) =

∫
Rd

n1(x) log

(√
(2π)k det(Σ2) exp(−1

2(x− µ1)
TΣ−1

1 (x− µ1))√
(2π)k det(Σ1) exp(−1

2(x− µ2)TΣ
−1
2 (x− µ2))

)
λd(dx)

=
1

2

∫
Rd

n1(x) log

(
det(Σ2)

det(Σ1)

exp((x− µ2)
TΣ−1

2 (x− µ2))

exp((x− µ1)TΣ
−1
1 (x− µ1))

)
λd(dx)

=
1

2
EN1

[
log

(
det(Σ2)

det(Σ1)

exp((x− µ2)
TΣ−1

2 (x− µ2))

exp((x− µ1)TΣ
−1
1 (x− µ1))

)]
=

1

2

(
log

(
det(Σ2)

det(Σ1)

)
+ E

[
(X − µ2)

TΣ−1
2 (X − µ2)− (X − µ1)

TΣ−1
1 (X − µ1)

])

and as for any µ ∈ Rd,Σ ∈ Rd×d:

E
[
(X − µ)TΣ(X − µ)

]
= E

[
XTΣX −XTΣµ− µΣXT + µΣµ

]
= E

[
XTΣx

]
− µT

1 Σµ− µΣµT
1 + µΣµ

= E
[
XTXtr(Σ)

]
− µT

1 Σµ− µΣµT
1 + µΣµ

= tr(Σ1Σ) + (µ1 − µ)TΣ(µ1 − µ)

Which, when combined with the equality proven above, proves the lemma.

12

So now, by µ(zt, z0, t) := EQ [Zt−1|Zt = zt, Z0 = z0] as given by equation (2.5b), the loss term
[KL3] in equation (2.4i) simplifies to

T∑
t=2

E
[
DKL(q

Zt|Zt−1,Z0 ||pZt|Zt−1)
∣∣∣Z0

]
=

T∑
t=2

1

2

1− ᾱt

(1− ᾱt−1)(1− αt)
E
[
∥µθ(Zt, t)− µ(Zt, Z0, t)∥2

∣∣Z0

]
(2.7)

Thereby the problem essentially reduces to minimizing a weighted mean square error between the
estimated mean of Zt−1 and the true mean for which we have a closed form by the α reparameterization.
This still leaves some freedom in how the estimated mean is parameterized, but before I introduce two
other common methods besides estimating the mean directly, I want to wrap up the equation (2.5b)
by a short proof.

Lemma 2 (Conditional Distributions of Multivariate Normal Distributions):
Given Xi ∼ N(µi,Σi), i = 1, 2, the joint distribution is again a multivariate normal distribution:(

X1

X2

)
∼ N

((
µ1

µ2

)
,

(
Σ1 Σ12

Σ21 Σ2

))
, where Σ12 = Cov(X1, X2),Σ21 = ΣT

12.

Then the conditional distribution PX1|X2
is also a multivariate normal distribution with mean

µc = µ1+Σ12Σ
−1
2 (X2−µ2) and covariance matrix Σc = Σ1−Σ12Σ

−1
2 Σ21 where Σ−1

2 is the generalized
inverse.

Proof. For better readability we will rename some matrices, namely A = Σ1, B = Σ12, C = Σ2 and we
denote the dimension ofX1, X2 respectively by k1, k2. We will further denote (x1, x2)

T = x, (µ1, µ2)
T =

µ, µc = µ1 +Σ12Σ
−1
2 (x2 − µ2). Notably, all covariance matrices are positive definite, and thereby the

same holds for Σc. The inverse of the joint covariance matrix is given by:(
A B
BT C

)
︸ ︷︷ ︸

further denoted as Σ

(
Σ−1
c −Σ−1

c BC−1

−C−1BTΣ−1
c C−1 + C−1BTΣ−1

c BC−1

)
=

(
I 0
0 I

)

Thereby, we can calculate the conditional density directly by:

f(x1|x2) =
f(x)

f(x2)
=

√
2π

−k

√
2π

−k2︸ ︷︷ ︸
(I)

√√√√√det

((
A B
BT C

))
det(C)

−1

︸ ︷︷ ︸
(II)

exp
(
−1

2(x− µ)TΣ−1(x− µ)
)

exp
(
−1

2(x2 − µ2)TC−1(x2 − µ2)
)︸ ︷︷ ︸

(III)

For the term (I) given that k = k1 + k2 we easily see that
√
2π

−k

√
2π

−k2
=
√
2π

−k1
, for (II) we use that for

a block matrix the determinant is given by:

det

((
A′ B′

C ′ D′

))
= det(D′) det(A′ −B′D′−1

C ′)

So it remains to show that term (III) is equal to the exponential term in the corresponding density.
So by

(x− µ)TΣ−1(x− µ) = (x1 − µ1)
TΣ−1

c (x1 − µ1)− (x1 − µ1)
TΣ−1

c BC−1(x2 − µ2)

− (x2 − µ2)
TC−1BTΣ−1

c (x1 − µ1) + (x2 − µ2)
T (C−1 + C−1BTΣ−1

c BC−1)(x2 − µ2)

and

(x1 − µc)
TΣ−1

c (x1 − µc) = (x1 − µ1 −BC−1(x2 − µ2))
TΣ−1

c (x1 − µ1 −BC−1(x2 − µ2))

= (x1 − µ1)
TΣ−1

c (x1 − µ1)− (x1 − µ1)
TΣ−1

c BC−1(x2 − µ2)

− (x2 − µ2)
TC−1BTΣ−1

c (x1 − µ1) + (x2 − µ2)
T (C−1BTΣ−1

c BC−1)(x2 − µ2)

13

due to the symmetry of B,C−1, we observe that:

(x1 − µc)
TΣ−1

c (x1 − µc) = (x1 − µ1 −BC−1(x2 − µ2))
TΣ−1

c (x1 − µ1 −BC−1(x2 − µ2))

= (x− µ)TΣ−1(x− µ)− (x2 − µ2)
TC−1(x2 − µ2)

Putting all of this together we calculated that:

f(x1|x2) =
f(x)

f(x2)
=
√
2π

−k1︸ ︷︷ ︸
(I)

√
det(Σ−1

c)︸ ︷︷ ︸
(II)

exp

(
−1

2
(x1 − µc)

TΣ−1
c (x1 − µc)

)
︸ ︷︷ ︸

(III)

(2.8)

This concludes the proof.

Theorem 3: The distribution of Zt−1 conditioned on Zt and Z0 is as given in equation (2.5b).

Proof. By the α reparameterization we know that the conditional joint distribution of Zt−1, Zt is(
Zt−1

Zt

)
∼ N

((√
ᾱt−1Z0√
ᾱtZ0

)
,

(√
(1− ᾱt−1)Id ζ

ζT
√

(1− ᾱt)Id

))
, where ζ = Cov(Zt−1, Zt|Z0) (2.9)

where the covariance matrix ζ is also a diagonal matrix, due to the noise added at each step having a
diagonal matrix as its covariance matrix, and with ∀i ∈ {1 . . . d} :

ζii = Cov(Z
(i)
t−1, Z

(i)
t |Z0) = E

[
Z

(i)
t−1Z

(i)
t

]
− E

[
Z

(i)
t−1|Z0

]
E
[
Z

(i)
t |Z0

]
=
√
αtVar(Z

(i)
t−1|Z0) + E

[√
1− αtεtZ

(i)
t−1|Z0

]
=
√
αt(1− ᾱt−1)

By applying lemma 2, one arrives at equation (2.5b).

By all of the above, we now know that with our choice of the transition density pθ(zi−1|zi) the
term

EQϕ
[log pθ(Z0|Z1)|Z0]−DKL(q

ZT |Z0 ||pZT)−
T∑
t=2

1

2

1− ᾱt

(1− ᾱt−1)(1− αt)
EQϕ

[
∥µθ(Zt, t)− µ(Zt, Z0, t)∥2

∣∣Z0

]
(2.10)

is a lower bound of the log-likelihood log pθ(Z0), Z0 ∼ QZ0 , and with this knowledge we can define a
training algorithm.

