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Abstract

Neural machine translation (NMT) models often suffer from gender biases that harm users and
society at large. In recent years, several debiasing approaches have been proposed, including debi-
asing the data before model training, the models during training, or post-processing their outputs;
however, it has yet to be explored how limited availability of large amounts of data affects gender
bias in multilingual NMT, specifically for zero-shot directions. In this thesis, we compare pivot-
based and zero-shot translation and study the influence of the bridge language—the language
participating in all language pairs during training—and the effect of language-agnostic hidden
representations—proven to achieve zero-shot performance gains—on models’ ability to preserve
the feminine and masculine gender equally well in their outputs. We test three bridge languages
with differently pronounced gender-inflectional systems—English, German, and Spanish— as well
as three different model modifications that encourage language-agnostic representations: i) re-
moving a residual connection in a middle Transformer encoder to lift positional correspondences
to the input tokens; ii) promoting similar source and target language representations through
an auxiliary loss; and iii) joint adversarial training penalizing successful recovery of source lan-
guage signals from the hidden representations. We find that language-agnostic representations
reduce the gap between better masculine and worse feminine results (i.e., masculine bias) found
throughout all models’ outputs; they improve zero-shot models’ performances to the point where
they can outperform pivoting when bridging via English, a low gender-inflected language. With
increased levels of gender inflection in the bridge language, pivoting surpasses zero-shot transla-
tion regarding fairer gender preservation when gender inflection depends on the speaker’s gender;
otherwise zero-shot translation performs slightly better regarding balanced gender preservation
for feminine and masculine words.

I



Contents

Abstract I

List of Figures III

List of Tables V

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background & Related Work 6
2.1 Neural Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Vocabulary Building & Embeddings . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Modeling Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 State-of-the-Art Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.6 Multilingual Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Gender Bias in Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Manifestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Experimental Design 23
3.1 Response Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Explanatory Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Explicit & Implicitly-learned Bridging . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Bridge Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Language-Agnostic Hidden Representations . . . . . . . . . . . . . . . . . 26

3.3 Methods of Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.1 Gender Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Translation Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Probing Model Hidden Representations For Gender Signals . . . . . . . . 30

3.4 Organization of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Referent Gender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Utterance Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

II



3.4.3 Speaker Gender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.4 Summary of the Data’s Evaluative Dimensions . . . . . . . . . . . . . . . 34

4 Technical Details 35
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Results 39
5.1 BLEU-based Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Translation Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.2 Gender Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Accuracy-based Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Distinguishing Between Female & Male Speakers . . . . . . . . . . . . . . 45

5.3 Effect of The Bridge Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4 Probing Models’ Hidden Representations For Gender . . . . . . . . . . . . . . . . 56

5.4.1 Sentence-level Gender Classification . . . . . . . . . . . . . . . . . . . . . 56
5.4.2 Token-level Gender Classification . . . . . . . . . . . . . . . . . . . . . . . 57

6 Conclusion 58
6.1 Answers to Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Limitations & Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 61

Appendix 63

A Background 64
A.1 Basic Principles of Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B Experiments & Results 65
B.1 The “Blind Spot“ in BLEU-based Gender Bias Evaluation Causing Misleading

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.2 Experiment Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
B.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

III



List of Figures

1.1 Translating sentences from a genderless language such as Hungarian to English
provides a glimpse into the phenomenon of gender bias in MT. The screenshot
shows how Google Translate (as of August 2022) interprets occupations from tra-
ditionally male-dominated fields, such as “politician”, as male while interpreting
“kindergarten teacher” as female. Moreover, adjectives and verbs such as “beauti-
ful” and “cooking” are translated with the female pronoun, whereas “clever” and
“reading” are attributed to the male pronoun. Acknowledging the issue, Google
points to limitations in gender-specific translations. . . . . . . . . . . . . . . . . . 3

2.1 Scaled dot-product attention (left) and multi-head attention (middle) in the Trans-
former (right) proposed by Vaswani et al. (2017). . . . . . . . . . . . . . . . . . . 12

2.2 Multilingual translation setting with parallel training data for four translation
directions: Hungarian↔English and English↔French. Hungarian↔French trans-
lations are inferred directly (zero-shot) or by translating via English (pivoting).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Illustration of the setting in which gender stereotyping in translation can occur:
While the Hungarian source sentence is gender-neutral, the English translation
requires specification of the gender of the referenced person. A biased system
might mirror imbalances in the training data and therefore reflect stereotypical
gender roles in its translations (i.e., in the given example output “she is a nurse”). 15

2.4 English→French translation generated by Google Translate, where the word
“teacher” referring to a female is translated to “mâıtresse”, which also translates
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(here, “intimidé”), or neither (here, “condamnée”). . . . . . . . . . . . . . . . . . 28

3.6 To assess the difficulty of recovering gender information before and after applying
the different model modifications encouraging language-agnostic representations,
we trained and tested a classifier to predict the gender conveyed by each token and
(after average pooling of the token embeddings) each sentence. Token-level classifi-
cation considered three classes, 0 : neuter, 1 : feminine, 2 : masculine; sentence-level
classification included two classes, 1 and 2. . . . . . . . . . . . . . . . . . . . . . 31

3.7 Studied gender phenomena include (i) the gender of a referent mentioned that
determined the gender of gender-marked words and (ii) the speaker’s gender. The
referent could be (1) the speaker or (2) a person other than the speaker; depending
on the referent, an utterance had (1) speaker-related or (2) speaker-independent
gender agreement (cf. utterance category (iii)). Explicit gender clues in depicted
example utterances are underlined and gender-marked words in corresponding
reference translations are italics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B.1 Overview of the experimental setup and the procedures followed to investigate
gender bias in multilingual MT, specifically zero-shot and pivot-based translation,
with and without the proposed model modifications and using different bridge
languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

V



List of Tables

2.1 MuST-SHE annotated segments organized by category. For each source-
translation pair in en-es, en-fr, and en-it, the correct reference translation (C-REF)
shows the realization of target gender-marked forms (Fem./Masc.) corresponding
to English gender-neutral words in the source (SRC). In the wrong reference trans-
lation (W-REF), Spanish, French, and Italian gender-marked words are swapped
to their opposite gender form. The rightmost column of the table provides infor-
mation about the speaker’s gender (Female/Male). . . . . . . . . . . . . . . . . . 20

4.1 Overview of the three MuST-C subsets used in the experiments. . . . . . . . . . 36
4.2 Statistics of the multiway MuST-SHE data used in the experiments. Instances are

split into groups according to the referent gender (Feminine/Masculine), gender
agreement (Category 1: speaker-related, Category 2: speaker-independent), and
speaker gender (Female/Male). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Average BLEU scores for zero-shot directions on the MuST-C test set ({s →
t|s, t ∈ {nl, pt, ro, ru} & s ̸= t}) and on MuST-SHE (fr ↔ it). Higher scores are
better, the bold score per dataset denotes the best performance of each approach,
and underlined are the best of both approaches if one is better. . . . . . . . . . . 40

5.2 Average BLEU scores for Correct (higher ↑ is better) and Wrong (lower ↓ is
better) MuST-SHE references complemented with the difference (Delta ↑ = Cor-
rect−Wrong) of the scores for the two reference sets. For the Correct scores and
the Deltas, bold scores denote the best results per approach and underlined are
the best of both approaches if one is better. . . . . . . . . . . . . . . . . . . . . . 41

5.3 Average BLEU scores for Correct (higher ↑ is better) and Wrong (lower ↓ is better)
MuST-SHE references, broken down by referent gender and complemented with
the scores’ difference (Delta ↑ = Correct−Wrong). For the Correct scores and the
Deltas, bold scores denote the best results per approach and underlined are the
best of both approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Average accuracy scores for Correct MuST-SHE references (γcorrect, higher ↑ is
better), broken down by referent gender and complemented with the referent gen-
der gap (δreferent , lower ↓ is better). Bold scores denote the best results per
approach and underlined are the best of both approaches. . . . . . . . . . . . . 44

5.5 Average accuracy scores for Wrong (γwrong, lower ↓ is better) MuST-SHE ref-
erences, broken down by referent gender and complemented with the difference
Delta ↑ = Correct−Wrong (cf. Correct scores in Table 5.4). For the Deltas,
bold scores denote the best results per approach, underlined are the best of both
approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

VI



5.6 Average accuracy scores for Correct (γcorrect, higher ↑ is better) MuST-SHE ref-
erences with speaker-related gender agreement, broken down by referent gender
(agrees with speaker gender), and complemented with the gender gap (δreferent ,
lower ↓ is better). Bold scores denote the best results per approach and underlined
are the best of both approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.7 Average accuracy scores for Correct (γcorrect, higher ↑ is better) MuST-SHE ref-
erences with speaker-independent gender agreement. Results are broken down by
referent gender (Feminine, Masculine) and speaker gender (Female, Male), and
are complemented with the referent and the speaker gender gap (δreferent , δ

F
speaker

and δMspeaker , lower ↓ is better). Bold scores denote the best results per approach
and underlined are the best of both approaches. . . . . . . . . . . . . . . . . . . . 47

5.8 Average accuracy scores for Correct (γcorrect, higher ↑ is better) MuST-SHE ref-
erences with speaker-related gender agreement (category 1) when bridging via
German (de) or Spanish (es); the change in accuracy compared to bridging via
English (cf. Table 5.6) is enclosed in parentheses. Results are broken down by
referent gender (agrees with speaker gender). Bold scores denote the best results
per approach and underlined are the best of both approaches. . . . . . . . . . . . 50

5.9 Referent gender gaps (δreferent , lower ↓) between feminine and masculine accuracies
for Correct MuST-SHE references (category 1, cf. Section 5.8). Bold scores denote
the best results per approach and underlined are the best of both approaches. . . 51

5.10 Differences (Delta, higher ↑ is better) between average accuracy scores for Correct
and Wrong MuST-SHE references (category 1, cf. Correct scores in Table 5.8)
when bridging via German (de) or Spanish (es); the change in difference compared
to bridging via English (cf. Table 5.6) is enclosed in parentheses. Results are
broken down by referent gender. Bold scores denote the best results per approach
and underlined are the best of both approaches. . . . . . . . . . . . . . . . . . . . 52

5.11 Average accuracy scores for Correct (γcorrect, higher ↑ is better) MuST-SHE ref-
erences with speaker-independent gender agreement (category 2) when bridging
via German (de) or Spanish (es); the change in accuracy compared to bridging via
English is enclosed in parentheses. Results are broken down by referent gender.
Bold scores denote the best results per approach and underlined are the best of
both approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.12 Referent gender gaps (δreferent , lower ↓) between feminine and masculine
accuracies for Correct MuST-SHE references (category 2, cf. Section 5.11).
Bold scores denote the best results per approach and underlined are the best of
both approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.13 Average accuracy scores for gender classifiers trained to recover gender signals (in-
dicative of referent gender) from encoder outputs, either meanpooled per sentence
or processed on the token-level. The results include the accuracy for both genders
combined (Fem. & Masc.) and those for each gender (e.g., Fem. or Masc.). For
each bridge language, bold scores denote the best results. . . . . . . . . . . . . . 56

B.1 Average BLEU scores for zero-shot directions on the MuST-C test set and on
MuST-SHE. Zero-shot directions are {nl, pt, ro, ru} ↔ {nl, pt, ro, ru} for the
MuST-C test set and fr ↔ it for MuST-SHE. . . . . . . . . . . . . . . . . . . . . 67

VII



B.2 Utterance Category 1 & 2: Average BLEU scores for Correct (higher ↑ is
better) and Wrong (lower ↓ is better) MuST-SHE references complemented with
the difference (Delta ↑ = Correct−Wrong) of the scores for the two reference
sets. Results for both gender word forms (All) are additionally broken down by
referent gender (Feminine, Masculine). For the Correct scores and the Deltas,
bold scores denote the best results per approach and underlined are the best of
both approaches if one is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B.3 Utterance Category 1 & 2: Average accuracy scores for Correct (higher ↑ is
better) and Wrong (lower ↓ is better) MuST-SHE references complemented with
the difference (Delta ↑ = Correct−Wrong) of the scores for the two reference
sets. Results for both gender word forms (All) are additionally broken down by
referent gender (Feminine, Masculine). For the Correct scores and the Deltas,
bold scores denote the best results per approach and underlined are the best of
both approaches if one is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.4 Utterance Category 1: Average accuracy scores for Correct (higher ↑ is better)
and Wrong (lower ↓ is better) MuST-SHE references with speaker-related gender
agreement, complemented with the difference (Delta ↑ = Correct−Wrong) of the
scores for the two reference sets. Results for both gender word forms (All) are
additionally broken down by referent gender (Feminine, Masculine). For the Cor-
rect scores and the Deltas, bold scores denote the best results per approach and
underlined are the best of both approaches if one is better. . . . . . . . . . . . . 70

B.5 Utterance Category 2: Average accuracy scores for Correct (higher ↑ is better)
and Wrong (lower ↓ is better) MuST-SHE references with speaker-independent
gender agreement, complemented with the difference (Delta ↑ = Correct−Wrong)
of the scores for the two reference sets. Results for both gender word forms (All)
are additionally broken down by referent gender (Feminine, Masculine). For the
Correct scores and the Deltas, bold scores denote the best results per approach
and underlined are the best of both approaches if one is better. . . . . . . . . . . 71

B.6 Utterance Category 1 & 2 Average accuracy scores for Correct (higher ↑ is
better) and Wrong (lower ↓ is better) MuST-SHE references complemented with
the difference (Delta ↑ = Correct−Wrong) of the scores for the two reference sets.
Results for both gender word forms (All) are additionally broken down by referent
gender (Feminine, Masculine) and by speaker gender (Female or Male). For the
Correct scores and the Deltas, bold scores denote the best results per approach
and underlined are the best of both approaches if one is better. . . . . . . . . . . 72

B.7 Utterance Category 2: Average accuracy scores for Correct (higher ↑ is better)
and Wrong (lower ↓ is better) MuST-SHE references with speaker-independent
gender agreement, complemented with the difference (Delta ↑ = Correct−Wrong)
of the scores for the two reference sets. Results for both gender word forms (All)
are additionally broken down by referent gender (Feminine, Masculine) and by
speaker gender (Female or Male). For the Correct scores and the Deltas, bold
scores denote the best results per approach and underlined are the best of both
approaches if one is better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

VIII



IX



List of Abbreviations

AI artificial intelligence.

ANN artificial neural network.

BPE byte pair encoding.

CE cross entropy.

CLM conditional language model.

LM language model.

LSTM long short-term memory.

ML machine learning.

MNMT multilingual neural machine translation.

MT machine translation.

NLP natural language processing.

NMT neural machine translation.

RBMT rule-based machine translation.

RNN recurrent neural network.

SGD stochastic gradient descent.

SMT statistical machine translation.

X



1

Introduction

Machine translation (MT) is the process of using artificial intelligence (AI) to automatically
translate text from one language to another without human involvement. As such, it is a powerful
instrument for communicating and exchanging information across linguistic barriers; it reduces
both cost and time, enabling the translation of millions of words almost instantaneously, often
supporting up to a hundred languages. Modern MT goes beyond simple word-to-word translation
to accurately convey the original meaning of the source text in the target language. Most
importantly, the rise of artificial neural networks within the field of AI has paved the way for the
now prevailing approach to MT, termed neural machine translation (NMT). The great success
of NMT is based on its “end-to-end” learning approach, having a single model learn all the steps
between the initial input phase and the final output result, including sentence representation,
determining semantically correct word translations, and generating grammatically correct and
fluent target language sentences.

Contemporary NMT systems, which typically support translation between multiple lan-
guages, are trained on large amounts of parallel data consisting of pairs of sentences and their
translations. Increased amounts of training data generally result in improved translation quality.
Unfortunately, many languages lack parallel digital data, and are thus referred to as resource-
poor languages. Building NMT systems for these languages is a great challenge due to the
data sparseness problem, the phenomenon of not observing enough data, if any, to model lan-
guage accurately. A promising line of research addressing this issue is to leverage resource-rich
languages, such as English, in order to improve the translation of resource-poor languages. In
the extreme case, there are no resources available, making the ability to translate between lan-
guage pairs unseen during training, i.e., zero-shot translation, an important aspect in multi-
lingual neural machine translation (MNMT). There are two prevalent approaches to the idea
of leveraging available language resources to perform translation for unknown translation di-
rections: pivot-based translation through explicit bridging and zero-shot translation performing
implicitly-learned bridging.

In pivot-based translation, a high-resource language is used as a pivot language to build
an explicit bridge between low-resource language pairs. Specifically, pivoting is performed by
first translating to a common language, like English, and then translating from the common
language into the desired target language. Meanwhile, zero-shot translation refers to direct
translation between language pairs never explicitly seen by the system during training. The idea
behind this approach is that an end-to-end system can learn a shared semantic representation
for all languages it is trained on that subsequently can be used as an implicit bridge to perform
translation between new language pairs. The advantage of zero-shot translation over pivoting
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is that the direct translation circumvents error propagation, reduces computation time, and is
easily extendable to support a growing number of languages. However, achieving high-quality
zero-shot translation is still a challenging task.

1.1 Motivation

As we employ a growing number of machine-based solutions relying on sophisticated machine
learning (ML) algorithms, we see human problems occurring within them. Arguably one of
the biggest concerns at present is the societal impact of bias and discrimination, which have
appeared repeatedly in various technological applications. One of many examples is the bias
found in numerous of the MT applications in use today, such as Google Translate, which alone
serves millions of people daily. With the growing impact of translation technologies on our
everyday lives, fears of machine bias and discrimination have also increased within and beyond
the academic community.

In 2021, a Twitter user deemed Google Translate’s Hungarian-English translations as a por-
trayal of “everyday sexism” (Vargha, 2021). A screenshot attached to her tweet1 showed that
Hungarian sentences – lacking any gender specification as Hungarian is a genderless language
with no gendered pronouns – were translated into their English counterparts by seemingly re-
flecting stereotypical gender roles. The Twitter user’s observation, preceding a series of similar
issues reported by other users for different languages, reveals the bias in multilingual MT systems
and serves as a prime example of the phenomenon of bias in ML-based decision-making at large.
While technology is often perceived by the public to be untouched by human bias, the reality is
that the technologies shaping our world are deeply shaped by the humans who create them. In
the case of ML, we are feeding historical data to have a model learn how to derive decisions in
the future. While this data-driven approach can, in some cases, already reach human parity, we
must acknowledge that patterns of humans’ past discriminatory decision-making practices are
built into these models, inevitably producing biased systems.

Gender bias, in particular, is linked to the prevalence of gender stereotyping, namely the
preconception about attributes, characteristics, or the roles that are or ought to be possessed by,
or performed by, women and men. An example for stereotyping is the association between the
male gender and prestigious STEM professions, referring to careers related to science, technology,
engineering, and mathematics. In the now infamous case of Google Translate, MT has been
proven to hallucinate the gender of a person, based on stereotypes, when the source sentence
does not provide any gender information, as illustrated in the Hungarian-English translations
in Figure 1.1 (e.g., the gender-neutral sentence “Ő professzor” being translated to “He is a
professor”).

These stereotypical biases are harmful since they perpetuate and perhaps even amplify in-
equalities. For instance, given that a profession appears in a masculine context, i.e., associates
with a male 70% of the times it is mentioned in texts used to train an MT system, the system
may recognize and follow this pattern or even reflect it 100% of the times as male. As a result,
women in that profession are under-represented, or worse, are essentially “wiped out of existence”
altogether, revealing the far-reaching nature of the problem.

The phenomenon of machine bias does not exist due to active discrimination, as the bias is
largely unconscious. In the case of Google Translate, the algorithm defaults to the masculine
pronoun disproportionately more often, presumably because “he” more commonly appears in
available utilized training resources, e.g., texts on the web, than “she”; despite half of the popu-
lation being female. This example highlights the root cause of the problem of gender-biased MT:

1https://twitter.com/DoraVargha/status/1373211762108076034
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Figure 1.1: Translating sentences from a genderless language such as Hungarian to English
provides a glimpse into the phenomenon of gender bias in MT. The screenshot shows how Google
Translate (as of August 2022) interprets occupations from traditionally male-dominated fields,
such as “politician”, as male while interpreting “kindergarten teacher” as female. Moreover,
adjectives and verbs such as “beautiful” and “cooking” are translated with the female pronoun,
whereas “clever” and “reading” are attributed to the male pronoun. Acknowledging the issue,
Google points to limitations in gender-specific translations.

Whenever data is collected and analyzed without accounting for imbalanced representations of
gender within the data, models reflecting or amplifying these imbalances in their outputs are the
result.

Some people have argued that the main danger of it is that technology is often assumed to
be neutral when, in fact, these systems are built under the guise of objectivity—for the least
apparent bias is often the most dangerous. After all, we cannot prevent the consequences of bias
or even acknowledge its impact if we are not aware of it. As tech practitioners and developers
broaden and learn new techniques for data science, ML, and AI, a deep understanding of bias
and how to identify and prevent it is vital to creating a world that is positively – rather than
negatively – shaped by technology. The general goal of this thesis is to shed more light on the
undesired phenomenon, as combating it will make translation technology more inclusive and less
discriminatory.

1.2 Problem Statement

Despite the importance of making translation services fairer and more equitable, investigating
gender bias in MT is still a relatively new field of inquiry. To facilitate the evaluation of models’
gender biases, some of the earliest works have published gender-sensitive benchmarks, including
WinoMT (Saunders et al., 2020; Stanovsky et al., 2019) and MuST-SHE (Bentivogli et al., 2020).
Concerning the mitigation of gender bias, so far, most research has concentrated on manipulating
the training data to reduce unfair gender treatment. Different strategies include the integration
of additional information, for instance through gender tags (Vanmassenhove et al., 2018) or
context information (Basta et al., 2020). Other works have examined the effect of debiasing the
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representations of words in the form of pre-trained word embeddings (Escudé Font & Costa-
Jussa, 2019) or fine-tuning models with gender-balanced datasets featuring an equal amount of
feminine and masculine references (Costa-jussà et al., 2020).

While existing works have presented initial and partially effective approaches to address
the problem of gender-biased MT, a critical aspect of the problem has so far received little to
no attention: Since multilingual translation systems, translating between multiple source and
target languages, are today’s de facto standard, it is vital to study gender bias in a zero-shot
translation setting specifically. Translating between unknown language pairs creates a challenge
for multilingual MT due to the morphological and structural diversity of different languages,
including differences in gender inflection, which affect gender translation, particularly translation
models’ ability to preserve gender. It stands to reason that these linguistic aspects affect the
emergence of gender biases in multilingual translation systems.

Altogether, the primary objective that practitioners and researchers ultimately aspire to
accomplish is to reduce and, wherever possible, eliminate gender bias in high-quality multilingual
MT while expanding models to include new languages. Motivated by this objective, in this thesis,
we aim to investigate gender biases in zero-shot translation, an up-and-rising approach to achieve
wide translation coverage, including many of the world’s languages.

1.3 Research Questions

Our investigation into gender bias in multilingual MT is guided by three research questions.
All questions address the different aspects of the research field’s primary objective: achieving
high-quality translations with minimized gender bias and extensible multi-language support. In
terms of extensible multi-language support, we want to focus on the zero-shot translation setting
and models capable of zero-shot translation specifically, which have achieved impressive results
since they first emerged.

Despite their success, we acknowledge that high-quality zero-shot translations for a variety of
different languages have yet to be accomplished. In light of this, regarding gender biases, we aim
to compare zero-shot translation to pivoting, another multilingual translation approach widely
used to overcome language resource limitations. In view of this, the first research question to be
answered in this thesis is:

Research Question 1: How do zero-shot and pivot-based translation compare regarding
gender-biased outputs in a zero-shot translation setting?

Given that the lexical encoding of gender relations and identities can vary from one language to
another, it is unsurprising that multilingual MT relying on pivot languages bears the risk of losing
gender information along the source-pivot-target translation pipeline. Zero-shot translation does
not face this issue as it circumvents the explicit bridging step of pivoting, relying on implicitly-
learned universal semantic representations of the source information. In light of this, we put
forward the following hypothesis, which we test as part of our efforts to address the first research
question:

On average, zero-shot translation generates fewer gender-biased outputs than pivot-based transla-
tion, where gender bias is conceived as the systematic and unfair discrimination against a group
of individuals of the same sex, here either women or men, in favor of the other gender group,
while maintaining comparable translation quality.
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The results obtained during our investigation will either reject or fail to reject this central hy-
pothesis. Along the way, we aim to study the influence of the training data and different model
modifications on zero-shot and pivot-based translations of gender expressions.

Since languages express gender differently, in less and more obvious ways, we believe that the
bridge language—the language that is present in all language pairs included during training—
plays an important role in an MT model’s ability to provide correct and unbiased translations
of gender-specific words. We imagine training models using a highly gender-inflected bridge
language, such as Spanish, yields better gender translations and reduces gender biases than a
largely gender-neutral language, such as English, which is typically the most common language
in training data. In light of this, the second research question is:

Research Question 2: Does the bridge language affect the gender biases perpetuated by
zero-shot and pivot-based translations?

Besides studying the impact of the bridge language, we want to explore different model modifi-
cations to mitigate gender-biased model behavior. We aim to use methods that have previously
shown to achieve zero-shot performance gains, to test whether translation quality and gender
biases are negatively correlated. Accordingly, we formulate the third research question:

Research Question 3: Do translation quality improvements of zero-shot models reduce their
gender biases?

1.4 Thesis Outline

Apart from this introductory chapter, the thesis comprises five additional Chapters. Chap-
ter 2 establishes a theoretical base and provides the context for the coming chapters of research
addressing the problem statement. The chapter introduces the task of MNMT at large and de-
scribes existing techniques to detect, assess, and mitigate gender bias in MT in detail. Chapter 3
describes the design of the experiments performed to answer the research questions; this includes
the research procedure, techniques, and materials used to conduct the experiments and to assess
the results. Chapter 4 outlines technical details required to ensure better comprehensibility and
reproducibility of the experiments. Chapter 5 presents the results of the experiments and the
discussions thereof. Chapter 6 summarizes the key findings of the experiments in answers to the
research questions and concludes by pointing out avenues for potential future work.
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2

Background & Related Work

This chapter sets the thesis in the context of existing literature related to the thesis topic.
Section 2.1 reviews concepts and methods of NMT, the currently prevailing approach to MT.
First, we introduce the basics of NMT according to the predictive pipeline: learning vocabularies
and representing them using word embeddings, modeling translation using the encoder-decoder
framework, model training, and inference. Moreover, we describe the state-of-the-art NMT
model architecture and discuss approaches to multilingual NMT, including pivoting and zero-
shot translation. Section 2.2 provides a brief overview of related works on the manifestation of
gender bias in MT and its evaluation and mitigation.

2.1 Neural Machine Translation

MT is the task of translating natural language sentences using computers, a concept first put
forward shortly after the development of the first programmable, general-purpose digital com-
puter in the mid-1940s. Since then, MT has been considered one of the most challenging tasks
in the field of natural language processing (NLP). Early approaches to MT relied heavily on
hand-crafted translation rules and linguistic knowledge; however, since natural languages are
inherently complex, covering all language irregularities with manual translation rules proved
challenging.

With the availability of large-scale parallel corpora, corpus-based approaches that learn lin-
guistic information and translation knowledge from data have gained increasing attention. Unlike
rule-based machine translation (RBMT), statistical machine translation (SMT) (Brown et al.,
1990; Koehn et al., 2003) learns intrinsic language patterns such as word alignments or grammar
directly from parallel corpora. Therefore, SMT is less dependable on manual feature engineering
and human linguistic labor than RBMT. However, incapable of modeling long-distance depen-
dencies between words, the translation quality of SMT is far from satisfactory. With recent
advances in deep learning—part of a broader family of machine learning methods, using artificial
neural network (ANN)1—NMT (Bahdanau et al., 2014; K. Cho et al., 2014b; Kalchbrenner &
Blunsom, 2013; Sutskever et al., 2014) emerged as a new paradigm and quickly replaced SMT
as the mainstream approach to MT.

1A brief overview of the basic principles of deep learning can be found in the appendix A.1.
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2.1.1 Vocabulary Building & Embeddings

As a data-driven approach, NMT starts with gathering a sufficiently large parallel text corpus,
typically aligned on the sentence level, i.e., a sentence paired with its translation(s). Before
training, the raw text corpus is preprocessed, starting with tokenization, during which sentences
are split into smaller units called tokens, which can be either words, characters, or subwords.
The discrete tokens are represented as vectors using continuous embedding: Mathematically, an
embedding is a mapping from one set to another—it is continuous if the mapping is continuous.
Embedding layers in neural networks use this concept to map a token into a continuous vector e ∈
RD of size D to carry out semantically founded numerical operations on the inputs. Embeddings
are fed to the lower network layers for fine-grained feature extraction.

The set of unique tokens appearing in the text corpus is the vocabulary. In NMT, embedding
vectors corresponding to the tokens in the vocabulary are typically gathered into matrices which
are treated as a set of parameters of the translation model. Large models, i.e., neural networks
with many parameters, are computationally expensive as they require large memory and small
batch sizes, which leads to noisier gradients, slower training, and worse model performance. Since
the size of the embedding matrices correlates with the vocabulary size, it is problematic to build
vocabularies covering all words in a language; instead, it is desirable to avoid model inflation by
reducing the vocabulary size to a moderate size.

Since a majority of the words rarely appear in the training corpus,2 it is favorable to represent
the most common words in the vocabulary as single tokens while breaking down rare words into
two or more subword tokens. Common methods for subword tokenization are word piece models
(Wu et al., 2016) and byte pair encoding (BPE) (Sennrich et al., 2016). BPE initializes the set
of available subwords with the character set of the training data and extends it iteratively in
subsequent merge operations. During a merge, two units with the most frequent co-occurrence
in the text are combined. The operation is repeated until the desired pre-defined vocabulary
size is reached. Following this procedure, the vocabulary is first built from the training data and
then used to apply the same tokenization to the validation and test data.

2.1.2 Modeling Translation

Modeled at the sentence level, translation can be categorized as a sequence-to-sequence learning
problem involving two sequences: a source language sentence x = (x1, ..., xn, ..., xN ) and a target
language sentence y = (y1, ..., yt, ..., yT ). The lengths of these sequences can be different. In
translation, the goal is to find the most probable target sequence y given input x; formally, the
target sequence that maximizes the conditional probability P (y|x):

P (y|x) : y∗ = argmaxyP (y|x). (2.1)

NMT learns a function P (y|x, θ) with a set of parameters θ to find the translation y that maxi-
mizes the conditional probability for a given input x:

y∗ = argmaxyP (y|x, θ). (2.2)

In sequence-to-sequence learning, this is considered a conditional language model (CLM). A
language model (LM) learns to estimate the unconditional probability P (y) of a target sequence

2This can be derived from Zipf’s law which, in the context of linguistics, states that the frequency of any
word occurring in a corpus is inversely proportional to its rank in the frequency table. Thus, the most frequent
word occurs approximately twice as often as the second most frequent word, three times as often as the third
most frequent word, and so on.
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of tokens y = (y1, y2, ..., yT ), formally defined as:

P (y) =

T∏
t=1

P (yt|y<t), (2.3)

where y<t is the partial target sequence up until position t−1 (y1, y2..., yt−1). Accordingly, each
multiplication term is the probability of the token at position t given its previous context. A
CLM operates similarly to an LM, but additionally receives source information x:

P (y|x) =

T∏
t=1

P (yt|y<t, x). (2.4)

The standard modeling paradigm for sequence-to-sequence tasks, including translation, is
the encoder-decoder framework (K. Cho et al., 2014b). This framework consists of two key
components: the encoder that reads the source sequence and produces a representation of it, and
the decoder that uses the source representation from the encoder to generate the target sequence.
While over the years, different encoder-decoder networks were proposed, they all share the same
high-level translation pipeline: The source and previously generated target tokens are fed into
the network; for the source and previous target, the network retrieves a vector representation
from the decoder, from which it predicts a probability distribution for the next token in the
target sequence. The probability distribution is a vector of size |V | for a vocabulary V of target
language tokens. The network uses a linear layer to transform the decoder vector representation
of dimensionality d into a |V |-sized vector z. Afterward, the softmax operation is applied; it
ensures that the final outputs are positive numbers that sum up to 1 so that they can be treated
as probabilities. Formally, the softmax operation is defined as:

softmax(z) =
exp(z)∑|V |

i=1 exp(zi)
, (2.5)

where zi denotes the i-th component in z. Finally, the token corresponding to the highest
probability among the probabilities produced by the softmax function is the final output token.

The simplest encoder-decoder model consists of two recurrent neural networks (RNNs), e.g.,
two long short-term memory (LSTM) networks: one for the encoder and another for the decoder.
An RNN encoder reads the source sentence by sequentially processing the tokens of a sequence
while maintaining an internal hidden state that encodes information about the tokens it has seen
so far. In general, the hidden state at any position n can be computed based on the current
input and the previous hidden state:

hn = RNNenc(xn, hn−1). (2.6)

The final state is used as the initial state of the decoder RNN. The idea is that the final encoder
state—referred to as context vector— encodes all information about the source that the decoder
needs to generate the target sequence. The decoder then repeatedly retrieves a state vector for
each position in the target sequence, compressing the decoding history into a state vector at any
given time step (i.e., position) t:

st = RNNdec(yt−1, st−1). (2.7)

2.1.3 Training

Generally, the training objective of a neural network is to minimize the loss—a metric that
assesses the network’s prediction error between the true output (the target) and the predicted
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output on the training data. At each training step, the model tries to maximize the probability
it assigns to the correct next token and adjusts its parameters θ according to the error. The stan-
dard loss function in NMT is the cross entropy (CE); expressed as the sum over the vocabulary
V at position t for a sentence of length T, it is computed as:

J(θ) = − 1

T

T∑
t=1

J (t)(θ) = − 1

T

|V |∑
j=1

yt,j log(ŷt,j), (2.8)

where ŷt,j is the softmax output probability distribution over the vocabulary V at time step
t. The goal is to find a set of model parameters θ for which the CE error is minimal. In a
loss landscape, projecting error values across a parameter space, a model moves toward a local
minimum using gradient descent or a variant such as stochastic gradient descent (SGD) (Kiefer
& Wolfowitz, 1952). The gradient measures the direction of the steepest ascent in the loss
landscape given the current parameters. Gradient descent, an iterative optimization algorithm,
takes a step in the direction of the negative gradient of the loss function to reduce the loss as
quickly as possible. The gradient information is used to repeatedly adjust the model parameters
as per the following update equation:

θ(t+1) = θ(t) − α∆θJ
(t), (2.9)

where α is the learning rate—the parameter in any optimization algorithm that determines the
step size at each iteration while moving toward a minimum of the loss function. By virtue of the
backpropagation algorithm (Rumelhart et al., 1986), we can efficiently compute the gradient of
J (t) with respect to θ. Instead of computing gradients on the full training set, SGD computes the
loss function and gradients on a subset—a minibatch—of the training set. With a well-chosen
learning rate α, the parameters θ are guaranteed to converge into a local optimum over time.
In practice, instead of the plain SGD optimizer, adaptive learning rate optimizers such as Adam
(Kingma & Ba, 2014) are found to greatly reduce the training time.

2.1.4 Inference

Decoding the most likely output sequence involves searching through all the possible output
sequences based on their likelihood. Since the vocabulary typically spans hundreds of thousands
of words, the search space is very large, namely exponential in the length of the output sequence;
thus, finding the one translation with the highest probability among all possible translations is
impractical.

In practice, heuristic search methods are used to return an approximate that is a “good
enough” decoded output sequence for a given prediction. This is typically done by scoring
alternative candidate sequences of words based on their likelihood, using a greedy search or a
beam search algorithm to locate candidate sequences of text. The candidates represent parallel
searches—i.e., beams—through the sequence of probabilities; the number of beams is controlled
by a parameter called beam width k. Larger beam widths result in better performance of
a model as multiple candidate sequences increase the likelihood of better matching a target
sequence. However, this improved performance results in a decrease in decoding speed. At each
time step t during inference, beam search expands all possible translations and keeps only the
k best candidates with the highest probability as the most likely possible translations. The
search process can terminate for each candidate separately by reaching a maximum length, an
end-of-sequence token, or a threshold likelihood.
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2.1.5 State-of-the-Art Architecture

A fundamental problem in NMT is the translation of long sentences due to a weakness of the
fixed-length context vector (K. Cho et al., 2014a): In RNNs, the further back we go in the
sequence, the more computation steps there are between an input and an output vector; this
causes RNNs to “forget” information conveyed by words that occur early in the sequence. This
issue gave rise to a different concept to form the context vectors, first introduced by Bahdanau
et al. (2014), known as attention.

Attention

Attention is the concept of selectively concentrating on certain aspects of information while
ignoring other perceivable information. In deep learning, attention provides a network with a
“memory” containing facts that can later be exploited to sequentially perform a task, at each
time step having the ability to put attention on different elements in the memory depending on
their importance indicated by a weight. Instead of compressing an entire sequence’s information
into a single vector, attention produces representations for all tokens.

At each decoding step, the attention mechanism involves the following operations. First, it
computes attention scores from the current decoder state st, and all encoder states h1, h2, ..., hN .
For each encoder state hn, attention computes its “relevance” for the current decoder state
st. Specifically, it applies a scoring function that receives one decoder state and one encoder
state and returns a scalar value called attention score. A popular choice of scoring function is
the dot-product operation which gives an intuition about how much two vectors point in the
same direction; therefore, it computes a similarity score. Next, attention applies the softmax
operation to the attention scores to obtain a probability distribution, typically referred to as
attention weights. Finally, the attention output is computed as the weighted sum of all encoder
states (i.e., multiplied by the attention weights).

The introduction of attention is considered a milestone in NMT architecture research; since
then, it has become a vital part of various NMT architectures, culminating in the Transformer
architecture (Vaswani et al., 2017).

Transformer

In 2017, Vaswani et al. (2017) proposed a novel neural network architecture, the Transformer,
which relies only on attention mechanisms without any recurrences. Besides better translation
quality, the model is faster to train and has become the de facto standard for many sequence-
to-sequence tasks. Whereas RNNs process sequences sequentially, in a Transformer encoder and
decoder, tokens interact with each other, all at once, regardless of their position in the sentence,
using the concept of self-attention.

Since words (e.g., “can”) often have more than one meaning represented in their embedding,
it is crucial to leverage context information (from other words) to recognize which meaning the
model should pay attention to. To highlight different aspects encoded within the embeddings,
they experience three separate linear transformations3 resulting in three vectors: a query, a key,
and a value vector. The query-key-value concept of self-attention is analogous to a retrieval
process. A query is seeking information to gain a better semantic understanding of itself and
therefore consults a memory of key-value pairs. Each key responds to a query’s request and is
used to compute an attention weight; the weights represent similarity scores between a query
and the keys. The values are used to compute the attention output, delivering their information

3These transformations occur when the embeddings are multiplied by three different weight matrices, which
are learned through training.
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to any query that inquires about it. Hence, for each query vector, an attention output vector is
computed as a weighted sum of the value vectors.

Under the assumption that query, key, and value vectors have the same dimension d, they can
be stacked into matrices Q ∈ Rn×d, K ∈ Rm×d, and V ∈ Rm×d (for n queries and m key-value
pairs). In their paper, Vaswani et al. (2017) proposed the novel scaled dot-product attention,
where they scaled down the dot-product similarity scores for numerical stability before passing
them through the softmax function:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (2.10)

with a scaling factor
√
dk and KT being the transpose of K. The resulting matrix holds contex-

tual information for each token embedding.
Often, a word will have to pay attention to multiple other words, which a single self-attention

operation may not be capable of. Multi-head attention expands the model’s ability to focus on
different positions in the text, performing H self-attention operations in parallel. It uses not one
but H attention heads and H sets of weight matrices for queries, keys, and values. After training,
each set is used to project the input embeddings, or vectors from lower encoders or decoders,
into a different representation subspace. The output of multi-head attention is the concatenation
of the outputs of all attention heads multiplied with yet another weight matrix WO, ensuring
the resultant vector is of the same size as the input embedding vector. The dimensionality of
the attention heads is usually divided by H to avoid increasing the number of model parameters.
Formally, multi-head attention can be expressed as:

MultiHead(Q,K, V ) = Concat(head1, ...,headH)WO, (2.11)

with weight matrix WO ∈ Rd×d, where

headh = Attention(QWQ
h ,KWK

h , V WV
h ), (2.12)

with weight matrices WQ
h ,WK

h ,WV
h ∈ Rd× d

H for h ∈ [1, H].
Multi-head attention occurs in three ways in the Transformer model. First, in the encoder,

multi-head self-attention produces context-sensitive word representations, which depend on the
whole source sentence. Second, in the decoder, masked multi-head self-attention is used to con-
dition the outputs on the current translation history. At each position, the decoder is allowed to
attend to all decoder positions up to and including that position but nothing beyond. With the
entire target sequence being fed to the decoder during training, the model needs to prevent de-
coder positions from attending to subsequent positions. Therefore, scaled dot-product attention
masks all values in the input of the softmax corresponding to future positions in the sentence.
Third, multi-head cross-attention is used to condition the decoder on the source sequence, such
that every position in the decoder attends to all positions in the input sequence. Here, attention
is computed using the queries from previous decoder layers and the keys and values from the
output of the encoder.