Algorithm 1 Training of a variational diffusion model

1: while Not converged do
2: z0 ∼ QZ0 ▷ Sample from dataset
3: t ∼ U({2, . . . , T}) ▷ We’re estimating the sum by drawing t uniformly from {2, . . . , T} (Luo,

2022)
4: Draw ε ∼ N(0, Id)
5: zt =

√
ᾱtz0 +

√
1− ᾱtε ▷ Closed form sampling by the α reparameterization

6: z1 =
√
ᾱ1z0 +

√
1− ᾱ1ε

7: Gradient descent step over ∇θ(∥µθ(zt, t)− µ(zt, z0, t)∥2 − log pθ(z0|z1))
8: end while

Algorithm 2 Sampling from a variational diffusion model

1: Draw zT ∼ N(0, Id)
2: for t=T-1,. . . ,0 do
3: Draw zt ∼ N(µθ(zt+1, t+ 1),Σt+1) ▷ With Σt+1 as described in equation (2.5b).
4: end for
5: return z0:T

14

2.1.4 Two alternative ways to parameterize the estimated mean

It seems intuitive to me that given some noisy data, the easiest way of making sense of this data is to
take a guess at what could have been the initial data. This idea can motivate the first rather common
way to parameterize the estimated mean. Equation (2.5b) suggests that

µθ(zt, t) =

√
αt(1− ᾱt−1)zt +

√
ᾱt−1(1− αt)ẑθ(zt, t)

1− ᾱt
(2.11a)

would be a sensible choice for this. The corresponding optimization problem [KL3] has a similarly
simple form under this parameterization:

T∑
t=2

1

2

1− ᾱt

(1− ᾱt−1)(1− αt)
EQϕ

[
||µθ(Zt, t)− µ(Zt, Z0, t)||2

∣∣Z0

]
(2.11b)

=
T∑
t=2

1

2

ᾱt−1(1− αt)

(1− ᾱt−1)(1− ᾱt)
EQϕ

[
||ẑθ(Zt, t)− Z0||2

∣∣Z0

]
(2.11c)

which can be interpreted as training a model to predict the initial data from an arbitrarily noisy
version of this data. However, while trying to make sense of noisy data by taking a guess at the initial
data makes sense intuitively, this task is essentially equivalent to predicting what the added noise was,
leading to the second way to parameterize the estimated mean. By combining the α reparameterization
with equation (2.11a) we arrive at:

µθ(zt, t) =
1
√
αt

zt −
1− αt√
1− ᾱt

√
αt

ε̂θ(zt, t) (2.12a)

and the corresponding optimization problem [KL3] turns out as:

T∑
t=2

1

2

1− ᾱt

(1− ᾱt−1)(1− αt)
EQϕ

[
||µθ(Zt, t)− µ(Zt, Z0, t)||2

∣∣Z0

]
(2.12b)

=
T∑
t=2

1

2

(1− αt)

(1− ᾱt−1)αt
EQϕ

[
||ε̂θ(Zt, t)− ε̄t||2

∣∣Z0

]
(2.12c)

What makes this particularly interesting is that it reveals a connection to score matching by the
method described by Vincent (2011):

∇zt log q(zt|z0) =
1

1− ᾱt
(
√
ᾱtz0 − zt) = −

1√
1− ᾱt

ε̄t (2.12d)

which also brings with it implications for conditioning variational diffusion models, as
∇zt log q(zt|c) = ∇zt log q(zt) +∇zt log q(c|zt) holds trivially by Bayes rule.

With this, we have three common ways to parameterize the estimated mean, which for the most
part can be viewed as equivalent. Estimating the mean directly, while being a straightforward method,
receives little attention in relevant papers, and I haven’t had the opportunity to test this method
out. Ablation studies performed by Li et al. (2022) suggest that, under various noise schedules and
prediction models, predicting the initial data is more robust than predicting the noise.

15

2.1.5 Noise schedules

The noise schedule (α)Ti=1 is not the same for
all processes, in fact, there is a multitude of dif-
ferent proposed noise schedules (Li et al., 2022;
Luo, 2022). The chosen noise schedule for a given
model is not interchangeable, as it is a core part
of the model itself. Some of the common noise
schedules are visualized in figure 2.3. Notably,
the “sqrt” noise schedule was introduced espe-
cially for diffusion language models by Li et al.
(2022). 1− ᾱt is the variance of Zt given the ini-
tial data Z0 under the forward process defined by
qZ0:T . This noise schedule is either given by the
individual values (αt)

T
t=1 at each step or given as

the schedule (ᾱt)
T
t=1.

Figure 2.3: Three common noise schedules visu-
alized by the derived variance at time t by 1− ᾱt.

2.1.6 Classifier-free guidance

As we have seen, variational diffusion models can be parameterized by score matching, which enables
us to easily condition the generation process (Luo, 2022). So assuming we want our trained model P to
model a conditional dependency, we can do so by estimating the conditional score ∇Zt log q(Zt|Z0, c).
By ∇zt log q(zt|c) = ∇zt log q(zt) + ∇zt log q(c|zt) this could, for instance, be estimated by the score
predicted by an unconditional model plus the gradient of the probability of the condition being fulfilled
under a guiding model. While in classifier-guidance, this is approached by training a separate model
to predict if a condition is fulfilled (Li et al., 2022; Luo, 2022), the classifier-free approach chooses
to train one model both on data with and without guidance (Ho & Salimans, 2022). The training
and sampling algorithms for this approach as proposed by Ho and Salimans (2022) are shown below.
For that approach, one interpolates between the guided and the unguided prediction by the guidance
strength when sampling from the model.

The DiffuSeq-based models described below can thereby be interpreted as diffusion models with
classifier-free guidance, by interpreting the tokens that are not corrupted throughout the diffusion
process as the conditioning information. In this framework, DiffuSeq-based models have guidance
strength 1 and a probability of unconditional training of 0.

16

Algorithm 3 Classifier-free guidance training

1: Input
puncond Probability of unconditional training

2: while Not converged do
3: (x, c) ∼ q(x, c) ▷ Sample from dataset
4: c← ∅ with probability puncond ▷ Train without guidance with probability puncond
5: t ∼ U({1, . . . , T} ▷ Estimate sum by sampling t uniformly
6: ε ∼ N(0, 1) ▷ Sample noise
7: zt =

√
ᾱtz0 +

√
1− ᾱtε

8: z1 =
√
ᾱ1z0 +

√
1− ᾱ1ε

9: Gradient descent step over ∇θ(∥ε̂θ(zt, c)− ε∥2 − log pθ(z0|z1))
10: end while

Here the estimated mean is parameterized by the added noise. ε̂θ would then be a neural network
estimating the added noise.

Algorithm 4 Classifier-free guidance sampling

1: Input
γ Guidance strength
c Conditioning information

2: zT ∼ N(0, Id)
3: for t = T, . . . , 1 do
4: ε̄t ← (1− γ)ε̂θ(zt, t, c)− γε̂θ(zt, t) ▷ Interpolate between guided and unguided estimate
5: x← (zt −

√
1− ᾱtε̄t)/

√
αt ▷ Calculate an estimate of the initial data.

6: zt−1 ∼ N(µ(zt, x, t),Σt) if t > 1 else zt+1 = xt ▷ With Σt as in equation (2.5b)
7: end for

µ(zt, x, t) = EQ [Zt−1|Z0, Zt] as defined above in equation (2.5b).

Training and sampling algorithm for classifier-free guidance models by Ho and Salimans (2022), match-
ing the notation I used in this thesis. Statements regarding learned noise schedules are excluded.

2.2 Diffusion language models

Figure 2.4: A high-level overview of the diffusion-Kernel of Diffusion-LM and DiffuSeq

Timestep Embedding Timestep Projection

x Input Projection + Layer Norm Dropout Bert Encoder Output Projection

Position Indices Position Embedding

Note: Orange nodes are the target of training, and blue nodes are static parameters.

As briefly stated in the introduction, language modeling is commonly defined as the task of
assigning probabilities to sequences of words P(w1:n) and diffusion models model such probability dis-
tributions implicitly, by approximately generating samples from them.1 The diffusion language models
covered here can be described as variational diffusion models, with the observed random variable X
being in the sequence space of fixed length sequences V S , V = {1, . . . , Vocabulary Size}, S ∈ N+.
This variable is embedded into a continuous space by the trained embedding function Eθ(X) ∈ RS×d

and the first step of the fixed forwards process is Z1 =
√
α1Eθ(X) +

√
1− α1ε, ε being drawn from

1P is transformed into L, a distribution over the sequence space V S by a tokenization algorithm.

17

N(0, IS×d). This slightly modifies the constriction [D1] in section 2.1, however when updating the
definition this only affects the [KL1] loss term and therefore doesn’t pose any problem. The [KL3]
term is then a mean square error loss as derived in equation (2.11), and the estimated mean can be
parameterized by various methods.2 The [KL1] term can be viewed as the cross entropy, which is
commonly used as a loss function in NLP.

Definition 4 (Cross entropy). Given two probability distributions Q≪ P over Rd with densities p, q
in regards to µ, we define the cross entropy of Q under P by:

CE(P,Q) := −
∫
Rd

log q dP,

The last step in the backward process is described by another parametric function Rθ : RS×d →
[0, 1]S×|V |, each column being a probability vector over V .