The architecture of the Transformer proposed by Vaswani et al. (2017) is depicted in Figure
2.1. In their paper, they use an encoder and a decoder composed of a stack of N=6 identical
layers and H=8 attention heads. Each encoder layer consists of two sub-layers, a multi-head
self-attention mechanism, and a simple position-wise fully connected feed-forward network. In
addition to the two sub-layers in encoder layers, decoder layers include a third sub-layer, which
performs multi-head cross-attention over the output of the encoder stack. In the encoder and
decoder, the authors further employ a residual connection (He et al., 2016) followed by layer
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Figure 2.1: Scaled dot-product attention (left) and multi-head attention (middle) in the Trans-
former (right) proposed by Vaswani et al. (2017).

normalization (Ba et al., 2016) to counteract vanishing gradients, which effectively prevent the
model weights from changing during training, and to improve performance and training time,
respectively. To introduce a notion of order into the model, Vaswani et al. (2017) add stacked
sine and cosine functions of different frequencies as positional encodings to the input embeddings
at the bottoms of the encoder and decoder stacks.

2.1.6 Multilingual Translation

Since end-to-end translation systems rose to the state of the art, researchers have been seeking to
develop a single model for translation between as many languages as possible through the effective
use of available linguistic resources. Naturally, the lack of training data among resource-poor
languages poses a key problem in multilingual translation. So far, existing works have pursued
different lines of research to address this problem. Intuitively, collecting more training data and
making full use of the potential of that data is one strategy to follow. Compared with parallel
corpus collection, it is easier to obtain a large amount of monolingual data, which can be used for
training data augmentation. A widely used method is back-translation (Sennrich et al., 2015), in
which the main idea is to first train a standard NMT model on a small parallel corpus, and then
use the model to translate a large quantity of monolingual data, to generate a pseudo bilingual
corpus that can be used to retrain the model.

Another promising line of research is to leverage resource-rich languages, such as English, to
improve the translation of resource-poor languages. There are two different ways of achieving
this: pivot-based translation and zero-shot translation.

In pivot-based translation, a high-resource language is used as a pivot language to build a
bridge between low-resource language pairs. The simplest pivot-based translation method uses
two cascaded models, where the first model translates the source sentence into the pivot language,
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Hungarian English French

Zero-Shot

Pivot Pivot

Figure 2.2: Multilingual translation setting with parallel training data for four translation
directions: Hungarian↔English and English↔French. Hungarian↔French translations are in-
ferred directly (zero-shot) or by translating via English (pivoting).

and the second model subsequently translates the pivot sentence into the target sentence. Figure
2.2 illustrates pivot-based Hungarian-French translation via English. Pivot-based translation
is widely used in practical systems as it is easy to implement. However, the downside of this
method is that the cascaded system suffers from error propagation: a translation error in the
source-pivot translation will be propagated down the line to the pivot-target translation.

A different approach uses implicitly-learned bridging to translate between low-resource lan-
guages: The idea is to encapsulate several translation directions in a single model, where all
parameters are shared implicitly by all language pairs modeled; this forces the model to general-
ize across language boundaries during training. These models are capable of zero-shot translation,
that is translation between language pairs the system has never seen in this combination dur-
ing training. For example, a multilingual NMT model trained with Hungarian→English and
English→French examples can generate reasonable translations for Hungarian→French, despite
never having seen any data for that language pair. When language pairs with little available
data and language pairs with abundant data are mixed into a single model, translation quality
on the resource-poor language pairs is, in some cases, significantly improved because the model
acquires extra knowledge from the other languages (Shatz, 2017; Zoph & Knight, 2016). Com-
pared to pivot-based translation, direct translation circumvents error propagation and reduces
computation time. However, achieving high-quality zero-shot translation is a challenging task as
prior works have shown that standard systems tend to generate poor outputs.

Existing works suggest that this difficulty arises from models’ hidden language representations
explicitly tailored to the language pairs included during training. As such, they are not well suited
to model new, unfamiliar languages, as is the requirement in zero-shot translation, especially
when they are very different concerning linguistic features (e.g., morphology and syntax).

Facilitating Zero-Shot Translation

Existing work (Liu et al., 2021) suggests that the difficulty in high-quality zero-shot translation
arises from models’ hidden language representations explicitly tailored to the language pairs
included during training. As such, they are not well suited to model new, unfamiliar languages,
as is the requirement in zero-shot translation, especially when they are very different concerning
linguistic features (e.g., morphology or syntax).

Removed Residual Connection Liu et al. (2021) demonstrate that a main factor causing
language-specific representations is the strong positional correspondence of encoder representa-
tions to input tokens. Because sentences and their translations are often of varying lengths and
word order, the same semantic meaning gets encoded into different representations, i.e., differ-
ent hidden state sequences, rather than into language-agnostic representations based on which
the decoder can translate into any target language required. In light of this, the authors relax
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this structural constraint of the typical Transformer and offer the model some freedom for word
reordering in the encoder. To achieve this, they remove residual connections in a middle en-
coder layer. Their results demonstrate that removed residual connections can facilitate zero-shot
translation, whereas it worsened pivot-based translation (Liu et al., 2021).

Similarity Regularizer Another approach shown to facilitate zero-shot translation introduces
auxiliary training objectives to encourage similarity between representations of different languages
(Arivazhagan et al., 2019; Liu & Niehues, 2021; Pham et al., 2019): The core idea is that sen-
tences that are semantically similar should also be represented similarly, regardless of the source
language. Besides the translation loss, Liu and Niehues (2021) encourage the model to minimize
the Euclidean distance between the (mean-pooled) source and target sentence embeddings. A
drawback of the similarity regularizer is the need to select pooling methods, distance metrics,
and a suitable scaling factor.

Adversarial Language Classifier A different strategy to remove source language signals in
encoder representations is adversarial training (Ganin et al., 2016): Similar to Arivazhagan et
al. (2019), the idea is to train an adversarial classifier—jointly with the translation model—that
aims to identify the source language given a representation. High accuracy of this adversarial lan-
guage classifier implies unequivocal signals within encoder representations hinting at the source
language. To discourage source language-specific representations, the loss function is designed
to penalize high language classification accuracy:

Lenc dec = LMT + Ladv classifier, with (2.13)

Ladv classifier =

C∑
c=1

yc · log(1 − pc), (2.14)

where C is the number of classes to predict, yc is a binary indicator whether the true language
label is c, and pc is the probability predicted for language c.

2.2 Gender Bias in Machine Translation

Bias and discrimination is one of the most challenging ethical issues at the center of attention in
the field of AI. Some of the early pioneers on the topic of bias in computer systems, Friedman
and Nissenbaum (2017), use the term bias to refer to “computer systems that systematically
and unfairly discriminate against certain individuals or groups of individuals in favor of others”.
Interest in understanding, assessing, and mitigating bias is steadily growing within the NLP
community, as it is widely recognized that NLP tools encode and reflect controversial social
asymmetries and have the potential to propagate them further for many seemingly neutral tasks,
MT included (Savoldi et al., 2021).

One of the most widespread societal asymmetries that exist in such systems is gender bias,
which can be defined as the preference or prejudice toward one gender over the other. Naturally,
gender in language is signaled through grammatical gender (e.g., el solM versus la lunaF ) or se-
mantic gender in the form of gender identity (e.g., roosterM versus henF ). In society, human bias
introduces another category of semantic gender associations that is unwarranted and factitious,
as it is not founded in linguistic systems’ rules (e.g., doctorM versus nurseF ). This category
present in natural language training examples causes NLP models to learn and reflect human
gender biases.
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Gender bias can manifest itself in different parts of the predictive pipeline of NLP systems,
such as in the raw training data, word representations, and language modeling algorithms. NLP
systems exhibiting biases in any of these parts can produce gender-biased predictions and even
amplify biases present in the training data. One example of such discriminatory behavior can
be observed in translation models; they are highly susceptible to gender biases because they are
typically trained on parallel corpora featuring social bias and demographic misrepresentation
across a spectrum of different languages.

2.2.1 Manifestation

In a large-scale analysis of the plethora of existing research addressing gender bias in MT, Savoldi
et al. (2021) categorize them based on two conceptualizations of the problem: research works
focusing on the weight of prejudice and stereotypes in MT, and studies assessing whether gender
is preserved in translation.

Gender Stereotyping

The problem of stereotyping in MT can appear in different translation settings. An obvious
case is the translation of phrases in gender-neutral languages, such as Hungarian or Korean,
into languages that encode gender markings (e.g. English or French). The propagation of
stereotypes is a widely researched form of gender bias in MT, one that, so far, has often been
narrowed down to occupational stereotyping (Savoldi et al., 2021): This type of stereotyping
has been investigated through the translation of occupations from gender-neutral languages such
as Hungarian or Korean into English (W. I. Cho et al., 2019; Prates et al., 2020). A common
finding is that large-scale MT systems yield a masculine default, showing strong a bias toward
predicting male pronouns. A typical translation setting of this form, exemplifying ambiguity due
to gender-neutrality in the source sentence, is illustrated in Figure 2.3.

Hungarian English

ő egy nővér
she is a nurse

he is a nurse

Figure 2.3: Illustration of the setting in which gender stereotyping in translation can occur:
While the Hungarian source sentence is gender-neutral, the English translation requires specifi-
cation of the gender of the referenced person. A biased system might mirror imbalances in the
training data and therefore reflect stereotypical gender roles in its translations (i.e., in the given
example output “she is a nurse”).

The harmful effect that this can have is revealed when translating a simple sentence as “The
teacher approached her student” from English to French, as can be seen in Figure 2.4. Google
Translate turns the profession of a female teacher into that of a mistress, revealing a sexist asso-
ciation of the expressed teacher-student relationship in combination with the feminine possessive
determiner her. In contrast, the same sentence with just the possessive determiner changed
to his instead of her results in a more accurate translation (i.e., “le professeur”). While this
translation behavior in itself is very concerning, MT has also proven to exacerbate gender dis-
parities. By comparing the proportion of pronoun predictions against the real-world proportion
of men and women employed in the respective professions, Prates et al. (2020) demonstrated
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Figure 2.4: English→French translation generated by Google Translate, where the word
“teacher” referring to a female is translated to “mâıtresse”, which also translates back to the
English word “mistress”. For the masculine counterpart sentence, an evidently less sexist trans-
lation is provided.

that Google Translate underestimates feminine frequency at a greater rate than occupation data
alone suggests.

Gender Preservation

A different scenario proven challenging for MT systems is preserving gender when translating
to gender-inflected languages, such as most Romance, Germanic, Slavic, and Semitic languages.
Figure 2.5 illustrates an exemplary translation setting where this challenge occurs.

English French

I am strong
je suis forteF

je suis fortM

Figure 2.5: Illustration of the challenge of gender preservation in English→French translation,
as the French translation is different for female and male speakers. A biased system might mirror
imbalances in the training data and therefore reflect stereotypical gender roles in its translations
(i.e., output the translation “je suis fortM” for a male speaker).

The English source sentence “I am strong” gives no indication about the gender of the entity
articulating the sentence. As French includes gender inflection within adjectives, a translation
must agree with the gender of the author of the English source sentence. As there is no gender
information in the source, the MT system must choose a gender; again, a biased system would
base the decision on gender stereotypes (i.e., as men are typically assumed stronger than women,
it outputs the male translation “je suis fortM”).

This ambiguity problem does not persist when the gender of the entity is included. Neverthe-
less, correctly resolving pronouns to multiple entities occurring in a translation scenario remains
a challenge in translation to gender-inflected languages. For instance, in the teacher-student ex-
ample, the pronominal adjective her referring to the teacher explicitly marks the teacher’s gender
as female; accordingly, there is enough information in the English source sentence to preserve the
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gender in the French translation. Nevertheless, as Figure 2.6 shows, Google Translate generates
a translation referring to a male teacher.

Figure 2.6: English→French translation generated by Google Translate in which a female
teacher turns into a male (“le professeur”) despite a pronominal gender marking (“her troubled
student)” being present in the English source sentence.

Notably, the addition of the word troubled (cf. Figure 2.6) turns the profession teacher
into the semantically correct French translation professeur—in contrast to the previous wrong
translation to mistress (in Figure 2.4)—but the gender of the article in the translated sentence
is still incorrect. As such, Google Translate not only produces erroneous translations of the
profession of females but even overrules explicit gender signals when they contradict presumed
gender stereotypes.

2.2.2 Evaluation

In response to the multifaceted occurrence of gender bias in MT, various methods have been
proposed to measure and evaluate it. Similar to regular MT evaluation, gender bias evaluation
is built on two core components: appropriate evaluation metrics and suitable evaluation data.

Evaluation Metrics

Prior works have utilized BLEU (Bentivogli et al., 2020; Moryossef et al., 2019; Vanmassenhove et
al., 2018) and accuracy (Bentivogli et al., 2020) scores as qualitative and quantitative performance
metrics for gender bias evaluation in MT.

BLEU Short for bilingual evaluation understudy, BLEU is a widely used metric for the evalu-
ation of MT (Papineni et al., 2002). The basic idea behind BLEU is to assign a single numerical
score to a translation that determines how good it is compared to a reference translation. The
reference translation is often human-generated and, following the idea that the human-generated
reference is the best possible output, BLEU treats translations that are closer (meaning on a
word level they are more similar) to the reference as better; for this, BLEU compares the n-
grams—sequences of words or subwords—of the generated translation with the n-grams of the
reference translation(s). While there are constant research efforts toward developing metrics that
better correlate with human judgements, BLEU is still the de facto standard in MT evaluation.
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Accuracy Generally, the accuracy is a metric that measures the proportion of correct classi-
fications in relation to the total number of predictions made by an ML model. In the context
of gender bias evaluation, the metric is used to measure the accuracy in producing the gender-
marked words in target sentences. More precisely, it can be computed as the number of properly
translated gender-marked words in relation to the total number of gender-marked words in a
sentence. Accuracies for feminine and masculine words, or for other gender-related phenomena,
can then be compared to determine if the performance for one group performs better than for
the other.

Evaluation Data

Arguably the most extensive annotated benchmark for gender-sensitive evaluation of MT is
MuST-SHE4 (Bentivogli et al., 2020)—a subset of the TED-based MuST-C (Di Gangi et al.,
2019), short for multilingual speech translation corpus5—allowing for a fine-grained analysis of
gender bias in text and speech translation. MuST-SHE comprises 3,367 sentence-level instances
of (audio, transcript, translation) triplets, uttered by 295 different speakers. The collection of
data is based on audio recordings of TED talks originally held in English that are manually
transcribed and translated into three target languages: French, Italian, and Spanish. All three
target languages are Romance languages that extensively express gender via feminine or mas-
culine morphological markers on nouns, adjectives, verbs and other functional words such as
articles and demonstratives.

Each MuST-SHE triplet includes at least one English gender-neutral word that requires trans-
lation into the corresponding feminine or masculine target word(s), where such formal distinction
semantically conveys and conflates with an actual distinction of biological sex. For better anal-
ysis, the gender of all gender-marked words in a sentence is the same, resulting in exclusively
feminine or exclusively masculine sentences. Besides the sentence gender, MuST-SHE triplets
are annotated with further gender-related phenomena. Overall, the gender-related annotations
comprise three distinguishing aspects, which can be thought of as triplet properties, each of
which decomposes the corpus into two groups of instances, as illustrated in Figure 2.7:

(1) the gender expressed throughout the sentence, which is either feminine or masculine;

(2) the source of information necessary to disambiguate gender, which is either

(a) the audio recording of speakers’ tone of voice when gender-agreement only depends
on speakers’ gender, e.g., when speakers use a first person point of view, or

(b) the utterance content, where contextual hints inform about the gender of the referent,
such as “Mom”, pronouns such as “she”, “his”, or proper nouns such as “Paul”;

(3) the gender of the speaker, which is either female or male.

These different divisions of instances make MuST-SHE suitable for a comprehensive and
multifaceted evaluation of gender bias in MT. For instance, it allows for individual evaluations
of translations of sentences spoken by women and men so that differences, if they exist, can
be detected. To prevent imbalanced gender representations, the two respective groups always
include a similar number of instances, which ensures equal distribution of gender-phenomena in
the corpus.

4https://ict.fbk.eu/must-she/
5https://ict.fbk.eu/must-c/
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Figure 2.7: Illustration of the subdivision and interplay of three different categorizations of in-
stances comprising MuST-SHE (English→{French, Italian, Spanish}). Instances can be grouped
by (1) the gender of words in a reference (exclusively feminine or masculine), (2) the source of
information to disambiguate gender (the speaker’s tone of voice in the audio recording or the
utterance content itself), and (3) the gender of the speaker (female or male).

Evaluation Procedure

With the two core components of suitable metrics and data at hand, the authors of the original
MuST-SHE corpus (Bentivogli et al., 2020) propose a qualitative and quantitative evaluation
strategy. They rightly point to the fact that the BLEU metric provides only a global score
measuring the translation quality for sentences as a whole. Therefore, variations of BLEU scores
are only a coarse and indirect indicator of better or worse overall performance of MT systems
(Callison-Burch et al., 2006). This characteristic of BLEU hinders the evaluation of MT models’
performance on individual phenomenons such as gender translation since, in language, gender
is expressed and marked in only a few of the words occurring in a sentence. In light of this,
Bentivogli et al. (2020) point toward the limitation of recent works (Moryossef et al., 2019;
Vanmassenhove et al., 2018) relying on the results of a BLEU-based quantitative analysis alone
to ascribe BLEU gains to better gender translation and thus to their bias mitigation strategies.

Bentivogli et al. (2020) continue to use BLEU, but they propose to make the resulting scores
informative about a system’s ability to generate the correct gender forms. To this aim, for each
reference C-REF in the corpus, they create a “wrong” one, W-REF, that is identical to C-REF
except for the morphological signals that convey gender agreement. More precisely, for each
gender-inflected word in the target sentence, the correct translation is swapped into its opposite
gender form. For instance, the French words with masculine inflection “un”, “grands”, and
“innovateurs” are changed into the feminine-marked words “une”, “grandes”, and “innovatrices”.
Gender-swapping is performed for any gender-marked part of speech. The result is a new set
of references that, compared to the correct ones, are “wrong” only with respect to the formal
expression of gender. For better illustration, some examples extracted from MuST-SHE are
presented in Table 2.1.

The underlying idea put forward by the authors is that, as the two reference sets differ only
in the swapped gender forms, differences in results for the same set of translations generated
by a given model can measure its capability to properly handle gender phenomena. Specifically,
they argue that higher values on the wrong set signal gender-biased behavior. In all cases where
the required gender realization is feminine, significantly higher BLEU scores computed on the
wrong set would signal a bias toward producing masculine forms, and vice versa. In addition
to the qualitative BLEU-based evaluation, they suggest performing a fine-grained quantitative
analysis of the models’ accuracy in producing the target gender-marked words. The accuracy
scores are computed on both the correct and the wrong reference set for all instances, as well
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Table 2.1: MuST-SHE annotated segments organized by category. For each source-translation
pair in en-es, en-fr, and en-it, the correct reference translation (C-REF) shows the realization
of target gender-marked forms (Fem./Masc.) corresponding to English gender-neutral words in
the source (SRC). In the wrong reference translation (W-REF), Spanish, French, and Italian
gender-marked words are swapped to their opposite gender form. The rightmost column of the
table provides information about the speaker’s gender (Female/Male).

Word Form Source of Gender Information Speaker Gender

Category 1: Gender information only in audio

Feminine

SRC I felt alienated, intimidated and judged by many.

Female

C-REFes Me sent́ı alienada, intimidada y juzgada por muchos.
W-REFes Me sent́ı alienado, intimidado y juzgado por muchos.

C-REFfr Je me sentais isolée, intimidée et jugée par beaucoup.
W-REFfr Je me sentais isolé, intimidé et jugé par beaucoup.

C-REFit Mi sentivo esclusa, intimidita e guidicata da molti.
W-REFit Mi sentivo escluso, intimidito e guidicato da molti.

Masculine

SRC I was an obsessive compulsive student.

Male

C-REFes Yo era un estudiante obsesivo compulsivo.
W-REFes Yo era una estudiante obsesiva compulsiva.

C-REFfr J’étais un étudiant obsessif compulsif.
W-REFfr J’étais une étudiante obsessive compulsive.

C-REFit Ero uno studente ossessivo compulsivo.
W-REFit Ero una studentessa ossessiva compulsiva.

Category 2: Gender information in utterance content

Feminine

SRC She was tough, she was strong, she was powerful.

Male

C-REFes Era dura, era fuerte, teńıa poder.
W-REFes Era duro, era fuerte, teńıa poder.

C-REFfr Elle était difficile, elle était forte, elle était puissante.
W-REFfr Elle était difficile, elle était fort, elle était puissant.

C-REFit Era dura, era forte, era potente.
W-REFit Era duro, era forte, era potente.

Masculine

SRC He was one of the worst students in class.

Female

C-REFes Era uno de los peores de su clase.
W-REFes Era una de las peores de su clase.

C-REFfr C’était l’un des pires élèves de la classe.
W-REFfr C’était l’une des pires élèves de la classe.

C-REFit Era uno degli studenti peggiori della sua classe.
W-REFit Era una delle studentesse peggiori della sua classe.

as per gender form (feminine or masculine). Furthermore, the corpus allows for an analysis of
performance on sentences per category (gender information in audio or utterance content) and
per speaker gender (female or male).

2.2.3 Mitigation

From the growing interest in exposing and actively fighting gender bias in recent years, a number
of works on gender bias mitigation in MT have emerged, relying on a range of different techniques.
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A recent comprehensive overview of different gender bias mitigation techniques in MT is provided
by Savoldi et al. (2021). Following their classification, we can group mitigation techniques into
two categories: debiasing models and debiasing through external components.

Model Debiasing

The first group of techniques focuses on architectural changes of general-purpose MT models or
on dedicated training procedures to mitigate gender bias. One line of research studies the effect of
gender tagging. Specifically, Vanmassenhove et al. (2018) leverage additional gender information
by prepending a gender tag to each source sentence, both at training and inference time, to
improve the generation of speaker’s referential markings. While their approach proves useful to
handle morphological agreement when translating from English into French, this solution requires
additional (training) metadata regarding speakers’ gender that might not always be feasible to
acquire. Moreover, Saunders et al. (2020) argue that gender tagging introduces noise if applied
to sentences with references to multiple participants, as it pushes translations toward the same
gender. Avoiding additional information needed for training or inference, Basta et al. (2020)
adopt a generic approach, concatenating each sentence with its predecessor; providing more
context information in such a manner resulted in a slight improvement in gender translations.

While the two previously mentioned mitigation strategies share the intent of supplying the
model with additional gender knowledge, Escudé Font and Costa-Jussa (2019) follow a differ-
ent approach, leveraging pre-trained debiased word embeddings of English gender-neutral words
where gender associations are removed. The downside of this approach is that it is highly
language-specific as translation of gender-marked languages requires the presence of gender as-
sociations in the embeddings. A different debiasing approach is to fine-tune models on gender-
balanced datasets, featuring equal amounts of feminine and masculine references, which has
shown to improve the generation of feminine gender overall (Costa-jussà & de Jorge, 2020).
However, this approach does not mitigate gender stereotyping if it does not account for the
qualitative different ways in which men and women are portrayed (Wang et al., 2022); equal
representation of gender must also apply to equal representation among roles, occupations and
other aspects.

Debiasing Through External Components

While the first group of mitigation strategies focus on directly debiasing the MT model, the
second group intervenes in the inference phase with external dedicated components. Such ap-
proaches do not require retraining of the MT model. However, they introduce additional costs
of maintaining separate modules and integrating them with the MT model. One strategy is to
inject context information to disambiguate the translation of gender-neutral words. Moryossef
et al. (2019) prepend a short phrase, such as “she said to them”, to the source sentence, translate
the sentence with the prefix, and afterward remove the prefix translation from the MT output.
Specifying gender and numeral inflection (plural or singular) improves models’ ability to gener-
ate feminine target forms. The drawback of this approach is that it relies on metadata about
speakers and listeners, which is not always available.

A different approach is to post-process the MT output using counterfactual data augmen-
tation, where sentences are transformed into a set of identical sentences differing only in terms
of gender references. Saunders and Byrne (2020) use a lattice rescoring module which maps
gender-marked words in the MT output to all possible inflectional variants. The module then
rescores all paths in the lattice corresponding to the different sentences with a model that has
been gender-biased at the cost of lower overall translation quality. Choosing the sentence with
the highest score as the final translation results in increased accuracy of gender selection. A
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downside is that data augmentation is very demanding for complex sentences with a variety of
gender phenomena, such as those typically occurring in natural language scenarios.

A different approach, avoiding this effort, is post-processing to re-inflect gender. For example,
when provided with an indication of preferred gender, a model can re-inflect sentences in the
desired form (Alhafni et al., 2020). This approach naturally requires metadata in the form of
users’ input, which limits the level of automation of translation. A different way of approaching
re-inflection is to always produce both gender forms from an MT output. A leading example
for this approach is Google Translate: Since 2019, Google Translate provides both feminine and
masculine translations for single gender-neutral words or sentences, as illustrated in Figure 2.8.
Unfortunately, this feature is currently limited to single sentences and supports only a limited
number of language pairs.

Figure 2.8: In an effort to reduce gender bias in its translations, Google Translate provides
both feminine and masculine translations for single gender-neutral words or sentences. However,
as of April 2023, the feature only supports a limited number of language pairs.
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3

Experimental Design

This chapter describes the experimental design and methods employed in this thesis and explains
how the research proceeded to answer the research questions. We performed quantitative analy-
ses through experiments in which we systematically varied one or more independent explanatory
variables (introduced in Section 3.2) and analyzed their effect on the dependent response variable
(introduced in Section 3.1) used to measure gender biases, to learn about their cause-effect rela-
tionship. In Sections 3.3 and 3.4, we describe our methods of measurement and the organization
of the evaluation data used in our experiments, respectively.

3.1 Response Variable

In this thesis, we explore gender bias in multilingual MT in the context of gender preservation
for translation directions that are unseen during training. Generally, translation into a gender-
sensitive target language faces the task of gender preservation, where the gender information
conveyed in the source language needs to be carried into the target language translation. Effec-
tively, this involves words related to a noun — like determiners, pronouns or adjectives — to
change their form (inflection) according to the gender of the noun they refer to (agreement).
Whenever the source language is (largely) genderless, i.e., the gender of the noun is unspecified
(cf. Figure 2.5), and context information is unavailable, gender preservation is a non-trivial task,
for machines and humans alike, which inevitably boils down to guessing the gender.

In our study, however, information required to disambiguate gender was always provided to
the model by the source sentence (cf. Figure 3.1a). In the scope of our inquiry, we generally
view gender as dichotomous, conforming with the gender binary, i.e., the classification of gender
into the opposite forms of feminine and masculine, when it comes to “classifying” the gender of
people, which we consider indicative of a person’s biological sex1. We examined translations in
terms of differences in gender preservation between both genders which, if found, were evidence
of gender-biased MT. If observed, we analyzed under which circumstances models exhibited
gender-biased translation behavior. Accordingly, we used gender bias as the primary dependent
response variable of interest in our experiments.

1While this view of gender or sex as a binary concept has started to change, and language is constantly
evolving (i.e., to gender-neutral language), the gender binary persists in many languages used today.
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Italian

mi sentivo esclusaF

mi sentivo esclusoM

French

je me sentais isoléeF

je me sentais isoléM

(a) Information necessary to disambiguate gender (bold) was always provided by the source sentence
(e.g., in Italian) and to be reflected in the translation (e.g., in French).

je me sentais isoléeF

je me sentais isoléM

SpanishItalian French

me sentí alienadaFmi sentivo esclusaF je me sentais isoléeF

guess

zero-shot

pivot

EnglishItalian French

I felt alienatedmi sentivo esclusaF

pivot

zero-shot

pivotpivot

(b) The richness of the gender-inflectional system of the bridge language, used to facilitate translation
for unseen language pairs, affects models’ ability to preserve the gender information from the source
sentence. Scarcity of gender inflection in the bridge language (e.g., English) causes models to miss
gender clues from the source and resort to guessing the gender; when making the wrong guess, i.e.,
choosing the opposite gender as presented in the source, the model exhibits gender hallucination.

Figure 3.1: Overview of our investigated translation scenario: At inference, we translated
between unseen gender-inflected source-target language pairs (e.g., Italian→French) by bridging,
implicitly (zero-shot) and explicitly (pivot-based), using bridge languages with different gender-
inflectional systems (e.g., Spanish or English).

3.2 Explanatory Variables

Motivated by our research inquiry, we used three independent explanatory variables to better
understand the cause-and-effect relationship of gender bias in MT. By considering only source
sentences in which gender information is always present, we could focus our gender bias investi-
gation on the effect of bridging on gender preservation in multilingual MT (of unseen language
pairs), as illustrated broadly in Figure 3.1b. In particular, we focused on different aspects revolv-
ing around bridging with respect to their influence on gender preservation: the type of bridging
performed (explicit or implicitly-learned); the choice of bridge language; and broadening and
improving language coverage through language-agnostic model hidden representations.

3.2.1 Explicit & Implicitly-learned Bridging

To bridge the gap between an unknown source-target language pair at inference, we followed two
different approaches (pictured in Figure 3.2), both using the same trained translation model.
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For pivot-based translation, we cascaded the model to perform source→pivot and pivot→target
translation. As such, pivoting uses the pivot language as an explicit bridge between the unknown
language pair. For zero-shot translation, we used the model to translate directly between the
unknown language pair, relying on the model’s inherent, implicitly-learned bridge. In light of
our inquiry, we analyzed each approach’s ability to preserve gender, focusing on the comparison
of the performances for the feminine and the masculine gender.

Zero-Shot Modelsource
input predict

translation

translation input
Pivot Model

predict
translation

input predict
ModelsourcePivot

Figure 3.2: Illustration of pivot-based and zero-shot translation, whose performances regarding
gender preservation we analyzed and compared.

3.2.2 Bridge Language

English is arguably the most resource-rich language in the context of NLP. For this reason,
English often participates in most, if not all, language pairs present in a training corpus, making
English the most reasonable choice for a bridge language. Considering the differences in gender-
inflectional systems of languages, it is important to note that English is a relatively low gender-
inflected language. In view of this, it is fair to assume that bridging with English results in the
loss of gender information conveyed by the source sentence; how much explicit and implicitly-
learned bridging are affected by this was to be examined in our study.

When translating to a genderless language, the loss of gender information is unproblematic
as it is evidently without detrimental consequence. However, when translating to a language
with a richer gender-inflected system than English, the loss of gender information poses a sig-
nificant problem, since the information necessary to disambiguate gender is virtually no longer
existent (cf. bottom in Figure 3.1b). As preserving non-existent gender information is inherently
impossible, also for humans, it is fair to assume that translation models have difficulty when
encountering this phenomenon of gender ambiguity. In cases of gender ambiguity, the simplest
solution is to resort to random guessing, with a 50% chance of choosing one gender over the
other. Any other gender distribution ( ̸= 50:50%) is not reflective of random guessing but instead
indicative of educated guessing, guessing based on knowledge or observations assumed to be true
that can, however, include biases.

Against this background, we explored the role of the bridge language in gender preserva-
tion, focusing on the gender bias differences between pivot-based and zero-shot translation using
bridge languages with different gender-inflectional systems, including the two grammatical gen-
der languages, Spanish and German, as well as English. German and English are both Germanic
languages. Whereas in German, all noun classes require masculine, feminine, or neuter inflec-
tion2, English lacks a similar grammatical gender system. In German, the gender of the noun is
also reflected in determiners like articles (see Figure 3.3a), possessives (Figure 3.3b), and demon-
stratives (Figure 3.3c). Spanish, on the other hand, is a Romance language that has a binary
grammatical gender system, differentiating masculine and feminine nouns; from a grammatical

2In German, neuter inflection does not apply to nouns identifying people.
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noundemonstrative
determiner

nounpossessive
determiner

nounadjectivearticle

teacherthisteachermyteachergoodtheEnglish

LehrerinFdieseFLehrerinF meineFLehrerinFgutedieFGerman

LehrerM dieserMLehrerMmeinMLehrerMgutederM

profesoraFestaF profesoraFmiprofesoraFbuenaFlaFSpanish

profesorM esteF profesorMmiprofesorMbuenM elM

(c)(b)(a)

Figure 3.3: Languages differ regarding the word classes (i.e., noun, adjective, determiner) that
are inflected for gender to comply with gender agreement. The above example sentences show no
gender indication in English, while German and Spanish use grammatical gender and conforming
gender inflection (bold).

point of view, there are no gender-neutral nouns. The gender of nouns agrees with (some) de-
terminers and, unlike in German, adjectives (see Figure 3.3a), making gender a very pervasive
feature in Spanish. We imagine training models using bridge languages with richer gender in-
flection, such as Spanish or German, yields better gender translations and reduces gender biases
compared to a lower gender-inflected language, such as English.

3.2.3 Language-Agnostic Hidden Representations

Arguably, a model’s hidden representations are tailored to the language pairs included during
training, likely making them ill-suited for translation between new, unfamiliar language pairs.
Since languages are characterized by different linguistic features, including those related to gen-
der, it is reasonable to assume that language-specific representations impair gender preservation.

Figure 3.4 exemplifies some differences in morphological features of gender and syntax between
English, French, and Czech, critical for gender preservation. The illustrated example reveals the
need for zero-shot models to infer different and unfamiliar pathways of gender information flow,
depending on the source-target language pair. Conceptually, hidden representations tailored to
the source language appear inadequate for modeling the gender-related linguistic features of the
target language, especially when both languages are very different in terms of gender inflection
and gender agreement.

The editor has finished herF work. 

RedaktorkaF dokončilaF své dílo.

The     editor has finished herF work.

LaF rédactriceF a   terminé son travail.

(a) (b)

Figure 3.4: Illustration of semantic pathways required to transfer gender information for
English→French (a) and English→Czech (b) translation.
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Because of this, in the context of gender preservation, we explore the effect of
three modifications to (the training of) a baseline Transformer to promote language-agnostic
hidden representations, which previously have caused performance gains for zero-shot transla-
tion (for details, see Section 2.1.6):

– we removed a residual connection in a middle Transformer encoder to lessen positional
correspondences to the input tokens (R),

– we encouraged similar (i.e., “closer”) source and target language representations through
an auxiliary loss (AUXSIM ), and

– we performed joint adversarial training penalizing recovery of source language signals in
the representations (ADVLAN ).

In our experiments, we examined the effect of the three modifications in isolation and also
tested combinations of some of the three; in total, we compared the gender preservation perfor-
mance of five different models to that of our baseline (B) — which we refer to as B+AUXSIM ,
B+ADVLAN , R, R+AUXSIM , and R+ADVLAN — to determine whether they miextigated
models’ gender biases. The modifications affected model training but did not intervene in the
inference phase and were equally applicable to zero-shot and pivot-based translation.

3.3 Methods of Measurement

We evaluated our models’ performances by different means of measure: using the concept of
“gender-swapping” to measure models’ gender preservation for the two different genders; using
the standard BLEU metric to verify reasonably good translation quality for gender-marked and
gender-neutral words; and probing models’ hidden representations for gender signals using a
classifier.

3.3.1 Gender Bias

Abstractly speaking, in our gender bias evaluation, we measured how often a model preserved
the gender compared to how often it produced the opposite gender form, thus opting for the
wrong instead of the correct gender despite the lack of gender ambiguity. Opting for the wrong
instead of the correct gender in numerous cases led us to conclude that the model is acting on
gender biases.

Following this idea, models’ generated translations of gender-marked words could be grouped
into the following three different categories, which we exemplify using Figure 3.5. First, the
expected translation, for which we measured how often the correct translation (ground truth) —
specified by a reference translation C-REF — was produced (e.g., “isolée” in the exemplary
model output in Figure 3.5). Second, the gender-reversed translation, for which we measured
how often the translation was wrong, but only regarding the gender inflection of gender-marked
words — specified by a reference translation W-REF — i.e., instead of the required correct gender
realization as per ground truth (e.g., the feminine adjective “intimidée”), the model produced the
opposite gender form (e.g., the masculine adjective “intimidé”, as depicted in Figure 3.5). Third,
a translation different from both reference translations, e.g., instead of “jugée” (C-REF) or “jugé”
(W-REF), the model produced the adjective “condamnée”, or any other word not matching C-
REF or W-REF; in this case, we had no way of knowing whether the gender inflection, regardless
of the predicted word base, is correct or wrong (because we had no reference to compare it to),
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Model OutputEvaluation Dataset

Source

mi sentivo esclusaF, intimiditaF e giudicataF

(expressed by a woman)

Reference Translation

je me sentais isoléeF, intimidéeF et jugée F (C-REF)
je me sentais isoléM, intimidéM et jugéM (W-REF)

Translation

je me sentais isoléeF, intimidéM et condamnéeF

match with C-REF

match with W-REF

no match with any reference

Figure 3.5: Illustration of the three possible translation outcomes of required gender preserva-
tion: The translation of a gender-inflected word either matched the correct reference translation
C-REF (here, “isolée”), the wrong reference translation W-REF (here, “intimidé”), or neither
(here, “condamnée”).

forcing us to exclude these translations from our gender bias evaluation but not the assessment
of models’ translation quality (cf. 3.3.2).
Practically speaking, we compared a model’s generated translations to the two sets of reference
translations,

– the proper, correct reference translations (set of C-REF/Correct set), and

– references that were wrong regarding the gender-inflected words (set of W-REF/Wrong
set), in that they were inflected for the opposite gender, i.e., feminine words were swapped
with their masculine counterparts and vice versa,

measuring their similarity to each reference set using two different metrics.

BLEU-based Evaluation

The BLEU metric considers all words in a sentence, not just those that are inflected for gender.
Therefore, it is worth emphasizing that the gender-marked words are the only distinguishing
factor between the otherwise identical references. The idea behind gender-swapping (Bentivogli
et al., 2020) is that a difference between the BLEU scores for the correct and the wrong references
is attributed only to the gender-marked words, which were the focus of our gender preservation
evaluation. If, for instance, a model wrongly generates a masculine translation for an originally
feminine gender-inflected word, then this translation contributes to a higher BLEU score for
the Wrong set. For this evaluation to work, all gender-inflected words appearing in the same
sentence must agree with the same gender, i.e., all of them are inflected for the feminine gender,
or all are inflected for the masculine gender.

Higher scores for the Correct set are better, while for the Wrong set, they should be as low
as possible, since high Wrong scores indicate gender-biased behavior attributed to the inability
to preserve gender, resulting in unfounded frequent gender confusion. It is worth noting that
there is a partial correlation between scores for the Correct and Wrong set, as better translation
of words not expressing gender, which are always part of a sentence, increases both the Correct
and Wrong score; therefore, when aiming to improve the Correct BLEU scores, Wrong scores
will always be greater than zero. Nevertheless, a greater difference between Correct and Wrong
scores for the two reference sets is considered better, as it signals more correct than wrong gender
translations (i.e., proper gender preservation).
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To compute BLEU scores, we used sacreBLEU3 (Post, 2018), which provides a fair and
reproducible evaluation, as it operates on detokenized text.

Accuracy-based Evaluation

Since BLEU is designed to consider all words and not just those inflected for gender, we wanted to
rely on an additional metric that only accounts for gender-inflected words. The metric measures
how close a given set of gender-marked words produced by a model are to their target values,
similar to the accuracy, but we had two sets of target values, the correct and the wrong gender-
inflected target words, which we wanted to consider in relation to each other to assess gender
biases. Therefore, to compute the metric, we compared the set of gender-marked words produced
by a model to the two sets of target values and counted the number of matches with either set. In
this way, we could evaluate gender preservation for each gender, feminine and masculine words,
measured by how often a model was able to produce the correct gender (C) for those words
that matched either the correct or the wrong reference set (C + W ); we refer to this as gender
preservation (αcorrect).

As mentioned before, we were forced to exclude those words that did not match any of the
two reference sets (N) from our gender bias evaluation and only rely on “correct and wrong
matches” (C + W ); naturally, the larger this set was (i.e., the larger the sample size), the more
significant our findings would be. To favor larger numbers of translations that matched either
the correct or the wrong reference (C +W ), we weighted αcorrect by the size of C+W in relation
to the number of all translations (C + W + N), matching a reference (C + W ) or not matching
any reference (N); we refer to this weighting factor as sample size (ρ).

Formally, we defined the metric γcorrect to measure the gender preservation performance
weighted by the sample size, that can be calculate for either gender (feminine/masculine) or both
combined (feminine & masculine), as follows:

γcorrect =
C

C + W︸ ︷︷ ︸
αcorrect

· C + W

C + W + N︸ ︷︷ ︸
ρ

=
C

C + W + N
(3.1)

Equation 3.1 shows that γcorrect is essentially the accuracy, meaning the fraction of the total
model translations inflected for the correct gender, which, if higher, is better. The equivalent
calculation of γwrong can be made using αwrong = W

C+W to measure how often the model produces
the opposite, wrong gender instead.

To compare the performances for the two genders, we computed the gender gap δcorrect
between results for the feminine (F) and the masculine (M) gender as formalized in Equation
3.2:

δ = 1 − min(γF
correct , γ

M
correct)

max(γF
correct , γ

M
correct)

(3.2)

As a reflection of gender biases, gender gaps should be as small as possible and, ideally, zero, due
to minimal differences between the results for the feminine and the masculine gender; in partic-
ular, we examined the referent gender gap δreferent between results for feminine and masculine
words (cf. Section 3.4.1 for details on referent gender) and the speaker gender gaps δFspeaker and

δMspeaker between feminine and masculine results for female and male speakers (cf. Section 3.4.3
for details on speaker gender).

3https://github.com/mjpost/sacrebleu
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3.3.2 Translation Quality

While the evaluation of gender bias in MT naturally focuses on the translation of gender-specific
words, the overall translation quality of both gender-marked and gender-neutral words should not
be ignored. A model that only performs well on gender-marked words but not on gender-neutral
words is not desirable as it can not be deployed for general application. To substantiate the
relevance of our bias evaluation, we complemented our results by assessing the overall translation
quality of the different models using BLEU (i.e., sacreBLEU).