2.2.1 Diffusion-LM

This model builds upon the work of Ho et al. (2020), who studied diffusion models for image generation.
Li et al. (2022) focus on controllable text generation, which is achieved by training classifiers to evaluate
at every generation step how well a certain objective is fulfilled and shifting the result by the calculated
gradient ∇XtP(Objective fullfilled|Xt). The embedding function Eθ is simply a context-free token-
wise embedding, and it should be noted that it is only used to obtain the training targets during
training and when filling in masked data. Ablation studies performed on Diffusion-LM found that
model performance suffered when using pretrained embeddings, so the model performs end-to-end
training of embeddings and the diffusion kernel (Li et al., 2022). The recovery function Rθ is a linear
layer followed by a softmax layer and is applied to compute probability vectors for each token. The
recovery function is also trained jointly with the diffusion model. Diffusion-LM under its recommended
settings parameterizes the estimated mean at step t by the posterior given an estimated initial value,
as described above in equation (2.11a) and derives its default loss term by the [KL3] term as:

Le2ex0−simple(x) =
T∑
t=2

E
[
||ẑθ(Zt, t)− Z1||2

∣∣X = x
]

(2.13a)

and the [KL1] term as the cross entropy:

Le2edecoder nll(x0) =
1

M

M∑
n=1

E [− log(Rθ(Z1)xn)|X = x] (2.13b)

xn being the target token id of the nth token.

Diffusion-LM treats the parameterization of the estimated mean at timestep t as a hyperparameter,
with the default recommended setting being parameterization by predicting the initial value. For this

parameterization, the estimated mean at time t given zt is µθ(zt, t) =
√
αt(q−αt−1)zt+

√
αt−1(1−αt)ẑθ(zt,t)

1−αt
.

The next timestep is then sampled as zt−1 = µ(zt, t) +
√
1− αtϵt, ϵt ∼ N(0, IS×d).

For infilling of missing tokens, given a mask M ⊂ {1, . . . , S} and a masked sequence v1:S ∈ V S ,
Diffusion-LM has shown capable of filling in the missing data by overwriting the corresponding columns
in the predicted initial sequence ẑθ(zt, t) by Eθ(v1:S) at every step t, before deriving the estimated
mean at time t− 1 (Li et al., 2022).

z̃θ(zt, t)ij =

{
ẑθ(zt, t)ij if i /∈M

Eθ(v1:S)ij otherwise

2See the section ”Two alternative ways to parameterize the mean”

18

Algorithm 5 Filling in missing data by Diffusion-LM

1: Input
z̃ ∈ Rd Data
m ∈ {0, 1}d Mask marking what data should be filled in

2: Draw zT ∼ N(0, Id)
3: for t = T − 1, . . . , 0 do
4: Draw zt ∼ N(µθ(zt+1, t+ 1),Σt+1) ▷ With Σt+1 as described in equation (2.5b).
5: zt;i ← z̃i where mi = 0 ▷ Overwrite where the data is given by z̃
6: end for
7: return z0:T

2.2.2 DiffuSeq

Proposed by Gong et al. (2023), this model implements a sequence-to-sequence model by modeling the
joint distribution of the input and output sequences.3 To achieve that DiffuSeq only applies noise to
the target sequence while leaving the source sequence fixed (conditional noising), both in training
and when sampling. This corresponds to the modified training algorithm:

Algorithm 6 Training of a DiffuSeq model

1: while Not converged do
2: (s, t) ∼ q(s, t) ▷ Sample from dataset
3: m = (1)|s|+1 ⊕ (0)S−|s|−1 ▷ Mask for conditional noising
4: j ← s⊕ (ŝ)⊕ t ▷ Concatenate the source and target sequences separated by ŝ
5: Pad j up to length S or truncate to length S
6: Draw ε ∼ N(0, Id×S)
7: z0 =

√
ᾱ1Eθ(j) +

√
1− ᾱ1ε ▷ Embed the joint sequence and add starting noise

8: t ∼ I({0, . . . , T − 1} ▷ Sampling t by importance sampling (Gong et al., 2023)
9: ε′ ∼ N(0, Id×S) ▷ Sample noise

10: zt =
√
ᾱtz0 +

√
1− ᾱtε

′

11: zt;i ← z0;i if mi = 1, 1 ≤ i ≤ S ▷ Conditional noising
12: if t = 0 then
13: Gradient descent step over ∇θ(∥x̂θ(zt, t)− Eθ(j)∥2 −

∑S
i=|s|+2 log(Rθ(z0)ji)

14: else
15: Gradient descent step over ∇θ(∥x̂θ(zt, t)− z0∥2 −

∑S
i=|s|+2 log(Rθ(z0)ji)

16: end if
17: end while

3Sequence to sequence tasks can be defined as in the section neural machine translation, so I will exclude the definition
and refer the reader to that section.

19

2.3 Neural Machine Translation

Lastly, to wrap up the background information, I will quickly introduce what machine translation
refers to and try to define the task more clearly. Machine translation is the problem of automatically
translating text from one (source) language to another (target) language, and may be described as
modeling the distribution over the target space, conditioned by a sequence from the source space. In
neural machine translation, this is achieved by training specific neural networks on this task. (Yoav,
2017) Nowadays, the most common types of neural networks for machine translation are those based
on the transformer architecture, however, neural machine translation also includes approaches using
recurrent neural networks (RNNs) and long short-term memory networks (LSTMs) (Vennerød et al.,
2021).

To apply these methods one starts by applying a tokenization algorithm, with vocabularies
Vs = {i ∈ N0|i < Source Vocabulary Size}, Vt = {i ∈ N0|i < Target Vocabulary Size}, resulting
in an observed probability distribution QX,Y : P(

⋃
l∈N+ V l

s) × P(
⋃

l∈N+ V l
t), where X denotes

random source sequences from
⋃

l∈N+ V l
s and Y denotes target sequences from

⋃
l∈N+ V l

t , with
QX,Y describing their joint distribution. Then the task becomes modeling a Markov Kernel
T : P(

⋃
l∈N+ V l

t) ×
⋃

l∈N+ V l
s → [0, 1] which matches the “true” conditional probability distribution

QY |X arising from the tokenized sequences.

The state-of-the-art transformer model, introduced by Vaswani et al. (2017), achieves this by an
encoder-decoder architecture, where an encoder module first encodes the source sequence, passing
the encoding on to the decoder, which conditioned by the encoding of the source sequence generates
an output sequence in an autoregressive manner.

To this end, formally we describe ∀l1, l2 ∈ N+ : (X1, . . . , Xl1) = X ∈ V l1
s , (Y1, . . . , Yl2) = Y ∈ V l2

t :

T(Y1, . . . , Yl2 ;X1, . . . , Xl1) =

l2∏
i=1

T(Yi|Y1, . . . , Yi−1;X1, . . . , Xl1)︸ ︷︷ ︸
modelled by transformer

by Bayes rule. The Markov Kernel T is then optimized to approximate the conditional distribution
QX|Y .

20

Classifier-free Diffusion Models for Machine Translation

With the task of neural machine translation defined above, we further constrain our problem to only
consider sequences of a certain (maximum) length S, considering that the diffusion models described
above generate sequences en bloc. Accordingly, sequences are padded or truncated to the length S.

3.1 Diffusion-LM-based Model

For the Diffusion-LM-based Model for machine translation, we use a shared dictionary
V = Vs, Vt, and seek to model the joint distribution J : P(V S) → [0, 1] of pairs of
source and target sequences by training Diffusion-LM on this task. For this, given a num-
ber of source and target pairs (s(1), t(1)), . . . , (s(n), t(n)) we use the concatenated sequences
j(n) = s(1) ⊕ (ŝ) ⊕ t(1), . . . , j(n) = s(n) ⊕ (ŝ) ⊕ t(n) separated by a separator token ŝ ∈ V which does
not occur in either source sequences or target sequences.

A Diffusion-LM model is trained to maximize the likelihood of the sequences j(1), . . . , j(n). As
described in Section 2.2.1, Diffusion-LM approximates conditional distributions by the infilling algo-
rithm, which I will describe again here, adapted to the task of translation. The precise steps are given
in Algorithm 7

Algorithm 7 Translation by the Diffusion-LM-based model

1: Input
s ∈ V l, 1 ≤ l ≤ S

2 The source sequence

2: Pad s up to length S
3: z̃ ← Eθ(s) ▷ Embed the source sequence as the partial data
4: mi = 1 for 1 ≤ i ≤ l, mi = 0 for l + 1 ≤ i ≤ S ▷ Calculate the mask
5: Draw zT ∼ N(0, Id×S)
6: for t = T − 1, . . . , 0 do
7: Draw zt ∼ N(µθ(zt+1, t+ 1),Σt+1) ▷ With Σt+1 as described in equation (2.5b).
8: zt;i ← z̃i where mi = 1 ▷ Overwrite where the data is given by z̃
9: end for

10: ri ← argmax
t∈V

Rθ(z0)i,t for 1 ≤ i ≤ S ▷ Recover the most likely token at each position

11: return rl+1:S ▷ Return the tokens after the source

This algorithm serves as an example of the more general infilling algorithm from Diffusion-LM, showing
explicitly how translation is performed by infilling. For the more general algorithm see Algorithm 5.

This model is denoted as Diffusion-LM in Chapter 4.

3.2 DiffuSeq-based Models

Like the standard DiffuSeq and the Diffusion-LM-based model, the DiffuSeq-based models use shared
vocabularies Vs, Vt = V . For the training algorithm, I refer back to Algorithm 6. The sampling
algorithm is the same as described for the Diffusion-LM-based model (Gong et al., 2023). Building

21

upon that, we will look at four proposed models next to the standard DiffuSeq model and the method
of autoregressive sampling for DiffuSeq models.

3.2.1 DiffuSeq with Autoregressive Sampling

The current state-of-the-art in natural language processing is the autoregressive transformer model,
which generates a probability vector for the next token one token at a time. The sequential nature
of text also suggests, that generating one token at a time is a good approach to text genera-
tion. By this method, we will try to understand whether diffusion language models benefit from
fixing one generated token at a time and repeating the sampling process with the previously gener-
ated token as prior knowledge akin to the infilling method described for the Diffusion-LM-based model.

Algorithm 8 described the sampling algorithm in detail. For the naive implementation given there,
this increases the time needed for decoding by a factor of O(S). However, when detecting the end of
the generation process, this factor is in O(Average generated sequence length).

Algorithm 8 Autoregressive sampling from DiffuSeq models

1: Input
s ∈ V l, 1 ≤ l ≤ S

2 The source sequence

2: t← ϵ ▷ Initialize the translation as the empty word
3: for k = l + 2, . . . , S do
4: j ← s⊕ (ŝ)⊕ t ▷ Concatenate the source and already generated tokens
5: Pad j up to length S
6: z̃ ← Eθ(j) ▷ Embed concatenated sequence as the partial data
7: mi = 1 for 1 ≤ i ≤ |j|, mi = 0 for |j|+ 1 ≤ i ≤ S ▷ Calculate the mask
8: Draw zT ∼ N(0, Id×S)
9: for t = T − 1, . . . , 0 do

10: Draw zt ∼ N(µθ(zt+1, t+ 1),Σt+1) ▷ With Σt+1 as described in equation (2.5b).
11: zt;i ← z̃i where mi = 1 ▷ Overwrite where the data is given by z̃
12: end for
13: t← t⊕ argmax

j∈V
Rθ(z0)k,j ▷ Recover the most likely token for position k

14: end for
15: return t ▷ Return the sequence of generated tokens t

For this algorithm, the inner loop corresponds to the infilling algorithm from Diffusion-LM with the
outer loop sampling from the model in an autoregressive manner.

For brevity, results from the standard DiffuSeq model sampled by this method are denoted as
DiffuSeqAR in Chapter 4.

3.2.2 DiffuSeq trained for word generation

As described above, the diffusion language models we are looking at here, just like the majority of
autoregressive models, make use of a tokenization algorithm for converting text into a sequence of
tokens from a vocabulary of fixed size. For this, words are commonly split into multiple tokens. This
corresponds well with natural language, where words are often comprised of a word stem and then
modified by some prefix or suffix. One example of this would be English verbs like for example walk,
walked, walking, and so forth. Moreover, the concept also corresponds well with compound words,
say herself, himself, itself, or also compound nouns.

In contrast to autoregressive models diffusion language models are able to generate multiple tokens
at a time and this model tries to make use of this property by training a model to generate one word
at a time. For this, given a pair of (untokenized) source and target sequences, the target sequence
was split into words by whitespace characters. The model was then trained to predict the next word

22

(possibly comprised of multiple tokens) in the target sequence, given the source sequence and the
words up to the current word. For this, the vocabulary V also included a start token ξ, a separator
token ŝ, and an end token ê.

Algorithm 9 Training of DiffuSeq for word generation

1: while Not converged do
2: (s, t) ∼ q(s, t) ▷ Sample from dataset
3: W ← Number of words in t
4: wi ← Start index of i-th word 1 ≤ i ≤W , wW+1 = |t|+ 1
5: i ∼ U({1, . . . ,W})
6: s← (ξ)⊕ s⊕ (ŝ)⊕ t1:wi−1 ▷ Source concatenated with first i-1 words of the target sequence
7: t← twi:wi+1−1 ▷ Next word in target sequence

8: m = (1)|s| ⊕ (0)S−|s| ▷ Mask for conditional noising
9: j ← s⊕ t ▷ Concatenate the source and target sequences separated by ŝ

▷ Rest is as in standard DiffuSeq training
10: Pad j up to length S or truncate to length S
11: Draw ε ∼ N(0, Id×S)
12: z0 =

√
ᾱ1Eθ(j) +

√
1− ᾱ1ε ▷ Embed the joint sequence and add starting noise

13: t ∼ U({0, . . . , T − 1} ▷ Estimate sum by sampling t randomly
14: ε′ ∼ N(0, Id×S) ▷ Sample noise
15: zt =

√
ᾱtz0 +

√
1− ᾱtε

′

16: zt;i ← z0;i if mi = 1, 1 ≤ i ≤ S ▷ Conditional Noising
17: if t = 0 then
18: Gradient descent step over ∇θ(∥x̂θ(zt, t)− Eθ(j)∥2 −

∑S
i=|s|+2 log(Rθ(z0)ji)

19: else
20: Gradient descent step over ∇θ(∥x̂θ(zt, t)− z0∥2 −

∑S
i=|s|+2 log(Rθ(z0)ji)

21: end if
22: end while

3.2.3 DiffuSeq with Knowledge Distillation

Non-autoregressive models can often profit from knowledge distillation as by training the model to
imitate the results of a teacher model, the complexity of a dataset can be reduced (Gu et al., 2017b;
Ren et al., 2020). Given a trained teacher model Tteacher this can be achieved in a simple manner by
optimizing over

minimize:
θ∈Θ

Et∼U({2,T})

[
E

[
∥ẑθ(Zt, t)− (E(ŝ) + σ0ε)∥2 +

1

n

M∑
n=1

− log Softmax(R(Z0))ŝn

]]
(3.1)

with ŝ = maximize
s∈V S

: Tteacher(s|ssource) being the teacher models prediction. The maximizing sequence

ŝ can be approximated by the beam search algorithm. This approach is called sequence-level
knowledge distillation and was proposed by Kim and Rush (2016).

Sequence-level knowledge distillation is also explored in Chapter 4, with the model using this
technique being sometimes referred to as DiffuSeq-distilled.

While this approach presents a simple form of knowledge distillation, word-level knowledge distil-
lation (Kim & Rush, 2016) could also be achieved by training on the cross entropy of the predicted
tokens between the student model and the teacher model. The cross-entropy of the student model

23

under the teacher model would by this be:

CE(Tt,P
Z0) = −

∫
Rd

log pθ(Z0) dTt (3.2a)

≤ ETt

[
E

[
− log pθ(Z0|Z1) +DKL(q

ZT |Z0∥pZT
θ) +

T∑
t=2

DKL(q
Zt−1|Zt,Z0∥pZt−1|Zt

θ)

∣∣∣∣∣Z0

]]
(3.2b)

This, however, poses a problem given an autoregressive teacher model, as such a model does not in
fact model the probability over an entire sequence, but instead on a token-to-token basis. One possible
approach would be distilling knowledge from a masked language model, with the outer integral being
a weighted sum and therefore giving a rather easy loss function. Still, due to diffusion language
models struggling to commit to word embeddings (Li et al., 2022) this seems counterintuitive and this
approach was not expanded upon due to time constraints.

3.2.4 Alternate Diffusion Kernel

Autoregressive models will commonly use a linear layer from the internal embedding dimension to
the size of the vocabulary |V | as a decoding layer. This relates well to the scalar product with
|V | different d dimensional vectors, which we can intuitively understand by x = argmax

y∈Rd

< x, y >.

In machine translation, models using shared weights for the encoder and decoder embeddings and
for the decoding layer may show better performance over models with separate weights for some
pairs of languages. This alternate diffusion kernel attempts to build on that, by explicitly modeling
S probability vectors over V and performing a matrix multiplication with the embedding matrix
describing Eθ. By this, this alternate diffusion kernel also models the estimated mean of the initial
data explicitly and involves the input embeddings in decoding from the encoder at each time t.

In contrast to the standard DiffuSeq model the encoder in this diffusion, kernel is not a BERT
model, but a transformer encoder as described by Vaswani et al. (2017). Like the BERT encoder in
the usual architecture, this encoder is initialized with random weights.

Figure 3.1: A high-level overview of the alternate Diffusion Kernel modeling the mean by probability
vectors for each token.

Timestep Embeddings Timestep Projection

x Input Projection + Layer Norm Dropout Encoder LM Head ⊗

Position Indices Position Embeddings Token Embeddings

Note: The LM Head layer is comprised of a linear layer to the vocabulary size and a softmax layer,
so given a vocabulary V and a max sequence length S the output of the LM Head layer is of shape
S × |V |, after multiplication with the embedding matrix of shape |V | × d we arrive back at data of
shape S × d. Yellow nodes indicate trained parameters.