3.3.3 Probing Model Hidden Representations For Gender Signals

In principle, zero-shot translation balances abstraction and generalization, simplifying language
representations to depict essential linguistic properties while resorting to common essential prop-
erties among different languages. Arguably, a model’s ability to disambiguate gender in transla-
tion depends on preserving and rendering gender clues in language representations. Accordingly,
when encouraging language-agnostic representations for the betterment of zero-shot translation,
it is crucial to maintain gender information.

To validate whether improvements in gender translation indeed stemmed from better gender
preservation — i.e., gender clues better captured in hidden representations — we assessed the
difficulty of recovering gender-specific information before and after applying the different model
modifications encouraging language-agnostic representations (cf. Section 3.2.3) for the considered
bridge languages. Specifically, we trained a classifier on the output of a model’s encoder to predict
the gender conveyed by a source token or the entire source sentence. Similar prediction tasks
have been used to analyze linguistic properties encoded in representations (Adi et al., 2017; Liu
et al., 2021). The classifier operated on each time step (token level) or a combination of them
(sentence level) using a linear projection from the embedding dimension to the number of classes
C representing the genders.

Both, token-level and sentence-level classification, were interesting to us because removing
residual connections in the encoder lessened the positional correspondence between encoder rep-
resentations and tokens and, thereby, the correspondence between gender clues and individual
words, or tokens for that matter; similar motivation held for the other modifications as they
conceptually promote the generalizability of hidden representations. The idea behind token-level
and sentence-level gender labels is illustrated in Figure 3.6.

For token-level gender classification, we assigned each token one of three labels (C=3), fem-
inine, masculine, or neuter. For sentence-level classification, we first transformed the token
embeddings by average pooling to obtain a sentence embedding; this embedding was fed to the
classifier to predict the sentence gender, labeled as either feminine or masculine (C=2) depend-
ing on the gender-marked words that occurred in the sentence, which are exclusively associated
with one of the two genders. Both, the token-level and the sentence-level classifier minimized
the cross-entropy loss:

Lclassifier = −
C∑

c=1

yc · log(pc), (3.3)

where yc is the true gender label, pc is the probability predicted for the cth gender class, with
C = 2 for sentence-level and C = 3 for token-level classification.
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Mi sentivo esclusaF, intimiditaF e giudicataF da molti.

Mi senti+ vo es+ clusaF , inti+ mi+ ditaF e giu+ dic+ ataF da molti .

0 0 0 1 1 1 1 1 0 1 1 1 0      0

1

C’ était l’unM des pires élèves de la classe.

C’ était l’ unM des pi+ res él+ è+ ves de la classe .

0 0 0 2 0 0 0 0 0 0 0 0 0

2

average pooling

0: neuter (tok.); 1: feminine (tok./sent.); 2: masculine (tok./sent.)

sentence:

tokens:

token labels:

token embed.:

sent. embed.:

sentence label:

sentence:

tokens:

token labels:

sentence label:

Sentence 1

Sentence 2

Figure 3.6: To assess the difficulty of recovering gender information before and after applying
the different model modifications encouraging language-agnostic representations, we trained and
tested a classifier to predict the gender conveyed by each token and (after average pooling of the
token embeddings) each sentence. Token-level classification considered three classes, 0 : neuter,
1 : feminine, 2 : masculine; sentence-level classification included two classes, 1 and 2.

3.4 Organization of Data

Generally, communication in languages with a rich inflectional system, such as French or Italian,
requires keeping track of agreement features between words, one of which, across many languages,
is gender.

3.4.1 Referent Gender

Grammatical gender agreement determines the modification of certain words to express gender
congruent with the other words they relate to, which, in our case, were the words designating
a referent — a person the speaker mentioned or to which the speaker referred. Consequently,
the biological (or conceptual) gender of a referent determined the gender of those gender-marked
words relating to the referent — i.e., for female referent using feminine words and for male
referent using masculine words.

3.4.2 Utterance Categories

In our case, a referent was either the speaker himself or herself or a person not identified as
the speaker (nor the addressee(s)/audience). This led us to distinguish between two categories
of utterances with different gender phenomena: those with speaker-related gender agreement
(category 1) and those with speaker-independent gender agreement (category 2).
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Utterance Category 1: Speaker-Related Gender Agreement

Whenever the speaker is the referent, i.e., the speaker is referring to himself (or herself), there
is speaker-related gender agreement among those gender-marked words relating to the speaker.
As a piece of speech, besides its linguistic form, an utterance has a context that provides extra-
linguistic information, such as speaker-related characteristics (e.g., the speaker’s gender), that
can affect language comprehension (Hanuĺıková & Carreiras, 2015). Languages with less pro-
nounced inflection of gender, such as English, can encounter syntactic structures that provide no
indication about a speaker’s gender. In these cases, extra-linguistic gender information conveyed
by a speaker’s voice can be imperative for the correct syntactic processing and translation of
utterances with gender agreement dependent on the speaker’s gender. In contrast, syntactic
structures of languages with rich inflectional systems of gender typically encode enough informa-
tion to unambiguously classify a speaker’s gender. In Figure 3.7, example utterances (a) and (b)
illustrate the difference between Italian and English sentences; in Italian, multiple words provide
unambiguous clues about the speaker’s gender, whereas, in English, there is no way of telling
the gender of the speaker with certainty just from the sentence itself (without context).

Utterance Category 2: Speaker-Independent Gender Agreement

Whenever a person other than the speaker is the referent, i.e., the speaker is talking about
someone else, there is speaker-independent gender agreement among those gender-marked words
relating to the referent. In these cases, meaning construction typically does not require the
integration of semantic information about the speaker for correct syntactic processing and trans-
lation. The gender-inflection of words is therefore often purely based on syntactic agreement with
a formally marked subject (here, the referent), making the referent’s gender identity explicit in
our considered utterances. In these cases, gender violations are always apparent and identifiable
by the disagreement or mismatch between the referent gender and gender-inflected words. In
contrast, for utterances with speaker-related gender agreement (utterance category 1), gender
inflection is incorrect only if the extra-linguistic information about the speaker is considered and
integrated into the syntactic build-up of the utterance. In Figure 3.7, example utterances (c)–(f)
illustrate that in Italian and in English utterances, there is always at least one word present,
signaling the gender of the referent.

3.4.3 Speaker Gender

While the referent gender represents a system for gender distinction in natural language (e.g.,
grammatical gender), it is not the only gender-related factor that impacts spoken language:
Prior research has found differences in language use, including both content and style of lan-
guage, between men and women, which models can fail to reflect (Savoldi et al., 2021). For
instance, Brownlow et al. (2003) have shown that the judicious use of pronouns and articles
signals differences in how men and women chose to communicate: Women use more active,
responsibility-oriented language including more self-referent pronouns, whereas men tend to use
more third person pronouns and more articles as can be seen in passive, more depersonalized
language constructions. These gender differences in language use are reflected in spoken as well
as in written language (e.g., transcriptions of speech). Since each utterance in our evaluation
data originated from either a female or a male speaker, we considered not only differences in
referent gender but also speaker gender.
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Female Referent
– Feminine Word(s) –

Utterance Category (iii): 1/2
Referent Gender (ii): F/M
Speaker Gender (i): F/M

French Reference Translations (C-REF: Correct, W-REF: Wrong)

Je me sentais isoléeF, intimidéeF et jugéeF par beaucoup.
Je me sentais isoléM, intimidéM et jugéM par beaucoup.

C-REF
W-REF

(a)

J’etais unM étudiantM obsessifM compulsifM.
J’etais uneF étudianteF obsessiveF compulsiveF.

C-REF
W-REF

(b)

Sa mère l'a élevéeF seuleF.
Sa mère l'a élevéM seulM.

C-REF
W-REF

(c)

C'était l'unM des pires élèves de la classe.
C'était l'uneF des pires élèves de la classe.

C-REF
W-REF

(d)

Elle était difficile, elle était forteF, elle était puissanteF.
Elle était difficile, elle était fortM, elle était puissantM.

C-REF
W-REF

(e)

CetM adjointM s'est levéM d'un coup et s'est précipitéM vers cetM homme âgéM noirM.
CetteF adjointeF s'est levéeF d'un coup et s'est précipitéeF vers cetteF homme âgéeF noireF.

C-REF
W-REF

(f)

Male Referent
– Masculine Word(s) –

(1)
Speaker-
Related
Gender

Agreement

M
ale
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ak

er
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er (2)
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Agreement

Utte
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Categ
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)
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(ii)
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(i)

Italian Utterance (with English Translation)

FF1Mi sentivo esclusaF, intimiditaF e giudicataF da molti.
(“I felt alienated, intimidated, and judged by many.”)

(a)

MM1Ero unoM studenteM ossessivoM compulsivoM.
(“I was an obsessive compulsive student.”)

(b)

FF2Sua madre l'aveva cresciutaF da solaF.
(“HerF mother raised herF alone.”)

(c)

MF2Era unoM degliM studentiM peggiori della sua classe.
(“HeM was one of the worst students in class.”)

(d)

FM2Era duraF, era forte, era potente.
(“SheF was tough, sheF was strong, sheF was powerful. ”)

(e)

MM2E questoM vice-sceriffoM saltò su e travolse l'uomo di colore.
(“And this deputy jumped up and heM ran over to this older black man.”)

(f)

Fe
ma
le

Spe
ak

er
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or

M
ale

Spe
ak

er

Figure 3.7: Studied gender phenomena include (i) the gender of a referent mentioned that deter-
mined the gender of gender-marked words and (ii) the speaker’s gender. The referent could be (1)
the speaker or (2) a person other than the speaker; depending on the referent, an utterance had
(1) speaker-related or (2) speaker-independent gender agreement (cf. utterance category (iii)).
Explicit gender clues in depicted example utterances are underlined and gender-marked words
in corresponding reference translations are italics.
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3.4.4 Summary of the Data’s Evaluative Dimensions

Altogether, our evaluation data covered three evaluative dimensions that we considered in our ex-
periments, for each of which an utterance complied with one of two of the following specifications,
also illustrated in Figure 3.7 with example utterances and references:

(i) the gender of the referent, the person the speaker refers to, that determines the gender of
gender-marked words relating to the referent:

– female referent with feminine word forms, or

– male referent with masculine word forms;

(ii) the gender of the speaker :

– female speaker, or

– male speaker;

(iii) the utterance category reflecting the type of gender agreement as described:

(1) speaker-related gender agreement, where the speaker is the referent, or

(2) speaker-independent gender agreement, where the referent is someone other than the
speaker.

It is worth mentioning that the two utterance categories are equivalent to the two groups of
MuST-SHE instances between which the authors of the dataset (Bentivogli et al., 2020) distin-
guish, based on the source of information — audio recording or utterance content — necessary
to disambiguate gender (see Section 2.2.2). This original distinction did not hold in our experi-
mental setting because, on the one hand, we did not provide any audio recordings to the models
and, on the other hand, we considered different translation directions, for which the utterance
content, in French and Italian, always provided gender clues as we focused on the challenge of
gender preservation in translation in particular to evaluate gender bias in multilingual MT.
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4

Technical Details

This chapter documents the setup of the experiments conducted in this thesis. We describe the
data preparation and preprocessing procedures for both the training and evaluation datasets
in Section 4.1 and 4.2, provide details about the model training including the hyperparameter
configuration in Section 4.3, and describe the inference phase for zero-shot and for pivot-based
translation in Section 4.4. Figure B.1 in the appendix provides a visual overview of the experi-
mental setup. The source code used to conduct the experiments is available on GitHub1.

4.1 Datasets

In our experiments, we used the publicly available corpora MuST-C (Di Gangi et al., 2019) and
MuST-SHE (Bentivogli et al., 2020). Specifically, we trained our models on different subsets of
MuST-C and evaluated them primarily on a subset of MuST-SHE and, in one instance, on the
test set of MuST-C.

4.1.1 Training

For each target language, MuST-C comprises audio recordings from English TED Talks, each
of which is aligned at the sentence level with a transcription and a translation. While MuST-C
is a multilingual corpus characterized by various speakers, it is worth noting that, like many
other corpora, it reflects a gender-imbalanced distribution of only 30% female versus 70% male
speakers. The release of version 1.2 of MuST-C includes 14 English-to-X language directions.
In our experiments, we included 10 of the 15 available languages from three different language
families (SlavicS, RomanceR, and GermanicG) in our training data2 — CzechS (cs), DutchG (nl),
EnglishG (en), FrenchR (fr), GermanG (de), ItalianR (it), PortugueseR (pt), RomanianR (ro),
RussianS (ru), and SpanishR (es) — to which, in short, we refer to as Y. Besides belonging to
different language families, the languages in Y vary in their gender-inflectional systems.

To investigate the impact of the bridge language, determined by the language pairs included
during training, we formed three training corpora that are subsets of MuST-C with language
pairs en↔Y\en, de↔Y\de, and es↔Y\es, where Y\en is the language set Y excluding English.
On each of the three corpora, we trained a model and afterward evaluated the three trained

1https://github.com/lenacabrera/NMTGMinor
2The five remaining MuST-C target languages (in X) were excluded from our experiments since they re-

quired different preprocessing procedures and the 10 considered languages (Y) provided a sufficiently large enough
database to train our models while keeping the training time at a minimum.
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models on our evaluation data. While different model weight initialization can lead to different
results, we trained each model only once because of the extensive training times and the number
of evaluated models. Since only a portion (∼ 10%) of MuST-C is true-parallel data, i.e., the same
sentence is translated in multiple languages, the training corpora with different bridge languages
differed in size, as specified in Table 4.1; the en↔Y\en training data comprised more sentences
than the other two (which is a true reflection of real-world data availability).

Table 4.1: Overview of the three MuST-C subsets used in the experiments.

Language Pairs # Sentences per Direction

en ↔ Y\en = {cs, de, es, fr, it, nl, pt, ro, ru} 125,000–267,000
de ↔ Y\de = {cs, en, es, fr, it, nl, pt, ro, ru} 103,000–223,000
es ↔ Y\es = {cs, de, en, fr, it, nl, pt, ro, ru} 102,000–258,000

4.1.2 Evaluation

We evaluated our models on a modified version of MuST-SHE, which is described in detail
in Sections 2.2.2 and 3.4. Since MuST-SHE is a subset of MuST-C, we removed overlapping
sentences and kept only true-parallel data to obtain a “multiway” version of MuST-SHE unseen
to the models. In total, we obtained 278 sentences. Detailed statistics about these sentences are
presented in Table 4.2.

Table 4.2: Statistics of the multiway MuST-SHE data used in the experiments. Instances are
split into groups according to the referent gender (Feminine/Masculine), gender agreement (Cat-
egory 1: speaker-related, Category 2: speaker-independent), and speaker gender (Female/Male).

Feminine
(Female/Male)

Masculine
(Female/Male)

Total
(Female/Male)

Category 1 64 (64/0) 56 (0/56) 120 (64/56)
Category 2 72 (58/14) 86 (27/59) 158 (85/73)

Total 136 (122/14) 142 (27/115) 278 (149/129)

Using training corpora comprising different language pairs, we built models with different
supervised translation directions. Accordingly, the models did not share the same zero-shot
directions. For instance, a model trained on the es↔Y\es corpus had seen instances for language
pairs including Spanish. Therefore, we did not include translations from and to Spanish in our
evaluation to ensure equal zero-shot directions across all models considered in our experiments.
Consequently, we evaluated models on fr ↔ it directions, which left us with 556 translations
included in our evaluation.

It is worth mentioning that this subset of MuST-SHE was not ideally gender-balanced in
terms of speakers’ gender for utterances with speaker-independent gender agreement (category
2); due to the different requirements for the evaluated experimental setting (including only zero-
shot directions, removing instances overlapping with the training data, etc.), this constraint was
under caution allowed for as further restriction of the evaluation data would have caused it to
be reduced to a significantly smaller amount, unsuitable of attesting the significance of made
observations.
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For our gender classification, we augmented the original MuST-SHE utterances (including the
source languages French, Italian, and Spanish)3 with two sets of labels. For sentence-level classi-
fication, we used the information about the gender of the gender-marked words in an utterance
provided in MuST-SHE, which are either exclusively feminine (1552 utterances) or masculine
(1562). For token-level classification, we augmented each sentence after tokenization with a set
of labels the size of the number of tokens in the sentence, assigning each token one of three
labels signaling the grammatical gender – neuter (113,934 tokens), feminine (5425), masculine
(5431) – of the word the token is part of. We only inspected those results conforming with the
gender binary (feminine and masculine) as those are the gender signals we were interested in
examining.

4.2 Preprocessing

MuST-C comes with partitioned training, validation, and test sets which we kept unchanged in
our experiments, with the additional modifications described above (cf. Section 4.1.1). For each
training corpus, including the training and the validation set, we first performed tokenization and
truecasing (restoring proper capitalization of words) using the Moses4 tokenizer and truecaser.
Afterwards, we learned BPE using subword-nmt5 (Sennrich et al., 2016) to create a subword-
based vocabulary. We performed 20,000 merge operations on the dataset and only used tokens
occurring in the training set with a minimum frequency of 50 times. Our evaluation data was
preprocessed in a similar way using the BPE-learned vocabulary.

4.3 Training

For our experimental implementation, we used the sequence-to-sequence toolkit NMTGMinor6.
Our baseline was a Transformer with 5 encoder and 5 decoder layers with 8 attention heads,
an embedding size of 512, and an inner size of 2048. For regularization, we used dropout with
a rate of 0.2 and performed label smoothing with a rate of 0.1. Moreover, we used the Adam
optimizer (Kingma & Ba, 2014) with the learning rate schedule from Vaswani et al. (2017) with
8,000 warmup steps. The source and target word embeddings were shared. Furthermore, in the
decoder, the parameters of the projection from the hidden states to the vocabulary were tied
with the transposition of the word lookup table. To specify the output language, we used a
target-language-specific begin-token as well as language embeddings concatenated with decoder
word embeddings, similar to Pham et al. (2019) and Liu et al. (2021).

As part of our model modifications motivated in Section 2.1.6, we removed a residual connec-
tion in the third encoder layer. We trained each model for 64 epochs and averaged the weights
of the five best checkpoints ordered by the validation loss. For the auxiliary similarity loss and
the adversarial language classifier, we resumed training of the baseline and the model with re-
moved residual connections for 10 additional epochs. By default, we only included the supervised
translation directions in the validation set.

When analyzing a model’s hidden representations through gender classification performance,
we froze the trained encoder-decoder weights and trained the classifier for 100 epochs. The

3For the classification, we used the MuST-SHE utterances without removing instances overlapping with MuST-
C to enlarge the classifier training and validation data on which we evaluate the classifier, similar to Liu et al.
(2021).

4https://github.com/moses-smt/mosesdecoder
5https://github.com/rsennrich/subword-nmt
6https://github.com/nlp-dke/NMTGMinor
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classifier used a linear projection from the encoder hidden dimension to the number of classes,
followed by a softmax activation. As the classification task was lightweight and convergence was
fast, we reduced the warmup steps to 400 while keeping the learning rate schedule unchanged.

4.4 Inference

We compared the translation performance between direct zero-shot translation (implicit bridging
with a single model) and pivot-based translation (explicit bridging with cascading two identical
models). Since models were trained for multiple translation directions, we provided a beginning-
of-sentence (BOS) token to indicate the desired target language. For instance, for French→Italian
translation, we indicated the target language by prepending the BOS IT to source sentences when
performing zero-shot translation. Meanwhile, in the case of pivoting, we first provided the model
the BOS token for the pivot language (e.g., EN in the case of en↔Y\en training data, or DE
in the case of de↔Y\de training data) and generated the translation for the pivot language.
Afterward, we prepended the BOS token IT to the produced translations and fed them back
to the model to generate the final output in Italian. Cascading of the model in such manner is
illustrated in Figure B.1 (see illustration for “Inference”).
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5

Results

This chapter presents the results of the experiments performed in this thesis and the discussions
thereof. The series of experiments was largely motivated by our central two-part hypothesis
that, on average, (1) zero-shot translation generates fewer gender-biased outputs than pivot-
based translation, where gender bias is conceived as the systematic and unfair discrimination
against a group of individuals of the same sex, here either women or men, in favor of the other
gender group, (2) while maintaining comparable translation quality. Looking into both parts
separately, we first confirm the reasonable overall translation quality of zero-shot and pivot-based
translations and evaluate the gender preservation performances of both approaches afterward.

Primarily, we examine the performance of models bridging via English, i.e., trained on
en ↔ Y\en MuST-C language pairs, focusing on the effect of the modifications promoting
language-agnostic hidden representations (cf. Section 3.2.3). We conduct a BLEU-based eval-
uation in Section 5.1 using gender-swapping and perform an additional analysis based on the
accuracy, only considering gender-marked target words, in Section 5.2. Secondly, we study the
effect of the bridge language in Section 5.3. We compare the performances of models bridging via
English to that of models bridging via German or Spanish. Thirdly, in Section 5.4, we measure
the extent of gender signals captured in language representations indicated by the models’ ability
to recover gender information from encoder hidden states using a gender classifier on sentence
and on token level.