24

3.2.5 Position-dependent noise scheduling

To approach the problem of diffusion language
models’ poor performance given long source se-
quences, I want to explore the position-dependent
sigmoid noise schedule which will be described
below. The idea motivating this noise schedule is
that by lowering the noise faster in tokens early
in the sentence this noise schedule might conform
better to the sequential nature of language. The
framework described in Chapter 2 can be triv-
ially expanded to encompass sequences of diago-
nal matrices. So by using the shorthand notation:

D(λ) := D(λ(1), . . . , λ(d)) :=

λ(1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 λ(d)

for λ = (λn)

d
n=1 and√
D(λ) := D(

√
λ1, . . . ,

√
λd),

we only need to ensure that restriction [D3] holds

for each sequence (α
(i)
t)Tt=1, i = 1, . . . , d. Then

all results from Chapter 2 are still applicable by

multiplying with D((α
(i)
t)di=1) at time t, where we

previously multiplied by a scalar instead.

Figure 3.2: The proposed sigmoid noise schedule

Note: The proposed sigmoid noise schedule for
a max sequence length of 64 tokens. Here, each
line in the graphic represents the noise schedule
for one token in the sequence. One can observe,
that the tokens are corrupted by noise one after
another, with some degree of overlap. Here, the
first red line is the noise schedule of the 64th
token, while the last blue line is the noise
schedule of the first token in the sequence.

The sigmoid noise schedule chosen for this model is then derived as a series of S cumulative
distribution functions of normal variables, all with variance σ and with different means (µk)

S
k=1,

evaluated in an interval [mmin,mmax]. To ensure a moderate degree of overlap in the generation of
adjacent tokens, we choose σ and the means (µk)

S
k=1 as follows.

Given the three σ-rule shown in Table 3.1,
under a latent space of dimension M × d, a
sensible choice would be σ = 1

M+5 , setting
µk = (3 + k)σ, k = 1, . . . ,M . The interval
[mmin,mmax] is then chosen as [0, 1].

Table 3.1: Probabilities of deviations from the
mean and certain quantiles of the normal distri-
bution

k P(∥X − µ∥ < kσ) ≃ P(X < µ+ kσ) ≃
1 0.683 0.842
2 0.955 0.978
3 0.998 0.999

With this, we derive our position-dependent noise schedule as

∀i ∈ {1 . . . T}, with t =
i

T
: ᾱi = (Φ(

t− µ1

σ
), . . . ,Φ(

t− µ1

σ
)︸ ︷︷ ︸

d times

, . . . ,Φ(
t− µM

σ
), . . . ,Φ(

t− µM

σ
)︸ ︷︷ ︸

d times

) (3.3)

This choice of parameters would imply ᾱ1 ≃ 0 and ᾱT ≃ 1. Due to variance levels getting very close
to 0 this noise schedule needs further measures to ensure numerical stability.1

1In the model evaluated here, a cutoff for the variance was introduced, after which the variance decayed linearly
instead of exponentially. This cutoff was at 1− ᾱt ≤ 0.02

25

Model Evaluation

4.1 Experimental Setup

To evaluate the models and methods described in section 3 we trained both the Diffusion-LM-based
model and the DiffuSeq-based models (Gong et al., 2023; Li et al., 2022) on the bilingual corpus CoV-
oST (Wang et al., 2020). For the knowledge distillation model from 3.2.3 we used the wmt19-en-de

model by Ng et al. (2019), as the teacher model. The detokenized results of all implementations
and baselines were evaluated by BLEU-score as provided by SacreBLEU (Post, 2018) and by the
wmt20-comet-qe-da model from “Unbabel’s Participation in the WMT20 Metrics Shared Task” by
Rei et al. (2020), which is the latest publicly available model for reference-free evaluation at the time
of writing. The wmt20-comet-qe-da is a model trained to score machine translation systems on a
scale of 0 to 1 (Rei et al., 2020) which in the tables given below is denoted as a percentage value.

To quantify the impact of masked noising during training (DiffuSeq) we generated a set of samples
from Diffusion-LM without guidance and calculated a score by the wmt20-comet-qe-da model.

For providing insights into system performance over different lengths of the source sequence, the
source and target pairs from the test set were split into buckets of roughly equal size. Then the
respective BLEU score of each system in a certain bucket was calculated. On top of that, to test the
hypothesis that the studied non-autoregressive systems show higher relative differences of performance
on long sequences, the relative difference in scores between models was analyzed by linear regression,
and by a t-test on whether the slope is positive. For this, we define the relative difference dr(a, b) :=

a−b
max(a,b) . For further information on the tests performed, the reader may refer to the source of the

testing strategy (Fahrmeir, 2007).

4.1.1 Dataset and data preparation

Table 4.1: Key metrics of the dataset CoVoST,
with the tokenizer used here.

CoVoST Key metrics #

Number of samples in train split 127,638

Mean length of source sequences in tokens 12.6
Mean length of target sequences in tokens 12.4

Number of samples in valid split 13,510
Number of samples in test split 13,510

Number of samples in reduced test split 2010

The CoVoST dataset is a multilingual speech-
to-text translation corpus, providing sen-
tences in multiple languages as text and as
spoken language (Wang et al., 2020). For
the experiments conducted here, only the text
data with sentences in German and English
was used. For data preparation, the German
characters ä, ü, ö, and ß were replaced by ae,
ue, oe and ss respectively, accents were re-
moved, and the set of characters was reduced
to the alphabet, numerals, and punctuation
marks (excluding brackets and parentheses).

All were trained from scratch on the corpus CoVoST, tokenized by BPE-tokenization with a
vocabulary size of 30000. Byte-Pair Encoding is a subword-based algorithm that merges word pieces
that frequently occur together in the training set until the maximum length of the vocabulary is

26

reached. In our case, this relates to 29,846 merges, which are applied greedily to new sequences. 12

After applying a tokenization algorithm as described above, the diffusion language models further
truncated some sequences longer than 64 tokens, accounting for less than 0.01% of the samples in
the dataset. The dataset CoVoST was chosen due to its relatively small size, based on the datasets
chosen in the relevant paper that introduced Diffusion-LM. The datasets chosen for evaluation there
consisted of 50K and 98K samples respectively (Li et al., 2022). Some studies on Diffusion Language
Models with comparable architectures have however achieved competitive results on bigger datasets
such as IWSLT14 (Yuan et al., 2023). Due to the slow decoding process of the autoregressive sampling
method, the test set was reduced to a subset of 2010 samples.3

4.1.2 The evaluated implementations

Next to the baseline models described below, the following models were evaluated here and are shown
in the main results (hyperparameters marked in bold are non-defaults):

1. Diffusion-LM-based: This is the model based on Diffusion-LM with infilling as described in
Section 3.1. Model hyperparameters:

(a) Embedding dimension: 256

(b) Diffusion steps: 4000

(c) Noise schedule: ”sqrt”

(d) Estimated mean parameterized by estimating z0

(e) Batch size: 128

(f) Maximum sequence length: 64

(g) No gradient clipping

(h) Fixed noise schedule

(i) End-to-end training of diffusion kernel and embedding matrix

(j) Decoding with the clamping trick applied 4

The encoder in the diffusion kernel was parameterized by a BERT model with the configuration
bert-base-uncased. All weights were initialized randomly.

2. DiffuSeq: The standard DiffuSeq model. Model hyperparameters:

(a) Embedding dimension: 128

(b) Diffusion steps: 2000

(c) Noise schedule: ”sqrt”

(d) Estimated mean parameterized by estimating z0

(e) Batch size: 2048 by gradient accumulation with microbatches of size 128

(f) Maximum sequence length: 128

(g) No gradient clipping

(h) Fixed noise schedule

(i) Decoding with clamping trick

1For further reference, the source of the implementation used for the diffusion language models is provided here.
2The tokenization algorithm used only subword-prefixes for the diffusion language models.
3The reduced test set is available under https://drive.google.com/file/d/1nj2S7dOLGBel7ZR4AWbVCxEFVcgWg

V3/view?usp=drive link
4The paper introducing Diffusion-LM states that this empirically improves sample quality (Li et al., 2022), however,

some more recent papers suggest that this might not consistently be the case (Yuan et al., 2023)

27

https://huggingface.co/docs/tokenizers/v0.13.3/en/api/models#tokenizers.models.BPE
https://drive.google.com/file/d/1nj2S7dOLGBel7ZR4AWbVCxEFVcgWg_V3/view?usp=drive_link
https://drive.google.com/file/d/1nj2S7dOLGBel7ZR4AWbVCxEFVcgWg_V3/view?usp=drive_link

As before the encoder in the diffusion kernel was parameterized by a BERT model with the
configuration bert-base-uncased. All weights were initialized randomly.

3. DiffuSeqAR: The standard DiffuSeq model with the method of autoregressive sampling as
described in Section 3.2.1. As the model is the same as above I will refrain from listing the
hyperparameters again.

4. DiffuSeq-distilled: The model utilizing sequence-level knowledge distillation as described in
Section 3.2.3. This model also uses the same hyperparameters as the standard DiffuSeq model
described above.

All models used a constant step size of 1 during the sampling process. This results in a very
long decoding time, as the diffusion kernel needs to be applied 2000 (for DiffuSeq) or 4000 (for
Diffusion-LM) times for translating a batch of samples. Using a lower number of diffusion steps
during sampling can increase the speed of the sampling process, but generally leads to decreased
performance (Gong et al., 2023; Li et al., 2022).

Some further models, which failed to produce non-trivial samples or generally showed decreased
performance are also listed below in Section 4.2.2.

4.1.3 Baselines

Transformer encoder-decoder models are state-of-the-art in sequence-to-sequence tasks, so we will
compare to a small transformer model with 6 feed-forward layers, embedding dimension 512,
feed-forward layer embedding dimension 1024 and 4 attention heads in both encoder and decoder.
The model uses shared weights for encoder and decoder embeds and for the language modeling head.
Besides these changed parameters the model used was as described by the paper which introduced
the transformer model (Vaswani et al., 2017). Decoding was performed with beam size of 10, length
penalty of 1, temperature of 1, and no further modifications to the standard beam search. Given the
non-autoregressive nature of Diffusion Models, you will also find the results of a non-autoregressive
Levenshtein transformer with the parameters as given in the paper (Gu et al., 2019) in the results
below. Decoding parameters were also chosen as presented by the paper. 5

The baselines also used Byte-Pair Encoding as the tokenization algorithm with the same vocabulary
size of 30,000. The implementation differed slightly, with this implementation occasionally producing
a designated unknown token during decoding. 6. In contrast to the other models, the algorithm used
a subword-suffix in this case, slightly reducing the comparability.

4.2 Results

The results for this setup are presented in Table 4.2. First, we observe that the Diffusion-LM-based
model performs poorly when faced with the problem of translating test data. When sampling from
the Diffusion-LM model without the infilling algorithm, the model successfully generated pairs of
German and English sentences. The data generated by this unguided approach, when evaluated by
the reference-free COMET model wmt20-comet-qe-da achieved a score of 8.72%. However, when
faced with the challenge of translating the test set, the score fell to 0.94%.7 In terms of overall
results, all Diffusion Language models underperformed compared to both the transformer model and
the Levensthein-Transformer. Compared to the standard DiffuSeq, both the autoregressive sampling
method and the model employing sequence-level knowledge distillation showed some improvements,
with the difference being pronounced in the DiffuSeq-Distilled model. The Diffusion-LM-based model,
modeling the joint distribution performed poorly when faced with the task of translating the test data.

5For details and reproducing the results, the implementation is given here.
6For reference the implementation is given here
7This might indicate that during the generation process interdependencies within the German and English sentence

are more generally more influential than the cross dependency between the sequence, which also provides an explanation
for the improved performance of the DiffuSeq model. This hypothesis would need further testing however.

28

https://github.com/facebookresearch/fairseq/blob/main/examples/nonautoregressive_translation/README.md
https://github.com/rsennrich/subword-nmt

Table 4.2: Direct comparison of models by BLEU score and COMET score

Model BLEU↑ COMET↑
Diffusion-LM based model 2.3% 0.9%

DiffuSeq 10.0% 3.0%
DiffuSeq with autoregressive sampling 10.7% 2.5%

DiffuSeq-Distilled 12.5% 4.1%

Transformer 28.8% 20.2%
Levensthein-Transformer 19.2% 10.7%

4.2.1 Analysis of the results over differing lengths of the source sequence

Figure 4.1: Comparison of BLEU score between all models, with the 2010 samples being split into
buckets of approximately equal size by length.

When the translated samples are split into buckets of roughly equal size by the length of the
source sequence, the diffusion language models fall off notably faster in BLEU score compared to the
baseline transformer model, suggesting that long-range dependencies might be more problematic for
these models to portray.

DiffuSeq with autoregressive sampling shows similar performance compared to the standard
model, with the scores differing only marginally on shorter sequences and being slightly better on
longer sequences. The model trained with knowledge distillation consistently outperformed both of
the other DiffuSeq models.

Lastly, the non-autoregressive Levenshtein transformer, although it consistently outperforms all
diffusion language models, also falls off faster than the autoregressive transformer model on longer
sequences.

These results tie directly into the initial question, of whether parallel generation impacts the
relative difference in performance over differing lengths of source sequences.

Linear regression analysis

Due to the tokenization algorithm of the baselines occasionally producing the designated unknown
token during decoding, here a subset of 1987 samples was used where the source sequences could
be clearly matched. Each sample was assigned a sentence-level BLEU score, and the length of the

29

corresponding source sequence was measured in tokens.

Given a sample A ∼ A(·, s1:x) from model A and sample B ∼ B(·, s1:x) from model B
given the source sequence s1:x as defined in section 2.3, we assume a linear dependence of
dr(BLEU(A),BLEU(B)) = β0 + x · β1 + ε. We additionally assume the error ε to follow a nor-
mal distribution, with constant variance. Each of the 1987 paired samples was treated as one data
point, meaning that while Figure 4.2 also shows a scatter-plot of the mean BLEU score for each length
of the source sequence, the linear regression was performed over the set of all samples independently.

Figure 4.2: Linear regression over the relative difference between the BLEU scores of selected models
over different lengths of the source sequences.

Note: 99% Confidence intervals for the mean relative difference are given by the dashed lines, while
dots indicate the empirical mean relative difference for a certain length of source sequences. Still one
should note that the sample sizes for very short and very long sequences are much smaller than for
sequences of medium length.

As is visible in Figure 4.2, there clearly seems to be a steady increase in the relative difference
in scores between the diffusion language models and the transformer model. The figure also shows
the linear regression analysis of the relative difference in scores between the standard DiffuSeq model
and the DiffuSeq model with autoregressive sampling. While the linear model has a slightly negative
slope, the difference is marginal.

t-Test of slopes

To test the hypothesis, that the relative difference in performance increases with an increase in the
length of the source sequence, we can perform a t-Test on whether the slope in the corresponding
linear regression is positive. For this, the t-Test assumed the null hypothesis ”The length of the
source sequence is uncorrelated to the relative difference in scores” for each pair of models.

The variance of the estimator for the slope is σ̂2(DTD)−1
11 , D being the designer matrix and σ̂2 the

mean squared error between predicted and observed values. With the slope of the fitted linear model
denoted as β1, the test statistic β1√

σ̂2(DTD)−1
11

follows a Student’s t-distribution with 1987 degrees of

freedom under the null hypothesis that β1 = 0. The zero hypothesis can then be rejected on a 1%
level if | β1√

σ̂2(DTD)−1
11

| > t1987(0.995) (Fahrmeir, 2007).

The test statistic for each pair of models is summarized in Table 4.3. Above all, all test statistics
reported in the transformer column of the table are sufficient to reject the zero hypotheses, indicating

30

Table 4.3: Test statistics for the T-Test on whether the slope is greater than 0 under the linear model
of the relative difference of the scores.

Models DiffuSeq DiffuSeqAR Transformer Diffusion-LM Lev-Transformer DiffuSeq-distilled

DiffuSeq N/A 0.40 11.29 -2.89 4.95 -0.20

DiffuSeqAR -0.40 N/A 9.88 -2.55 4.06 -0.56

Transformer -11.29 -9.88 N/A -10.42 -7.36 -10.97

Diffusion-LM 2.89 2.55 10.42 N/A 7.33 2.69

Lev-Transformer -4.95 -4.06 7.36 -7.33 N/A -4.97

DiffuSeq-distilled 0.20 0.56 10.97 -2.69 4.97 N/A

Note: The critical value is t1987(0.995) ≃ 2.58 for a 1% significance level. Pairs, where the null
hypothesis ”The relative difference of scores is uncorrelated to the length of the source sequence”
can be rejected and where the slope is positive are marked in bold. By this, a positive test statistic
indicates that there is a statistically significant impact of the length of the source sequence on the
relative performance of the models, indicating that the model at the top of the column performs
relatively better on longer sequences than the model at the start of the row.

that besides the transformer model performing better than all other models across all lengths of source
sequences, the relative difference also increases with longer source sequences. The same can be said
for the Levenshtein transformer regarding all diffusion models, although the slope is less steep in these
combinations.

For the various DiffuSeq-based models the null hypothesis could not be rejected for any pair of
models, however, this does not mean that there is no impact of the length of the source sequence
on the relative performance between these models, but just, that if there does exist one our data is
not sufficient to show so. Notably, the slope of the linear model between the DiffuSeq model with
autoregressive sampling and the standard DiffuSeq model is slightly positive, so there might still be a
slightly positive impact and both the DiffuSeq model with autoregressive sampling and the standard
DiffuSeq model show a slight improvement over length against the DiffuSeq model with sequence-level
knowledge distillation.