In the presentation of our results, we use B to refer to the baseline model, R to indicate
models with a removed residual connection, AUXSIM represents the auxiliary similarity loss,
and ADVLAN the adversarial language classifier. When space is limited, we use ZS and PV to
abbreviate the terms zero-shot and pivot-based translation, and

↷
en to refer to English-bridging

models. We present MuST-SHE results as the average of the scores obtained for the two evaluated
zero-shot directions fr ↔ it. Since the discussion of all results obtained in the course of this thesis
is beyond the scope, we present only a selection of the results. For the sake of completeness, in
their entirety, the results can be found in the appendix B.3.

5.1 BLEU-based Evaluation

In the first part of our evaluation, we examine BLEU scores to evaluate the models’ translation
performance with a focus on their ability to preserve gender.
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5.1.1 Translation Quality

Since sentences always comprise gender-neutral and gender-marked words, a model that only
performs well on one of the two is not desirable as it can not be deployed for general application.
Therefore, we evaluate the quality of models’ translations of the entire utterances, including
gender-neutral and gender-marked words, on two datasets: the MuST-C test set and on MuST-
SHE (i.e., the Correct references, cf. Section 3.3.1). The corresponding results, depicting average
BLEU scores for zero-shot directions on either dataset, are presented in Table 5.1.

Table 5.1: Average BLEU scores for zero-shot directions on the MuST-C test set ({s → t|s, t ∈
{nl, pt, ro, ru} & s ̸= t}) and on MuST-SHE (fr ↔ it). Higher scores are better, the bold score
per dataset denotes the best performance of each approach, and underlined are the best of both
approaches if one is better.

Model
(

↷
en)

MuST-C MuST-SHE

Zero-Shot Pivot Zero-Shot Pivot

Baseline (B) 3.7 17.4 3.8 25.6
B + AUXSIM 11.1 15.8 15.7 24.0
B + ADVLAN 15.9 17.0 25.3 25.0
Residual (R) 14.3 17.2 22.9 24.9
R + AUXSIM 15.1 15.6 23.4 23.4
R + ADVLAN 16.0 17.0 25.6 25.4

AVG excl. B 14.5 16.5 22.6 24.5

Starting with our baseline B, we observe far higher BLEU scores for pivoting than for zero-
shot translation on both datasets. Adding the auxiliary similarity loss or the adversarial language
classifier to the baseline (B + AUXSIM , B + ADVLAN ) improves the zero-shot performance con-
siderably. On MuST-SHE, zero-shot translation with B + ADVLAN even performs slightly better
than pivoting using the same model. Removing a residual connection (R/R+) also improves zero-
shot translation significantly. On MuST-SHE, we observe an increase of 19.1 in the BLEU score
when simply removing a single residual connection from B. Furthermore, combining R with
AUXSIM or ADVLAN additionally improves the BLEU score, leading to comparably good zero-
shot (R + ADVLAN ) and pivot-based (B) translation performances in the case of MuST-SHE.
Also, it is R + ADVLAN that achieves the highest zero-shot translation scores on both datasets;
second-best, not far behind, is B + ADVLAN . Hence, ADVLAN achieves the largest performance
gains for zero-shot translation.

Generally, as Liu et al. (2021) have showcased before, the results confirm that encouraging
language-agnostic representations improves zero-shot translation; this is well summarized by the
larger average scores across the five modified models (AVG excl. B) compared to those of B (e.g.,
22.6 > 3.8 for MuST-SHE). Meanwhile, the modifications have a negative effect on pivoting; this
is not surprising since more language-independent representations caused by the modifications
presumably lead to more errors due to the loss of information along the pivoting translation
pipeline. Concerning our hypothesis, we see that zero-shot translation can “[maintain] compara-
ble translation quality” (e.g., R + ADVLAN on MuST-SHE), albeit more often performing not
as well as pivoting. Nevertheless, both approaches achieve reasonable translation quality.
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5.1.2 Gender Preservation

After examining the translation quality, we continue our evaluation, assessing the models’ ability
to preserve the gender of gender-marked words: In Table 5.2, we compare the BLEU scores
indicative of the similarity of the generated translations of MuST-SHE utterances to the Correct
references (from Table 5.1) and their gender-reversed counterparts (Wrong references), regardless
of the gender of gender-marked words appearing in the utterances (i.e., results include both
genders). In principle, for a comprehensive model assessment, hereafter, the results per row
must be considered in combination (e.g., a high Correct score is invalidated to some extent by a
large Wrong score, indicated by a negative delta of the scores for the two reference sets).

Table 5.2: Average BLEU scores for Correct (higher ↑ is better) and Wrong (lower ↓ is better)
MuST-SHE references complemented with the difference (Delta ↑ = Correct−Wrong) of the
scores for the two reference sets. For the Correct scores and the Deltas, bold scores denote the
best results per approach and underlined are the best of both approaches if one is better.

Model
(

↷
en)

Correct ↑ Wrong ↓ Delta ↑
ZS PV ZS PV ZS PV

Baseline (B) 3.8 25.6 3.8 23.6 0 2.0
B + AUXSIM 15.7 24.0 14.3 22.3 1.4 1.8
B + ADVLAN 25.3 25.0 23.2 23.2 2.1 1.8
Residual (R) 22.9 24.9 21.2 23.0 1.7 1.9
R + AUXSIM 23.4 23.4 21.4 21.6 2.0 1.9
R + ADVLAN 25.6 25.4 23.7 23.5 1.9 1.9

AVG excl. B 22.6 24.5 20.8 22.7 1.8 1.9

Our previous analysis has revealed significant zero-shot performance gains of the different
model modifications. Comparing the scores for the Correct and the Wrong reference set shows
that the improved performance for the former is always reflected in the latter, which in itself
is not unexpected due to the partial correlation between scores for the Correct and Wrong set
(cf. Section 3.3.1). The level of improvement for both reference sets is, however, not the same:
We consistently observe positive deltas (=Correct–Wrong)—i.e., more correct gender translations
than gender-reversed (wrong) ones—as well as increased deltas above zero when comparing B
(has delta of zero) with the other models for zero-shot translation (note, higher delta is better).
Accordingly, all model modifications improve zero-shot models’ ability of choosing the correct
instead of the opposite, wrong gender resulting in reduced gender-biased outputs, as the model’s
translations less frequently ignore and contradict the gender information conveyed by the source
sentence. Conversely, we observe the opposite effect (i.e., decreasing deltas) for pivoting with
modified models compared to B.

Furthermore, it shows that the model with the highest score for the Correct set
(R + ADVLAN , BLEU of 25.6) is not the least biased (B + ADVLAN , delta of 2.1, and second-
best Correct score of 25.3). In contrast, the best pivoting performance accomplishes B, also
achieving the overall highest BLEU score of 25.6 for the Correct set and a delta of 2.0. Despite
the noticeable zero-shot performance gains of the model modifications, these results indicate
comparable gender preservation performance of both pivoting and zero-shot translation.

Breaking down the results into those for feminine and masculine referents (i.e., feminine and
masculine words) in Table 5.3 reveals a notable difference in BLEU scores between both genders,
showcasing better masculine than feminine gender preservation as a result of models’ biases
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toward producing masculine outputs more often than ideally expected. Taking a closer look

Table 5.3: Average BLEU scores for Correct (higher ↑ is better) and Wrong (lower ↓ is better)
MuST-SHE references, broken down by referent gender and complemented with the scores’ dif-
ference (Delta ↑ = Correct−Wrong). For the Correct scores and the Deltas, bold scores denote
the best results per approach and underlined are the best of both approaches.

Model
(

↷
en)

Feminine Referent Masculine Referent

Correct ↑ Wrong ↓ Delta ↑ Correct ↑ Wrong ↓ Delta ↑
ZS PV ZS PV ZS PV ZS PV ZS PV ZS PV

Baseline (B) 3.2 23.8 3.3 23.4 -0.1 0.4 4.3 27.1 4.1 23.8 0.2 3.3
B + AUXSIM 15.6 21.8 14.7 21.4 0.9 0.4 15.7 25.8 13.8 22.8 1.9 3.0
B + ADVLAN 23.5 22.8 23.4 22.8 0.1 0.0 26.6 26.7 23.0 23.3 3.6 3.4
Residual (R) 21.7 23.0 21.6 22.9 0.1 0.1 23.9 26.4 20.7 23.1 3.2 3.3
R + AUXSIM 22.3 21.4 21.5 21.2 0.8 0.2 24.2 24.8 21.1 22.0 3.0 2.8
R + ADVLAN 24.5 23.5 24.2 23.2 0.3 0.3 26.2 26.8 23.2 23.6 3.0 3.2

AVG excl. B 21.5 22.5 21.1 22.3 0.4 0.2 23.3 26.1 20.4 23.0 2.9 3.1

at the BLEU scores for the Correct set, it shows that zero-shot translation with R + ADVLAN

achieves the highest feminine score (24.5), outperforming pivoting (with B) by 0.7. On masculine
words, B produces the best pivoting result (27.1), which is 0.5 scores higher than the best zero-
shot translation result achieved by B + ADVLAN . It turns out that neither translation approach
performs best for both feminine and masculine words.

While for Correct references, each approach performs better for one gender than the other
approach (hence superiority is balanced), the deltas between the Correct and the Wrong scores
indicate better zero-shot performance for both genders. The gap between the approaches’ highest
(best) deltas is slightly bigger for feminine words (B + AUXSIM : |0.9 − 0.4| = 0.5) than for
masculine words (B+ADVLAN : |3.6−3.4| = 0.2); hence, on feminine words, zero-shot translation
has even fewer gender mix-ups compared to pivoting than on masculine words, where the deltas
are very similar. In other words, zero-shot translation has a bigger lead over pivoting regarding
preventing gender confusion on feminine words than on masculine words. This is also emphasized
by the larger average scores across the five modified models (AVG excl. B) for feminine words
(Delta: 0.4 > 0.2), whereas for masculine words, pivoting achieves, on average, greater results
than zero-shot translation (3.1 > 2.9). Regarding the model modifications, it stands out that
AUXSIM (with B or R) improves zero-shot models’ feminine gender preservation most effectively,
as indicated by their noticeably higher feminine deltas.

At large, results for both translation approaches share that in the masculine case, deltas are
significantly higher than in the feminine case, where deltas are often close to zero. It shows
that for feminine words, where the required gender realization is feminine, faulty masculine
outputs are essentially almost as frequent as feminine outputs (hence, deltas close to zero);
combined with the much higher masculine deltas, this observation suggests that models more
frequently produce the masculine gender, and not only when it is required (i.e., mistakenly also
for feminine words). Since correct feminine translations are consistently less frequent than their
masculine counterparts across all models and approaches, we argue that better feminine gender
preservation—as achieved with zero-shot translation—is more desirable in the aim of mitigating
gender biases by closing this gender gap.
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Summary of Preliminary Findings

The BLEU-based evaluation has offered preliminary insight into the gender preservation behavior
of the considered models. For all modifications to our baseline, we observe performance improve-
ments; this strengthens the idea that promoting language-independent representations improves
the translation quality and reduces gender biases in zero-shot translation. When comparatively
inspecting feminine and masculine performances, we observe a better performance of zero-shot
compared to pivot-based translation for feminine words and vice versa for masculine words for
the Correct references. Zero-shot models prove to be slightly better at preventing gender confu-
sion (i.e., occurs when producing the wrong, gender-reversed translation). Nonetheless, for both
approaches we can observe a notable masculine bias discriminating feminine words.

Altogether, the results of this preliminary analysis fail to reject our hypothesis, but rather
support it. We find that zero-shot translation can maintain comparable translation quality but
more often performs worse than pivoting. Furthermore, the results illustrate marginal superiority
of zero-shot translation over pivoting regarding gender preservation, which is, however, not to
be considered significant. Since BLEU is only an indirect and coarse indicator of better or worse
gender preservation performance, we find it has limitations regarding gender bias evaluation
which we demonstrate in the Appendix B.1.

5.2 Accuracy-based Evaluation

While the evaluation of BLEU scores has already shed light on the models’ ability to preserve
gender, it is insightful to also perform a more discriminative analysis, pointing only to the actual
words through which gender is expressed. Compared to BLEU, the accuracy is a more transparent
metric for our evaluation since better or worse performance measured is reliably attributed to
better or worse translation of gender-inflected words only. Complementary to the BLEU-based
evaluation, we examine the differences between zero-shot and pivot-based translations’ accuracies
for gender-marked words and compare the accuracies for the feminine and masculine gender.

For the Correct MuST-SHE references, Table 5.4 presents the accuracies (γcorrect , cf. Sec-
tion 3.3.1) of the translated gender-marked words, regardless of the referent gender (All), as well
as broken down by referent gender (Feminine, Masculine); additionally, it includes the magnitude
of the gender gap (δreferent , cf. Section 3.3.1), which, when large is interpreted as bias toward
better preservation of one gender at the expense of the other. Higher accuracies are a sign of
better gender preservation performances, whereas smaller gender gaps between accuracies for the
two genders indicate more fairly balanced preservation of both genders and thus fewer gender
biases. We highlight the best results per metric (i.e., per two columns) for better overview, but
it is worth noting that, similar to the BLEU-based evaluation, the metrics have to be considered
in combination.

First of all, it shows that our tested models are able to preserve the gender of gender-inflected
words adequately in approximately 40% of the cases (see All). Consistent with our BLEU-based
evaluation is the masculine bias that is found throughout all models’ performances, indicated by
higher masculine than feminine results. However, compared to the BLEU scores, the difference
between the accuracy scores for feminine and masculine words is much more noticeable, revealing
a stronger masculine bias than derivable from the BLEU-based evaluation.

Comparing the performance of the baseline B to the average of all other models (AVG excl.
B), it is confirmed that zero-shot translation significantly benefits from the different modifications
promoting language-agnostic hidden representations (e.g., gender gap shrinks from 0.69 to 0.44),
while pivoting performs better using B (gender gap of 0.47 is unchanged but with higher accura-
cies for B). The results also confirm the previous finding that B + ADVLAN and R + ADVLAN
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Table 5.4: Average accuracy scores for Correct MuST-SHE references (γcorrect, higher ↑ is
better), broken down by referent gender and complemented with the referent gender gap (δreferent ,
lower ↓ is better). Bold scores denote the best results per approach and underlined are the best
of both approaches.

Model
(

↷
en)

All ↑ Feminine ↑ Masculine ↑ Gender Gap ↓
ZS PV ZS PV ZS PV ZS PV

Baseline (B) 6.4 42.5 3.0 29.1 9.7 55.4 0.69 0.47
B + AUXSIM 30.8 40.0 23.4 27.0 37.8 52.5 0.38 0.49
B + ADVLAN 43.0 41.9 27.5 26.6 57.8 56.5 0.52 0.53
Residual (R) 38.8 42.4 25.9 29.8 51.1 54.5 0.49 0.45
R + AUXSIM 41.1 39.2 30.0 28.0 51.7 49.9 0.42 0.44
R + ADVLAN 43.0 42.5 32.1 30.0 53.4 54.5 0.40 0.45

AVG excl. B 39.3 41.2 27.8 28.3 50.4 53.6 0.44 0.47

achieve the highest accuracies for zero-shot translation (All: 43.0), with B+ADVLAN also achiev-
ing the best masculine result (57.8) and R +ADVLAN achieving the best feminine result (32.1),
all of which are better than the best pivoting results. Regarding the gender gap, it shows that
R + ADVLAN achieves closer accuracies for both genders, i.e., a smaller gender gap (0.40) than
B + ADVLAN (0.50). This emphasizes that with already significantly higher masculine than
feminine results, the feminine results and their improvement specifically are a decisive factor
when aiming to reduce the gender gap and with it models’ gender biases.

Zero-shot translation using R+ADVLAN outperforms pivoting on feminine words (by 2.1 for
R+ADVLAN , and by 3.0 compared to pivoting with B), but pivoting achieves higher masculine
scores (higher by 1.0 for R + ADVLAN and by 2.0 using B). In comparison, the larger lead
on feminine words makes up for the smaller lag on masculine words, making the gender gap for
zero-shot translation using R+ADVLAN slightly smaller than for pivoting (smaller by 0.05 using
R + ADVLAN and smaller by 0.07 compared to pivoting with B).

Consulting the complementary results for the Wrong references, presented in Table 5.5, sup-
ports the observation that the betterment of feminine gender preservation through modified
zero-shot models more than compensates the slightly worse masculine performance: Comparing
the deltas between the accuracies for the Correct and the Wrong set of R + ADVLAN for both
genders shows a larger (better) delta for zero-shot translation than for pivoting (0.5 > −4.9),
while pivoting achieves a masculine delta larger by a smaller magnitude (43.9 > 43.0). In con-
trast to the BLEU-based evaluation, these outcomes show that for feminine words, where the
required gender realization is feminine, pivoting produces faulty masculine outputs more often
than feminine outputs; hence, the negative feminine delta for pivot-based translation (not only
for R + ADVLAN but for all models). In comparison, zero-shot models achieve better but still
relatively poor feminine gender preservation results, as also revealed by the BLEU scores. In the
masculine case, the accuracies for the Wrong set are much lower; combined with the much higher
masculine Correct scores (cf. Table 5.4), the masculine deltas are positive and well above zero
with the highest deltas of 49.2 and 49.0 for zero-shot and pivot-based translation respectively
(both B + ADVLAN ).

Altogether, the results show once more the big difference between both genders, and reveal
that models more frequently generate the masculine gender, and not only when it is required,
leading to better masculine than feminine gender preservation. Overall, it seems that zero-
shot translation yields slightly more equitable gender preservation results than pivoting, with
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Table 5.5: Average accuracy scores for Wrong (γwrong, lower ↓ is better) MuST-SHE references,
broken down by referent gender and complemented with the difference Delta ↑ = Correct−Wrong
(cf. Correct scores in Table 5.4). For the Deltas, bold scores denote the best results per approach,
underlined are the best of both approaches.

Model
(

↷
en)

Feminine Referent Masculine Referent

Wrong ↓ Delta ↑ Wrong ↓ Delta ↑
ZS PV ZS PV ZS PV ZS PV

Baseline (B) 5.5 36.9 -2.5 -7.8 2.2 9.1 7.5 46.3
B + AUXSIM 20.2 34.2 3.2 -7.2 7.1 8.3 30.7 44.2
B + ADVLAN 34.3 39.2 -6.8 -12.6 8.6 7.5 49.2 49.0
Residual (R) 30.8 35.9 -4.9 -6.1 9.1 10.0 42.0 44.5
R + AUXSIM 27.6 34.6 2.4 -6.6 8.9 9.9 42.8 40.0
R + ADVLAN 31.6 34.9 0.5 -4.9 10.4 10.6 43.0 43.9

AVG excl. B 28.9 35.8 -1.1 -7.5 8.8 9.3 41.5 44.3

R+ADVLAN accomplishing the overall best result (highest feminine accuracy and second lowest
gender gap); pivoting, on the other hand, achieves better masculine gender preservation which,
at the already significantly lower feminine gender preservation performance contributes to larger
gender gaps that indicate more gender inequality.

5.2.1 Distinguishing Between Female & Male Speakers

Our evaluation, so far, has revealed a masculine bias throughout all models’ performances: We
observe unfair translation behavior manifesting itself in a consistent misrepresentation of femi-
nine word forms in the models’ outputs. This bias detriments the translation performance for
sentences mentioning women and benefits the translation of sentences mentioning men; accord-
ingly, we observe unfair treatment of one referent gender in favor of the other. Continuing our
evaluation, we want to analyze whether our identified gender-biased translations are, in fact, a
result of the underrepresentation of communicative repertoires of women; therefore, we break
down the results for speakers of both genders and examine them for differences between both
speaker groups, men and women. Furthermore, we refine our evaluation by analyzing the effect
of the low gender-inflectional English bridge language on gender preservation for utterances with
speaker-related and speaker-independent gender agreement.

Utterance Category 1: Speaker-Related Gender Agreement

First, we look into those utterances with speaker-related gender agreement, where correct gender
inflection can be evaluated based on the gender of the speaker (i.e., “Je me sentais isoléeF ”
uttered by a woman requires the adjective inflection to be congruent with the gender of the
speaker). We hypothesized that when bridging via English, the models lose knowledge about
the gender of the referent (= speaker) necessary for the correct gender-inflectional build-up of
the translation, resulting in gender ambiguity impairing gender preservation; by examining the
results for utterances with speaker-related gender agreement presented in Table 5.6, we want
to analyze whether zero-shot and pivot-based translation are indeed affected by this. Given
the nature of utterances with speaker-related gender agreement, additionally accounting for the
impact of speakers’ gender on models’ gender biases is straightforward: results for feminine
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referents/words represent results for female speakers only, i.e., women, and those for masculine
referents/words only represent results for male speakers, i.e., men.