4.2.2 Models which converged to trivial distributions

The following models were also evaluated in the same manner as the diffusion language models de-
scribed above:

1. DiffuSeq trained for word generation as described in Section 3.2.2. Here the number of
diffusion steps was reduced to 200, by the intuition that only very few tokens are generated at a
time, so a shorter trajectory might suffice. This model is shown by the name WordGeneration
in Figure 4.3.

2. DiffuSeq as described above, but with a reduced batch size of 128, without gradient accumula-
tion. Otherwise, the hyperparameters were set just as in the standard model. In Figure 4.3 this
model is denoted by StandardBSZ128.

3. DiffuSeq with an alternate diffusion kernel as described in Section 3.2.4. This model was
also trained with a batch size of 128 without gradient accumulation. The implementation of the
transformer encoder in the alternate diffusion kernel described in Section 3.2.4 is publicly avail-
able in the fairseq repository.8 In Figure 4.3 this model is denoted by AlternateKernelBSZ128.

4. DiffuSeq using the sigmoid noise schedule was trained with the position-dependent noise
schedule proposed in Section 3.2.5. This model was trained with both the position-dependent
noise schedule and trained both with and without guidance as shown in the background section
on classifier-free guidance. The probability for unconditional training was 50%. Furthermore, in

8The exact configuration used was that of transformer iwslt de en

31

https://github.com/facebookresearch/fairseq

Figure 4.3: Training process of different models which converged to a trivial distribution, compared
to the standard model which is denoted by DiffuSeq.

Note: The metric ”nll” shown in this figure is the negative log-likelihood, of the tokens recovered
by the model. At timestep t this can be expressed by 1

M

∑M
n=1− log(Rθ(ẑθ(zt, t))sn), sn being the

n-th token of the target sequence. The models do not optimize this metric directly, it is reported for
tracking the generation quality of a model during training (Gong et al., 2023).

contrast to the standard DiffuSeq model, this model used fixed positioning for embedding the
guidance and target sequences.9 In Figure 4.3 this model is denoted as SigmoidNoise.

5. DiffuSeq using the sigmoid noise schedule with parameterization by score matching:
This model experimented with parameterization by score matching as described in the Chapter
Backgrounds. Besides that, this model is the same as the other model using the proposed sigmoid
noise schedule.

However, all of these models besides the model using the alternate diffusion kernel converged to
produce trivial or meaningless samples. After convergence, models 1. and 2. produced only padding
tokens when sampled from, while models 4. and 5. produced meaningless data. The model using
the alternate diffusion kernel converged to produce non-trivial samples, yet is still listed here due to
generally poor performance.

This offers one possible explanation for why the model trained for word generation failed, as
the Diffusion Language Models studied operate on fixed-length sequences. With sequences being
padded up to the maximum length, when under the tokens that the loss is calculated over, the
number of padding tokens far outweighs the number of non-padding tokens, the batch size might
need to be appropriately higher to prevent the model from converging to such a trivial distribution.
The standard DiffuSeq model, has a maximum combined sequence length of 128 tokens under
default parameters, while the Diffusion-LM model under standard parameters has a sequence
length of 64 tokens. Given a mean source sequence length of 12.6, and a mean target sequence
length of 12.4, this amounts to on average 66% padding tokens for Diffusion-LM, accounting for a
separator token between source and target. For DiffuSeq, the average percentage of padding to-
kens would be 87% and for the model trained for word generation, this percentage is greater than 95%.

Consequently, a diffusion model trained for word generation might still be possible but would
require a diffusion kernel or a loss function optimized toward that goal. The model utilizing the

9This corresponds to first padding/truncating the sequences up/down to a certain length before training the model
on the joint sequences. The conditional noise from DiffuSeq was then not applied to padding in the guidance sequence.

32

alternate diffusion kernel proposed in 3.2.4 converged with a batch size of 128, yet performed poorly,
with a BLEU score of 6.0% under SacreBLEU.

The low negative log-likelihood achieved by the model trained for word generation in Figure 4.3
can be explained by the fact that this metric is also computed over all padding tokens. For this
model, padding tokens made up > 95% of the target tokens.

Finally, there were two tests done on the proposed sigmoid noise schedule, one with the estimated
mean parameterized by score matching and one with the estimated mean parameterized by the estimate
of the initial data. Neither of the tests produced noteworthy results, with the converged models
producing meaningless data. Both models used a training procedure inspired by classifier-free guidance
as described in 2.1.6, training on data with and without guidance, with a probability of unguided
training set to 0.5 (50%).

4.3 Training and decoding times of the models

Table 4.4: Key metrics regarding training and decoding times of the different non-autoregressive
models

Training Time # of steps Batch Size Decoding time GPUs

Lev-Transformer 19h 300,000 128 6s 1 NVIDIA RTX 3070

Diffusion-LM 3d 6h 600,000 128 1h 44m 46s 1 NVIDIA TITAN RTX

DiffuSeq 14d 9h 80,000 2048 3h 23m 17s 1 NVIDIA TITAN RTX

DiffuSeq AR 14d 9h 80,000 2048 >30h 1 NVIDIA TITAN RTX

DiffuSeq-distilled 10d 12h 60,000 2048 3h 23m 1 NVIDIA TITAN RTX

The DiffuSeq-based models still showed improvement even after extensive training times, so due
to the very long time needed to train a diffusion language model, the DiffuSeq Standard model was
trained for 80,000 steps, while the DiffuSeq-distilled model was trained for 60,000 steps. Key metrics
on the training and decoding times of the various models are summarized in Table 4.4.

The previous section on models which converged to trivial distributions, suggests one explanation
for the slow optimization of the DiffuSeq-based models. Due to the very high degree of gradient
accumulation, DiffuSeq-based models compute the loss of one batch in 16 micro-batches of 128 samples.
This might be important to stabilize the training process and prevent issues as described above under
Models which converged to trivial distributions. On top of that, the constant sequence length of
128 tokens for the DiffuSeq-based models inflates the time needed to compute each step further. In
comparison with Diffusion-LM, which performs the same basic calculations with a sequence length of
64 tokens, DiffuSeq takes much longer to calculate the loss over one step than Diffusion-LM takes for
16 steps with the same amount of samples overall.

33

4.4 Conclusion

All evaluated diffusion language models struggle to compete with both conventional transformer
models and the non-autoregressive Levenshtein transformer model. While both the Levenshtein
transformer model and the diffusion language model showed an increase in the relative difference of
scores compared to the transformer model with increasing lengths of the source sequence, the scores
of the Diffusion Language Models also decreased faster in relative terms than those of the Levenshtein
transformer. Autoregressive sampling from the DiffuSeq model exhibits slightly increased scores over
conventional sampling, yet there is not enough data to reject the null hypothesis ”The mean relative
difference in scores between DiffuSeq with conventional sampling and DiffuSeq with autoregressive
sampling is constant over various lengths of the source sequence.”

In line with findings on other non-autoregressive language models, diffusion language models
seem to profit from sequence-level knowledge distillation, exhibiting faster convergence and improved
results overall.

In terms of training and decoding times, Diffusion Language Models are still far slower than
Transformer models and the Levenshtein transformer. Previous studies showed that decreasing the
number of diffusion steps to down to 1000 had little impact on performance (Li et al., 2022). This
would decrease the decoding time by roughly half, as the diffusion process dominates the model’s
time complexity. On top of that, with Diffusion Models having become the state of the art in image
synthesis, much work is being done on alleviating the issues of slow training and decoding, with the
possibility that these solutions might be applicable to Diffusion Language Models. Alternate diffusion
kernels (to the one seen in Figure 2.4) might also optimize better with a lower degree of gradient
accumulation.

34

References

Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E., Molino, P., Yosinski, J., & Liu, R. (2019).
Plug and play language models: A simple approach to controlled text generation. CoRR,
abs/1912.02164. http://arxiv.org/abs/1912.02164

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. J. Mach. Learn. Res., 12 (null), 2121–2159.