Table 5.6: Average accuracy scores for Correct (γcorrect, higher ↑ is better) MuST-SHE ref-
erences with speaker-related gender agreement, broken down by referent gender (agrees with
speaker gender), and complemented with the gender gap (δreferent , lower ↓ is better). Bold
scores denote the best results per approach and underlined are the best of both approaches.

— Utterance Category 1: Speaker-Related Gender Agreement —

Model (
↷
en)

Feminine Referent ↑
(Female Speaker)

Masculine Referent ↑
(Male Speaker)

Gender Gap ↓

ZS PV ZS PV ZS PV

Baseline (B) 4.0 15.3 8.2 53.2 0.51 0.71
B + AUXSIM 16.9 16.3 36.6 49.9 0.54 0.67
B + ADVLAN 17.3 16.5 56.6 55.5 0.69 0.70
Residual (R) 17.6 18.3 48.8 48.2 0.64 0.62
R + AUXSIM 17.8 19.2 47.7 45.0 0.63 0.57
R + ADVLAN 20.2 19.2 48.2 48.7 0.58 0.61

AVG excl. B 18.0 17.9 47.6 49.5 0.62 0.64

First of all, it shows that the masculine bias is even more pronounced in the translation
results for utterances of this category than for both utterance categories combined (cf. Table 5.4):
Comparing the results for both speaker groups shows more than twice as high scores for male
speakers than for female speakers; because of this, the gender gaps are generally larger than
in Table 5.4. This observation confirms the notion that models struggle to preserve gender for
utterances with speaker-related gender agreement when bridging via English, more so than for
utterances with speaker-independent gender agreement (cf. Table 5.6). Furthermore, it shows
that the poorer gender preservation affects the feminine gender more than the masculine gender
when considering the only slightly worse performance for masculine words (AVG excl. B lower
by approx. 3–4 scores) while observing a significant drop in scores for feminine words (AVG
excl. B lower by approx. 10–11 scores) compared to the results for all utterances (cf. Table 5.4),
making the previously found discrimination against women more prominent.

Both zero-shot and pivot-based translation are affected by the low gender-inflectional system
of the English bridge language and the associated limitations to preserving and recovering gender
information. On average (AVG excl. B), zero-shot models achieve equal to better feminine gen-
der preservation performance compared to pivoting (18.0 > 17.9) in contrast to slightly worse
feminine performance for all utterances combined (27.8 < 28.3, cf. Table 5.4); moreover, the
worse masculine performance of zero-shot translation compared to pivoting is not as pronounced
(|47.6−49.5 = 1.9|) as before, for all utterances combined (|50.4−53.6| = 3.2). While the differ-
ences are small, this indicates that zero-shot translation suffers slightly less from the limitations
of the English bridge language than pivoting in the case of speaker-related gender agreement, as
we hypothesized; however, the effect of the limitations of the English bridge language on both
approaches’ performances is much more similar than expected.

Regarding the model modifications, we generally observe similar outcomes as before: the best
scores by a large margin for female and male speakers (i.e., for feminine and masculine referents)
yield R + ADVLAN and B + ADVLAN respectively; the lowest gender gap of the two again
achieves R+ADVLAN (0.58 for ZS and 0.61 for PV). Using R+ADVLAN , zero-shot translation
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outperforms pivoting for feminine words (20.2 > 19.2), whereas it is the opposite for masculine
words (48.2 < 48.7); the larger difference in feminine (±1.0) than in masculine results (±0.5)
between both approaches is again the reason for zero-shot translation achieving a smaller, better
gender gap (0.58.0 < 0.61) and, thus, fewer gender-biased outputs.

After all, it remains an open question whether the observed gender differences are due to
models’ inability to properly model women’s use of language (“women talking”) or whether the
discrimination trivially narrows down to worse translations of feminine words (“talking about
women”), regardless of who is using them. Accounting for speakers’ gender for utterances in
which feminine and masculine words are used by speakers of both genders (as is possible for
utterances with speaker-independent gender agreement) promises to shed more light on the
cause of the repeatedly visible masculine bias.

Utterance Category 2: Speaker-Independent Gender Agreement

In utterances with speaker-independent gender agreement, gender information is always present
and explicit, even in English (e.g., “[...] she was strong [...]”, “[...] elle était forteF [...]”); hence,
using the low gender-inflectional English bridge language does not impair gender preservation for
that matter. Due to the independence of gender agreement from the speaker, these utterances
allow us to look into the gender preservation in translations of feminine and masculine words
used by both speaker groups, i.e., both speaker groups “talking about men and about women”;
the corresponding results are presented in Table 5.7. The trend of better masculine than feminine

Table 5.7: Average accuracy scores for Correct (γcorrect, higher ↑ is better) MuST-SHE refer-
ences with speaker-independent gender agreement. Results are broken down by referent gender
(Feminine, Masculine) and speaker gender (Female, Male), and are complemented with the ref-
erent and the speaker gender gap (δreferent , δ

F
speaker and δMspeaker , lower ↓ is better). Bold scores

denote the best results per approach and underlined are the best of both approaches.

— Utterance Category 2: Speaker-Independent Gender Agreement —

Model (
↷
en) Speaker

Referent Speaker Gender Gap ↓
Feminine ↑ Masculine ↑ Gender Gap ↓ Fem. Ref. Masc. Ref.

ZS PV ZS PV ZS PV ZS PV ZS PV

Female 2.1 37.8 6.6 57.4 0.68 0.34
Baseline

Male 2.1 58.8 12.4 56.4 0.83 0.04
0.00 0.35 0.47 0.02

Female 26.7 34.3 38.3 55.1 0.30 0.38
+ AUXSIM Male 41.5 47.0 38.7 53.8 0.07 0.13

0.36 0.27 0.01 0.02

Female 33.1 32.6 57.8 59.6 0.43 0.45
+ ADVLAN Male 52.7 50.2 58.8 56.0 0.10 0.10

0.37 0.35 0.02 0.06

Female 32.6 36.5 53.6 61.7 0.39 0.41
Residual

Male 37.3 56.1 52.0 57.2 0.28 0.02
0.13 0.35 0.03 0.07

Female 40.0 34.9 58.9 53.5 0.32 0.35
+ AUXSIM Male 44.8 40.6 52.1 52.8 0.14 0.23

0.11 0.14 0.12 0.01

Female 41.0 37.4 58.2 61.9 0.30 0.40
+ ADVLAN Male 51.1 50.5 56.1 56.6 0.09 0.11

0.20 0.26 0.04 0.09

Female 34.7 35.1 53.4 58.4 0.30 0.40
AVG excl. B

Male 45.5 48.9 51.5 55.3 0.07 0.02
0.19 0.29 0.11 0.05
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performance is again reflected, although less prominent than for utterances with speaker-related
gender agreement (cf. Table 5.6), which emphasizes the notion of better (less challenging) gender
preservation for speaker-independent gender agreement when bridging via English.

For feminine words (“talking about women”), each model yields higher scores for male (“men
talking”) than for female speakers (“women talking”), regardless of the approach1; feminine
words by female speakers are, on average, lower by more than ten scores than those of male
speakers (compare AVG excl. B: 34.7 vs. 45.5 for ZS and 35.1 vs. 48.9 for PV). For masculine
words (“talking about men”), we observe a mixed picture: For zero-shot translation, half of the
models (B, B +AUXSIM , B +ADVLAN ) achieve lower scores for female speakers than for male
speakers, and the others (R, R+AUXSIM , R+ADVLAN ) do vice versa; meanwhile, for pivoting,
all models achieve higher scores for female than for male speakers.

Regarding the gender differences, we consider the referent gender gap (between results for
feminine and masculine referents/words, δreferent) and the speaker gender gaps (between results
for female and male speakers, δFspeaker and δMspeaker ). Comparing the referent gender gaps for
the two speaker groups shows noticeably higher (worse) gaps for female speakers than for male
speakers (e.g., AVG excl. B: 0.30 > 0.07 for ZS and 0.40 > 0.02 for PV). Comparing the speaker
gender gaps for the two referent genders shows, on average, higher (worse) gaps for feminine
words than for masculine words (e.g., AVG excl. B: 0.19 > 0.11 for ZS and 0.29 > 0.05 for
PV). Consequently, for female speakers (“women talking”), the preservation results for the two
referent genders are further apart than for male speakers, with feminine words (“talking about
women”) generally being less well preserved than masculine words.

Furthermore, the average results reveal slightly smaller differences between the referent gender
gaps (|0.30−0.07| = 0.23 for ZS < |0.40−0.02| = 0.38 for PV) and the speaker gender gaps (|0.19−
0.11| = 0.08 for ZS < |0.29 − 0.05| = 0.24 for PV) of zero-shot models compared to pivoting;
this indicates slightly more balanced performances for the genders considered in each case; for
instance, the referent gender gaps for the two speaker genders are of more similar magnitude
for zero-shot translation—in other words, the extent to which masculine gender preservation
is better than feminine gender preservation is more similar between speaker groups—signaling
fairer gender treatment of zero-shot models than is the case for pivoting.

A further comparison between approaches can be made for zero-shot translation using
R + ADVLAN (the model that, so far, has arguably achieved the overall best zero-shot results,
including consideration of gender equality) and pivoting using B (the model that achieves the
best pivoting scores for feminine referents/words for both speaker groups): We observe a smaller
referent gender gap for female speakers (0.30 < 0.34) and a smaller speaker gender gap for fem-
inine words (0.20 < 0.35) of zero-shot translation, whereas pivoting achieves a smaller referent
gender gap for male speakers (0.09 > 0.04) and a smaller speaker gender gap for masculine
words (0.04 > 0.02); here, the biggest advantage of one approach over the other has zero-shot
translation regarding the difference in gender preservation between female and male speakers
for feminine words (smaller by 0.15), which proves to be the biggest source of gender inequality
(i.e., the difference between men and women when “talking about women”) in our evaluation;
the other advantages of one approach over the other are arguably negligible.

Tendentially, pivoting can achieve smaller gender gaps between the two referent genders
used by male speakers and the two speaker groups using masculine words. On the other hand,
zero-shot translation achieves smaller gender gaps between the two referent genders used by
female speakers and a (much) smaller gap between the two speaker groups using feminine words.
Since referent gender gaps for female speakers and speaker gender gaps for feminine words are
almost always significantly higher and, thus, worse than their gender-reversed counterparts, it
is reasonable to conclude that reducing the former serves the mitigation of gender bias more

1Zero-shot translation with B is an exception that is negligible as B performs poorly.
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than reducing the latter; this tendency is demonstrated by zero-shot translation more than by
pivoting.

Notably, gender preservation for feminine words used by female speakers (“women talking
about women”) achieves by far the lowest result (the highest scores is 41.0) among much higher
and otherwise more or less similar best scores for the other referent-speaker-gender combinations
(58.8 for “men talking about women”, 58.8 for “men talking about men”, and 61.9 for “women
talking about men”). Accordingly, the considerably higher performance for feminine words used
by men compared to women is a primary factor contributing to models’ masculine bias, because
the results suggest that the models are worse at modeling the language use of women than
that of men when they use feminine words (i.e., when they talk about women). In contrast, for
the use of masculine words, we observe better performance for female than for male speakers,
which shows that models are not systematically discriminating female speakers. However, these
findings, combined with the fact that women use feminine words more often than men (inherently
whenever they talk about themselves, cf. speaker-related gender agreement), show that our
tested models undeniably put women at a disadvantage for many different application scenarios
of translation technology.

Summary of Preliminary Findings

Overall, the results of this analysis add to our previous findings that besides better translation
performance for masculine words, the models’ masculine bias manifests itself in better per-
formance for male speakers—but only in the case of feminine words. Accordingly, we observe
gender-biased behavior of all models, discriminating feminine words used by female speakers (i.e.,
“women talking about women”) through worse gender preservation performance; we observe this
type of gender bias for both approaches, however, zero-shot translation produces slightly fewer
gender-biased results than pivoting. It also shows that models are not systematically discrimi-
nating female speakers, since gender preservation for masculine words used by female speakers
works tendentially even better than for male speakers.

Generally, pivoting achieves smaller gender gaps between the two referent genders used by
male speakers and the two speaker groups using masculine words; zero-shot translation achieves
smaller gender gaps between the two referent genders used by female speakers and a (much)
smaller gap between the two speaker groups using feminine words. Since referent gender gaps
for female speakers and speaker gender gaps for feminine words are almost always significantly
higher and, thus, worse than their gender-reversed counterparts, we conclude that reducing the
former serves the mitigation of gender bias more than reducing the latter; this desired tendency
is demonstrated by zero-shot translation more than by pivoting.

The results confirm better gender preservation performances for utterances with speaker-
related than for those with speaker-independent gender agreement when bridging via English.
Zero-shot translation is slightly less affected by the loss of gender information in the English
language for utterances with speaker-related gender agreement; however, the effect of the low
gender-inflectional bridge language on both explicit and implicitly-learned bridging is much more
similar than hypothesized.

5.3 Effect of The Bridge Language

In light of our second research question, we want to investigate how the bridge language influences
the masculine bias of zero-shot and pivot-based translation. We hypothesized using a bridge
language with a rich gender-inflected system, such as grammatical gender languages, enables
better preservation of gender information necessary to disambiguate gender, unlike languages
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that lack a comparable gender-inflectional system, such as English, which is typically the most
common language in training data and therefore the most obvious choice for a bridge language.
As we have previously presented the results for models using English as an explicit or implicit
bridge, we now compare them to the performances of models trained using the grammatical
gender bridge languages German and Spanish.

Considering the performance aspects evaluated so far, we focus on the two different utterance
categories with speaker-related and speaker-independent gender agreement, as we expect to see
notable differences between the three bridge languages, English, German, and Spanish. To
facilitate a better presentation of the results, we use abbreviations such as

↷
en for English-

bridging models, ZS↷
es to indicate zero-shot translation with models using Spanish as the bridge

language, and PV↷
de

for pivoting using German as the bridge/pivot language.

Utterance Category 1: Speaker-Related Gender Agreement

The results for
↷
de and

↷
es models for utterances with speaker-related gender agreement are pre-

sented in Table 5.8, complemented with the difference in performance compared to
↷
en models

in parentheses. First of all, we notice that B achieves higher scores for ZS↷
de

and ZS↷
es than for

Table 5.8: Average accuracy scores for Correct (γcorrect, higher ↑ is better) MuST-SHE ref-
erences with speaker-related gender agreement (category 1) when bridging via German (de) or
Spanish (es); the change in accuracy compared to bridging via English (cf. Table 5.6) is enclosed
in parentheses. Results are broken down by referent gender (agrees with speaker gender). Bold
scores denote the best results per approach and underlined are the best of both approaches.

— Utterance Category 1: Speaker-Related Gender Agreement —

Training
Data
X ↔

Model

Feminine Referent ↑
(Female Speaker)

Masculine Referent ↑
(Male Speaker)

Zero-Shot Pivot Zero-Shot Pivot

de

Baseline (B) 8.8 (+4.8) 17.8 (−2.5) 25.9 (+17.7) 53.2 (±0)

B + AUXSIM 13.7 (−3.2) 19.9 (+3.6) 28.5 (−8.1) 47.0 (−2.9)

B + ADVLAN 14.7 (−2.6) 14.8 (−1.7) 44.1 (−12.5) 44.1 (−11.4)

Residual (R) 18.7 (+1.1) 15.2 (−3.1) 48.9 (+0.1) 50.1 (+1.9)

R + AUXSIM 19.5 (−1.7) 15.3 (−3.9) 44.8 (−2.9) 46.4 (−2.9)

R + ADVLAN 15.1 (−5.1) 18.4 (−0.8) 51.1 (+2.9) 49.8 (+1.1)

AVG excl. B 16.3 (−2.3) 16.7 (−1.2) 43.5 (−4.1) 47.5 (−2.8)

es

Baseline (B) 33.0 (+29.0) 41.5 (+26.2) 41.8 (+33.6) 52.1 (−1.1)

B + AUXSIM 39.2 (+22.3) 41.9 (+25.6) 46.1 (+9.5) 44.2 (−5.7)

B + ADVLAN 41.0 (+23.7) 45.6 (+29.1) 46.4 (−10.2) 46.8 (−8.7)

Residual (R) 32.4 (+14.8) 34.3 (+16.0) 53.1 (+4.3) 53.6 (+5.4)

R + AUXSIM 33.3 (+15.5) 32.4 (+13.2) 51.4 (+3.7) 41.3 (−3.7)

R + ADVLAN 23.8 (+3.6) 29.4 (+10.2) 50.6 (+2.4) 45.7 (+3.0)

AVG excl. B 33.9 (+16.0) 36.7 (+18.8) 49.5 (+1.9) 46.3 (−1.9)

ZS↷
en, and modifying B can in both cases further improve the results. Regarding the different

model modifications, there is no clear pattern visible as to one model performing best for the
three bridge languages for the feminine or the masculine gender.
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The best zero-shot performances for feminine words using the bridge languages German,
Spanish, and English are 19.5 (R + AUXSIM ), 41.0 (B + ADVLAN ), and 20.2 (R + ADVLAN ),
respectively. Accordingly, ZS↷

es produces more than twice as many correct feminine translations
than ZS↷

de
or ZS↷

en. The best performances for masculine words for ZS↷
de

and ZS↷
es are 51.1

(R + ADVLAN ) and 53.1 (R), while for ZS↷
en it is 56.6 (B + ADVLAN ). ZS↷

es is again more
accurate than ZS↷

de
when it comes to masculine translation, but by a much smaller margin;

however, both are outperformed by ZS↷
en.

While the masculine results of ZS↷
en defeat those of the other two bridge languages, it is

worth noting that, at the same time, ZS↷
en produces larger gender gaps, reflected by negative

values in parenthesis in Table 5.9 (especially for
↷
es models), due to lower feminine and higher

masculine results (cf. Table 5.6). Most likely, the cause is ZS↷
en models not reliably recognizing

the correct gender form due to the low gender-inflected bridge language and instead reflecting
learned probabilities of gender occurrence whose distribution is skewed toward the masculine
gender.2

Table 5.9: Referent gender gaps (δreferent , lower ↓) between feminine and masculine accuracies
for Correct MuST-SHE references (category 1, cf. Section 5.8). Bold scores denote the best
results per approach and underlined are the best of both approaches.

— Utterance Category 1: Speaker-Related Gender Agreement —

Training Data
X ↔ Model

Gender Gap ↓
Zero-Shot Pivot

de

Baseline (B) 0.66 (+0.15) 0.67 (+0.04)

B + AUXSIM 0.52 (−0.02) 0.58 (−0.09)

B + ADVLAN 0.67 (−0.02) 0.66 (−0.04)

Residual (R) 0.62 (−0.02) 0.70 (+0.08)

R + AUXSIM 0.56 (−0.07) 0.67 (−0.10)

R + ADVLAN 0.70 (+0.12) 0.63 (−0.02)

AVG excl. B 0.61 (−0.04) 0.65 (−0.03)

es

Baseline (B) 0.21 (−0.30) 0.20 (−0.51)

B + AUXSIM 0.15 (−0.39) 0.05 (−0.62)

B + ADVLAN 0.12 (−0.57) 0.03 (−0.67)

Residual (R) 0.39 (−0.25) 0.36 (−0.26)

R + AUXSIM 0.35 (−0.28) 0.22 (−0.35)

R + ADVLAN 0.53 (−0.05) 0.36 (−0.25)

AVG excl. B 0.31 (−0.31) 0.20 (−0.43)

In contrast, for the models using the two grammatical gender bridge languages there is less
evidence of simply reflecting a learned gender distribution. Turning to the deltas between the
accuracies for the Correct and the Wrong set, presented in Table 5.10, it shows that both ZS↷

de
and ZS↷

es models achieved noticeably higher (better) feminine deltas compared to ZS↷
en indicated

by positive values in parentheses. This is evidence of the ZS↷
en models much more often choosing

the wrong (masculine) over the correct gender (feminine) compared to ZS↷
de

and ZS↷
es models

for feminine words. Furthermore, almost all ZS↷
es models also produce higher masculine deltas

2In MuST-C training corpus approximately 30% female versus 70% male speakers.
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Table 5.10: Differences (Delta, higher ↑ is better) between average accuracy scores for Correct
and Wrong MuST-SHE references (category 1, cf. Correct scores in Table 5.8) when bridging
via German (de) or Spanish (es); the change in difference compared to bridging via English (cf.
Table 5.6) is enclosed in parentheses. Results are broken down by referent gender. Bold scores
denote the best results per approach and underlined are the best of both approaches.