Fahrmeir, L. (2007). Regression : Modelle, methoden und anwendungen (T. Kneib & S. Lang, Eds.).
Springer. https://doi.org/10.1007/978-3-540-33933-5

Gong, S., Li, M., Feng, J., Wu, Z., & Kong, L. (2023). DiffuSeq: Sequence to sequence text generation
with diffusion models. International Conference on Learning Representations, ICLR. https:
//doi.org/10.48550/arXiv.2210.08933

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., &
Bengio, Y. (2014). Generative adversarial networks. https://doi.org/10.48550/arXiv.1406.2661

Gu, J., Bradbury, J., Xiong, C., Li, V. O. K., & Socher, R. (2017a). Non-autoregressive neural machine
translation. CoRR, abs/1711.02281. http://arxiv.org/abs/1711.02281

Gu, J., Bradbury, J., Xiong, C., Li, V. O. K., & Socher, R. (2017b). Non-autoregressive neural machine
translation. CoRR, abs/1711.02281. http://arxiv.org/abs/1711.02281

Gu, J., Wang, C., & Zhao, J. (2019). Levenshtein transformer. CoRR, abs/1905.11006. http://arxiv.
org/abs/1905.11006

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. CoRR, abs/2006.11239.
https://arxiv.org/abs/2006.11239

Ho, J., & Salimans, T. (2022). Classifier-free diffusion guidance. https://arxiv.org/abs/2207.12598
Kim, Y., & Rush, A. M. (2016). Sequence-level knowledge distillation. CoRR, abs/1606.07947. http:

//arxiv.org/abs/1606.07947
Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. CoRR,

abs/1906.02691. http://arxiv.org/abs/1906.02691
Kingma, D. P., & Welling, M. (2022). Auto-encoding variational bayes. https://doi.org/10.48550/

arXiv.1312.6114
Klenke, A. (2020).Wahrscheinlichkeitstheorie (4., überarbeitete und ergänzte Auflage). Springer Spek-

trum. https://doi.org/10.1007/978-3-662-62089-2
Lee, J., Mansimov, E., & Cho, K. (2018). Deterministic non-autoregressive neural sequence modeling

by iterative refinement. CoRR, abs/1802.06901. http://arxiv.org/abs/1802.06901
Li, X. L., Thickstun, J., Gulrajani, I., Liang, P., & Hashimoto, T. B. (2022). Diffusion-lm improves

controllable text generation. https://doi.org/10.48550/ARXIV.2205.14217
Luo, C. (2022). Understanding diffusion models: A unified perspective. CoRR, abs/2208.11970. https:

//doi.org/10.48550/arXiv.2208.11970
Ng, N., Yee, K., Baevski, A., Ott, M., Auli, M., & Edunov, S. (2019). Facebook fair’s WMT19 news

translation task submission. CoRR, abs/1907.06616. http://arxiv.org/abs/1907.06616
Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., & Lakshminarayanan, B. (2021).

Normalizing flows for probabilistic modeling and inference. https://doi.org/10.48550/arXiv.
1912.02762

Post, M. (2018). A call for clarity in reporting BLEU scores. Proceedings of the Third Conference on
Machine Translation: Research Papers, 186–191. https://doi.org/10.18653/v1/W18-6319

35

http://arxiv.org/abs/1912.02164
https://doi.org/10.1007/978-3-540-33933-5
https://doi.org/10.48550/arXiv.2210.08933
https://doi.org/10.48550/arXiv.2210.08933
https://doi.org/10.48550/arXiv.1406.2661
http://arxiv.org/abs/1711.02281
http://arxiv.org/abs/1711.02281
http://arxiv.org/abs/1905.11006
http://arxiv.org/abs/1905.11006
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2207.12598
http://arxiv.org/abs/1606.07947
http://arxiv.org/abs/1606.07947
http://arxiv.org/abs/1906.02691
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1007/978-3-662-62089-2
http://arxiv.org/abs/1802.06901
https://doi.org/10.48550/ARXIV.2205.14217
https://doi.org/10.48550/arXiv.2208.11970
https://doi.org/10.48550/arXiv.2208.11970
http://arxiv.org/abs/1907.06616
https://doi.org/10.48550/arXiv.1912.02762
https://doi.org/10.48550/arXiv.1912.02762
https://doi.org/10.18653/v1/W18-6319

Rei, R., Stewart, C., Farinha, A. C., & Lavie, A. (2020). Unbabel’s participation in the WMT20
metrics shared task. Proceedings of the Fifth Conference on Machine Translation, 911–920.
https://aclanthology.org/2020.wmt-1.101

Ren, Y., Liu, J., Tan, X., Zhao, S., Zhao, Z., & Liu, T. (2020). A study of non-autoregressive model
for sequence generation. CoRR, abs/2004.10454. https://arxiv.org/abs/2004.10454

Ruthotto, L., & Haber, E. (2021). An introduction to deep generative modeling. CoRR,
abs/2103.05180. https://arxiv.org/abs/2103.05180

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning
using nonequilibrium thermodynamics. In F. Bach & D. Blei (Eds.), Proceedings of the 32nd
international conference on machine learning (pp. 2256–2265). PMLR. https://proceedings.
mlr.press/v37/sohl-dickstein15.html

Song, Y., & Ermon, S. (2019). Generative modeling by estimating gradients of the data distribution.
CoRR, abs/1907.05600. http://arxiv.org/abs/1907.05600

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based
generative modeling through stochastic differential equations. CoRR, abs/2011.13456. https:
//arxiv.org/abs/2011.13456

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin,
I. (2017). Attention is all you need. CoRR, abs/1706.03762. http://arxiv.org/abs/1706.03762

Vennerød, C. B., Kjærran, A., & Bugge, E. S. (2021). Long short-term memory RNN. CoRR,
abs/2105.06756. https://arxiv.org/abs/2105.06756

Vincent, P. (2011). A connection between score matching and denoising autoencoders. Neural Comput.,
23 (7), 1661–1674. https://doi.org/10.1162/NECO a 00142

Wang, C., Pino, J., Wu, A., & Gu, J. (2020). CoVoST: A diverse multilingual speech-to-text translation
corpus. Proceedings of The 12th Language Resources and Evaluation Conference, 4197–4203.
https://www.aclweb.org/anthology/2020.lrec-1.517

Wu, B., Nair, S., Martin-Martin, R., Fei-Fei, L., & Finn, C. (2021). Greedy hierarchical variational
autoencoders for large-scale video prediction. CoRR, abs/2103.04174. https://arxiv.org/abs/
2103.04174

Xiao, Y., Wu, L., Guo, J., Li, J., Zhang, M., Qin, T., & Liu, T.-y. (2023). A survey on non-
autoregressive generation for neural machine translation and beyond. https ://doi .org/10.
48550/arXiv.2204.09269

Yang, K., & Klein, D. (2021). FUDGE: controlled text generation with future discriminators. CoRR,
abs/2104.05218. https://arxiv.org/abs/2104.05218

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y., Zhang, W., Cui, B., & Yang, M.-H. (2023).
Diffusion models: A comprehensive survey of methods and applications. https://doi.org/10.
48550/arXiv.2209.00796

Yoav, G. (2017). Neural network methods for natural language processing. Springer. http://www.redi-
bw.de/db/ebsco.php/search.ebscohost.com/login.aspx%3fdirect%3dtrue%26db%3dnlebk%
26AN%3d1506512%26site%3dehost-live

Yuan, H., Yuan, Z., Tan, C., Huang, F., & Huang, S. (2023). Seqdiffuseq: Text diffusion with encoder-
decoder transformers. https://doi.org/10.48550/arXiv.2212.10325

36

https://aclanthology.org/2020.wmt-1.101
https://arxiv.org/abs/2004.10454
https://arxiv.org/abs/2103.05180
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
http://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2011.13456
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2105.06756
https://doi.org/10.1162/NECO_a_00142
https://www.aclweb.org/anthology/2020.lrec-1.517
https://arxiv.org/abs/2103.04174
https://arxiv.org/abs/2103.04174
https://doi.org/10.48550/arXiv.2204.09269
https://doi.org/10.48550/arXiv.2204.09269
https://arxiv.org/abs/2104.05218
https://doi.org/10.48550/arXiv.2209.00796
https://doi.org/10.48550/arXiv.2209.00796
http://www.redi-bw.de/db/ebsco.php/search.ebscohost.com/login.aspx%3fdirect%3dtrue%26db%3dnlebk%26AN%3d1506512%26site%3dehost-live
http://www.redi-bw.de/db/ebsco.php/search.ebscohost.com/login.aspx%3fdirect%3dtrue%26db%3dnlebk%26AN%3d1506512%26site%3dehost-live
http://www.redi-bw.de/db/ebsco.php/search.ebscohost.com/login.aspx%3fdirect%3dtrue%26db%3dnlebk%26AN%3d1506512%26site%3dehost-live
https://doi.org/10.48550/arXiv.2212.10325

	Introduction
	Motivation
	Thesis Statement

	Background
	Variational diffusion models
	Variational autoencoders
	Markovian hierarchical variational autoencoders
	Variational diffusion models with fixed noise schedule
	Two alternative ways to parameterize the estimated mean
	Noise schedules
	Classifier-free guidance

	Diffusion language models
	Diffusion-LM
	DiffuSeq

	Neural Machine Translation

	Classifier-free Diffusion Models for Machine Translation
	Diffusion-LM-based Model
	DiffuSeq-based Models
	DiffuSeq with Autoregressive Sampling
	DiffuSeq trained for word generation
	DiffuSeq with Knowledge Distillation
	Alternate Diffusion Kernel
	Position-dependent noise scheduling

	Model Evaluation
	Experimental Setup
	Dataset and data preparation
	The evaluated implementations
	Baselines

	Results
	Analysis of the results over differing lengths of the source sequence
	Models which converged to trivial distributions

	Training and decoding times of the models
	Conclusion

	References