— Utterance Category 1: Speaker-Related Gender Agreement —

Training
Data
X ↔

Model

Delta ↑
Feminine Referent ↑

(Female Speaker)
Masculine Referent ↑

(Male Speaker)

Zero-Shot Pivot Zero-Shot Pivot

de

Baseline (B) -12.1 (−8.3) -16.1 (+17.9) 22.4 (+16.5) 44.2 (+1.9)

B + AUXSIM -10.1 (−3.2) -9.5 (+18.2) 23.0 (−4.2) 38.4 (−2.8)

B + ADVLAN -15.3 (+8.0) -17.7 (+14.7) 38.6 (−9.3) 37.4 (−10.4)

Residual (R) -9.6 (+9.2) -20.1 (+12.3) 43.3 (−4.6) 41.8 (−6.0)

R + AUXSIM -12.0 (+3.5) -18.8 (+5.0) 36.3 (+1.4) 38.4 (+4.8)

R + ADVLAN -13.6 (+2.5) -13.2 (+10.6) 44.9 (+6.3) 41.7 (+7.1)

AVG excl. B -12.1 (+4.0) -15.9 (+12.2) 37.2 (−2.1) 39.5 (−1.5)

es

Baseline (B) 19.2 (+23.0) 21.0 (+55.0) 35.9 (+30.0) 43.5 (+1.2)

B + AUXSIM 27.4 (+34.3) 25.9 (+53.6) 37.2 (+10.0) 34.4 (−6.8)

B + ADVLAN 27.3 (+50.5) 29.6 (+62.0) 36.6 (−11.3) 37.5 (−10.3)

Residual (R) 8.9 (+27.7) 4.3 (+31.4) 44.2 (+4.0) 45.3 (+9.1)

R + AUXSIM 11.3 (+26.8) 7.1 (+30.3) 42.6 (+5.0) 32.1 (−1.9)

R + ADVLAN -5.8 (+10.3) 3.2 (+27.0) 39.3 (+0.7) 35.5 (+0.9)

AVG excl. B 13.8 (+29.9) 14.2 (+40.9) 40.0 (+1.7) 37.0 (−1.8)

than ZS↷
en models, which shows that the better gender preservation of Spanish indeed benefits

both genders.
This is also reflected in the gender gaps depicted in Table 5.9: Compared to the others,

↷
es models reduce the gender gap, and thus bias, by producing significantly better feminine
and (only) slightly better masculine translations, which brings models closer toward closing the
gender gap. In contrast, ZS↷

de
models, similar to ZS↷

en models, rather than relying on the gender
clues from the source, seem to frequently produce the wrong gender form according to a bias
that detriments feminine and benefits masculine translation, resulting in negative feminine deltas
and larger gender gaps. Arguably, the Spanish language has an even richer gender-inflectional
system than German (e.g., Spanish adjectives, unlike German adjectives, are inflected for gender),
which can likely better preserve gender signals conveyed by the source languages, which, on
another note, share the same language family as Spanish; for speaker-related gender agreement

in particular, this could explain
↷
es models’ better ability to preserve gender, while

↷
de models are

more on par with
↷
en models.

For both
↷
de and

↷
es models, we observe higher scores for pivoting than for zero-shot transla-

tion for either referent gender in Table 5.8. Comparing the gender gaps of both approaches in
Table 5.9, we see that pivoting consistently achieves smaller gender gaps than zero-shot trans-
lation for

↷
es models, some of which are very close to zero, indicating equally good preservation

results for both genders. On the other hand, zero-shot translation can achieve smaller gaps for
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↷
de models, of similar magnitude as those of

↷
en models. These outcomes suggest that with an

increased level of gender inflection in the bridge language, pivoting surpasses zero-shot transla-
tion regarding fairly balanced gender preservation. Furthermore, the similarity of the source and
bridge language could also play a decisive role in gender preservation: When gender inflection
of languages is similar, gender preservation does not require strong generalizability of gender
representation that underlies zero-shot but not pivot-based translation; hence, explicit bridg-
ing (pivoting) is even advantageous for gender preservation into languages that have a similar
gender-inflectional system to the source language but disadvantageous for dissimilar languages.

Regarding the different model modifications, a notable difference to previous results is that
the removed residual connection does not improve the zero-shot performance for feminine words
in the case of

↷
es models most times; it can even decrease the accuracy (e.g., 32.4 and 23.8 using

R and R + ADVLAN ) compared to the baseline (33.0). For masculine words, this is not the
case. Nevertheless, the gender gaps also reflect significantly worse performances for models with
a removed residual connection (e.g., 0.39 and 0.53 using R and R + ADVLAN ) compared to the
baseline (0.21). Accordingly, lifting the positional correspondence to input tokens to some extent
in

↷
es models’ language representations does not seem to improve but rather degrade zero-shot

(and pivoting) performances for feminine words, whereas for masculine words it has the opposite
effect—both attributes to larger gender gaps. This observation strengthens our idea that in
the Spanish case, where the bridge language is very similar to the source languages, lifting the
positional correspondence of input tokens to hidden representations impairs the model’s ability
to preserve the correct gender rather than improving it, causing it to rely on biases instead that
favor masculine over feminine outputs.

Utterance Category 2: Speaker-Independent Gender Agreement

For sentences with speaker-independent gender agreement, the results for
↷
de and

↷
es models are

presented in Table 5.11, again complemented with the difference in performance compared to
↷
en

models in parentheses. Similar to
↷
en models, we observe better

↷
de and

↷
es performances for the

utterances with speaker-independent gender agreement than for those where gender agreement
is speaker-related, most likely due to more explicit and unambiguous gender clues that can be
conveyed in a variety of different languages and are thus easier for models to preserve in the
process of (explicit or implicit) bridging.

While the masculine scores are slightly better, feminine scores are significantly higher com-
pared to the results for utterances with speaker-related gender agreement (utterance category

1), especially for
↷
de models (cf. Table 5.8 vs. Table 5.11); this is also reflected in the gender

gaps in Table 5.12. Compared to utterance category 1, the gender gaps for
↷
de and

↷
es models for

utterance category 2 are of much more similar magnitude, even if
↷
es models still perform better.

The performance difference to
↷
en models indicated in parentheses also highlights the fact that

the grammatical gender bridge languages achieve fewer gender-biased results, since the gender
gaps are consistently smaller (hence, the negative values in parentheses). In large part, this can
again be attributed to higher feminine preservation scores for the two bridge languages compared

to English, as shown in Table 5.11. At 43.1, the best feminine result of
↷
de models is no longer

that far behind the best feminine result of
↷
es models with 50.3 and is better than 42.8, the

highest feminine result of
↷
en models. In particular,

↷
de models move the feminine scores much

closer to the masculine ones than in the previous utterance scenario, where the gender gaps are
considerably larger (e.g., for R + ADVLAN , compare 0.19 in Table 5.12 vs. 0.70 in Table 5.9).

In contrast to speaker-related gender agreement, comparing zero-shot to pivot-based transla-
tion for speaker-independent gender agreement shows that the former can perform equally well
as the latter regarding feminine gender preservation for

↷
es models, which is also reflected in the
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Table 5.11: Average accuracy scores for Correct (γcorrect, higher ↑ is better) MuST-SHE refer-
ences with speaker-independent gender agreement (category 2) when bridging via German (de)
or Spanish (es); the change in accuracy compared to bridging via English is enclosed in paren-
theses. Results are broken down by referent gender. Bold scores denote the best results per
approach and underlined are the best of both approaches.

— Utterance Category 2: Speaker-Independent Gender Agreement —

Training
Data
X ↔

Model

Feminine Referent ↑
(Female/Male Speaker)

Masculine Referent ↑
(Female/Male Speaker)

Zero-Shot Pivot Zero-Shot Pivot

de

Baseline (B) 26.9 (+24.8) 41.3 (+0.3) 39.5 (+28.9) 52.5 (−4.2)

B + AUXSIM 32.1 (+2.7) 40.3 (+3.7) 39.2 (+28.6) 46.7 (−7.2)

B + ADVLAN 37.2 (+0.5) 43.1 (+7.3) 49.9 (−8.6) 54.0 (−3.1)

Residual (R) 41.0 (+7.5) 40.6 (+0.5) 49.9 (−2.6) 54.7 (−3.9)

R + AUXSIM 42.4 (+1.5) 40.8 (+4.8) 49.0 (−5.2) 49.7 (−3.3)

R + ADVLAN 40.4 (−2.4) 43.6 (+3.8) 50.1 (−6.6) 55.6 (−2.7)

AVG excl. B 38.6 (+2.0) 41.7 (+4.0) 47.6 (+1.1) 52.1 (−4.0)

es

Baseline (B) 43.1 (+41.0) 48.8 (+7.2) 50.4 (+39.8) 57.7 (+1.0)

B + AUXSIM 46.2 (+16.8) 46.5 (+9.9) 52.7 (+14.1) 51.6 (−2.6)

B + ADVLAN 50.3 (+13.6) 47.9 (+12.1) 55.1 (−3.4) 54.1 (−3.0)

Residual (R) 49.4 (+15.9) 44.9 (+4.8) 54.5 (+2.0) 59.2 (+0.6)

R + AUXSIM 47.1 (+6.2) 42.4 (+6.4) 53.5 (−0.7) 50.5 (−2.5)

R + ADVLAN 49.6 (+6.8) 45.3 (+5.5) 57.7 (+1.0) 55.0 (−3.3)

AVG excl. B 48.5 (+11.9) 45.4 (+7.7) 54.7 (+2.6) 54.1 (−2.2)

gender gaps: ZS↷
es with B +ADVLAN or with R achieves a gender gap of 0.09, which is close to

zero, and similar to the best gender gap for pivoting (0.10). For
↷
de, zero-shot and pivot-based

translation also achieve similar gender gaps of 0.13 and 0.14, respectively.
It stands out that the smallest (best) PV↷

es gender gaps for utterance category 1 achieved
by B + ADVLAN and B + AUXSIM , which are close to zero (0.03 and 0.05), are noticeably
smaller than their equivalents for utterance category 2 (0.11 and 0.10, respectively), despite them
conveying fewer gender ambiguity. In the case of B + ADVLAN , ZS↷

es surpasses PV↷
es regarding

fewer gender biases (0.09 < 0, 11); this is the opposite of what we expected to see. These results
show that zero-shot translation is at least on par with pivoting for both grammatical gender
bridge languages, if not slightly better, regarding bias in gender preservation for utterances with
speaker-independent gender agreement and we conclude that zero-shot models are not necessarily
exposed to the risk of losing explicit gender clues through generalized, language-independent
representations.

Lastly, comparing the average gender gaps achieved by the modified models (AVG excl. B) for
the two utterance categories (utterance category 1: ZS↷

en/ZS↷
de

/ZS↷
es = 0.62/0.61/0.31 versus

PV↷
en/PV↷

de
/PV↷

es = 0.64/0.65/0.20, utterance category 2: ZS↷
en/ZS↷

de
/ZS↷

es = 0.38/0.19/0.11

versus PV↷
en/PV↷

de
/ PV↷

es = 0.32/0.20/0.16) reveals slightly more robustness of zero-shot results
for speaker-related gender agreement and of pivoting results for speaker-independent gender
agreement. The variance between zero-shot results (|0.31 − 0.62| = 0.31, |0.11 − 0.38| = 0.27)
is smaller than for pivoting results (|0.11 − 0.38| = 0.27, |0.32 − 0.16| = 0.16), which suggests
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Table 5.12: Referent gender gaps (δreferent , lower ↓) between feminine and masculine accuracies
for Correct MuST-SHE references (category 2, cf. Section 5.11). Bold scores denote the best
results per approach and underlined are the best of both approaches.

— Utterance Category 2: Speaker-Independent Gender Agreement —

Training Data
X ↔ Model

Referent Gender Gap ↓
Zero-Shot Pivot

de

Baseline (B) 0.32 (−0.48) 0.21 (−0.06)

B + AUXSIM 0.18 (−0.06) 0.14 (−0.18)

B + ADVLAN 0.25 (−0.12) 0.20 (−0.17)

Residual (R) 0.18 (−0.18) 0.26 (−0.06)

R + AUXSIM 0.13 (−0.12) 0.18 (−0.14)

R + ADVLAN 0.19 (−0.06) 0.22 (−0.10)

AVG excl. B 0.19 (−0.11) 0.20 (−0.13)

es

Baseline (B) 0.14 (−0.66) 0.15 (−0.12)

B + AUXSIM 0.12 (−0.12) 0.10 (−0.17)

B + ADVLAN 0.09 (−0.28) 0.11 (−0.26)

Residual (R) 0.09 (−0.27) 0.24 (−0.08)

R + AUXSIM 0.12 (−0.13) 0.16 (−0.16)

R + ADVLAN 0.14 (−0.11) 0.18 (−0.14)

AVG excl. B 0.11 (−0.18) 0.16 (−0.16)

that gender preservation of pivoting is more influenced by the choice of the bridge language than
zero-shot translation, which is more robust in this regard.

Summary of Findings

Evaluating the effect of the bridge language on gender translation reveals poorer performance
for utterances with speaker-related gender agreement than for speaker-independent gender agree-
ment regardless of the bridge language, which is as expected. Using Spanish as the bridge lan-
guage yields by far the best gender preservation performances; feminine words, in particular,
are modeled better for both zero-shot and pivot-based translation using Spanish. In contrast,
bridging via German yields only marginally different outcomes compared to bridging via English
for speaker-related gender agreement. For speaker-independent gender agreement, bridging via
German outperforms bridging via English by a small margin.

With an increased level of gender inflection in the bridge language, pivoting surpasses zero-
shot translation regarding fairly balanced gender preservation for speaker-related gender agree-
ment. For speaker-independent gender agreement, both zero-shot and pivot-based translation
are on par regarding balanced gender preservation for feminine and masculine words. Combining
the findings for both utterance categories, the zero-shot results are slightly less variable, sug-
gesting that zero-shot translation is less affected and thus less dependent on the choice of bridge
language. Nevertheless, the differences in performance between the two approaches are not as
big as initially expected.
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5.4 Probing Models’ Hidden Representations For Gender

So far, in our evaluation, we have explored the effect of different model modifications and bridge
languages on the translation of gender-specific expressions. However, it remains an open ques-
tion whether the observed improvements are, in fact, a result of models’ enhanced ability to
disambiguate gender, in particular, due to better preservation and rendering of gender signals in
language representations. Because of this, we round off our evaluation with a final set of exper-
iments to analyze and potentially explain the previously observed outcomes to some extent. In
this final set of experiments, we freeze each model, preventing its weights from being modified,
and train a classifier on the output of the model’s encoder. We perform a sentence-level and
a token-level classification on the source sentence representations produced by the encoder to
assess the difficulty of recovering gender-specific information before and after applying the differ-
ent model modifications. We do so for models using English or Spanish as the bridge language,
with the results depicted in Table 5.13. Consistent with the previous experiments, the source
languages include French and Italian, and, this time, also Spanish.

Table 5.13: Average accuracy scores for gender classifiers trained to recover gender signals
(indicative of referent gender) from encoder outputs, either meanpooled per sentence or processed
on the token-level. The results include the accuracy for both genders combined (Fem. & Masc.)
and those for each gender (e.g., Fem. or Masc.). For each bridge language, bold scores denote
the best results.

Training
Data
X ↔

Model

Sentence Token

Fem. & Masc. Fem. Masc. Fem. & Masc. Fem. Masc.

en

Baseline (B) 62.3 62.5 62.1 20.9 20.0 21.9
B + AUXSIM 63.1 64.1 62.1 13.6 12.9 14.4
B + ADVLAN 61.5 39.8 83.9 19.5 0.05 36.1
Residual (R) 63.9 56.3 71.8 29.8 34.3 24.8
R + AUXSIM 61.1 54.7 67.7 25.5 27.9 22.8
R + ADVLAN 67.5 74.2 60.5 11.0 0.04 19.0

AVG. excl. B 63.4 57.8 69.2 19.9 15.0 23.4

es

Baseline (B) 63.9 74.2 53.2 22.6 19.3 26.2
B + AUXSIM 62.3 75.0 49.2 27.3 24.4 30.5
B + ADVLAN 63.5 86.7 39.5 16.4 0.06 28.6
Residual (R) 64.3 66.4 62.1 20.4 15.0 26.4
R + AUXSIM 57.9 55.5 60.5 25.4 30.5 19.7
R + ADVLAN 63.9 79.7 47.6 32.7 24.3 42.1

AVG. excl. B 62.4 72.7 51.8 24.4 18.9 29.5

5.4.1 Sentence-level Gender Classification

For both bridge languages, we notice that the classification accuracies are higher than the trans-
lation accuracies observed in our previous experiments. This is somewhat expected since the
sentence-level classifier can rely on multiple gender clues in cases where there is more than one
gender-marked word in a sentence. Differences between both bridge languages in the magnitude

56



of accuracy are very marginal. Most prominent is the outcome of better feminine accuracy for
bridging via Spanish than English, and vice versa for the masculine case. It is noticeable that
the highest accuracies for one gender sometimes entail significantly lower accuracies for the other
gender (e.g., for English, B +ADVLAN yields feminine accuracy of 39.8 and masculine accuracy
of 83.9). This showcases a trade-off between the optimization for either gender. Comparing the
results for the baselines (B/B+) to those for models with removed residual connections (R/R+),
there is no significant difference noticeable. This finding confirms that lifting positional corre-
spondence to the input tokens in the latter cases does not necessarily worsen sentence-level
classification despite less alignment with word-specific gender information.

Perhaps most interestingly, the results contradict our prior notion of a consistent masculine
bias, as we can observe higher feminine than masculine accuracies in multiple cases, especially for
Spanish. Despite correct gender prediction on the sentence level, erroneous feminine translations
may result from models choosing different (potentially synonymous) word translations than those
appearing in the reference or, for sentences with multiple gender-marked words, generating the
correct translation for one but not the other word(s); in those cases, the classification accuracy
can be higher than the actual gender preservation accuracy discussed in our accuracy-based
evaluation. Against this background, sentence-level classification demonstrates its limits as an
instrument used to explain why some models perform better than others.

5.4.2 Token-level Gender Classification

Instead of two classes, the token-level classifier distinguishes three (feminine, masculine, neuter),
of which we closely examine only the results of the two classes conforming with binary femi-
nine/masculine dichotomy. We observe several differences compared to the results for sentence-
level classification. The accuracies are noticeably lower than previously and, considering only the
best for both genders, masculine accuracies are higher than feminine accuracies for both bridge
languages. Compared to the sentence-level accuracies, the widely poorer token-level classification
results indicate the difficulty of recovering (correct) gender information from the token embed-
dings. Combining the embeddings of tokens that are part of the same word (word embeddings)
and feeding those to the classifier might lead to different results.

Interestingly, the token-level classifier seems to perform better on representations of models
with a removed residual connection (R/R+) than on those of the other models (B/B+); however,
we also notice a large amount of variability in the results, making it difficult to reliably attribute
better performance to the removed residual connection. Since removing residual connections
lifts positional correspondence of the representations to the input tokens, it is surprising that the
classifier predicts the token gender more accurately in some of these cases. It is worth mentioning
that the genders of gender-marked words in an utterance are consistent, namely exclusively
feminine or masculine. This property of our evaluated utterances might indirectly influence the
outcomes due to gender signals of all gender-marked words amplifying each other; performing
classification on sentences with mixed gender forms could confirm this or prove otherwise.

Looking at the results of both classifications for both bridge languages, it is striking that the
baseline accuracies (B) are not the lowest among all accuracies. This finding contradicts the
consistent improvement of the model modifications observed in all our previous experiments (for
zero-shot translation). Generally, we find that the outcomes of this final set of experiments are
a first step toward analyzing and explaining previous findings. Nevertheless, more fine-grained
analyses, including inspection of different sentences and word translations could provide even
more insights and explanations, as model transparency and explainability are cornerstones in
the efforts toward gender bias mitigation in translation technology.
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6

Conclusion

This chapter concludes this thesis, in which we explored gender bias in MNMT in the context
of gender preservation for zero-shot translation directions. We compared the gender preserva-
tion performances of pivot-based and zero-shot translation while studying the role of the bridge
language and the effect of encouraging language-agnostic hidden representations on models’ abil-
ity to preserve the feminine and masculine gender equally in their outputs. In Section 6.1, we
address our research questions related to these studied aspects and, in Section 6.2, we discuss
limitations and directions to extend this work in the future.

6.1 Answers to Research Questions

Based on the results obtained from our experiments, we answer the research questions stated in
Section 1.3 as follows.

Research Question 1: How do zero-shot and pivot-based translation compare regarding
gender-biased outputs in a zero-shot translation setting?

Regarding this question, we tested and confirmed the hypothesis that, on average, zero-shot
translation generates fewer gender-biased outputs than pivot-based translation, where gender bias
is conceived as the systematic and unfair discrimination against a group of individuals of the
same sex, here either women or men, in favor of the other gender group, while maintaining
comparable translation quality, when the bridge language is English.

Similar to existing works, our evaluation has revealed a masculine bias throughout all evalu-
ated models’ performances, meaning models frequently produced the wrong gender form accord-
ing to a bias that detriments feminine and benefits masculine gender preservation. Using our
baseline model, pivoting outperformed zero-shot translation by a large margin, producing fewer
gender-biased outputs. When modifying the baseline, namely encouraging language-agnostic rep-
resentations, zero-shot translation improved noticeably, performing slightly better than pivoting
in terms of more fairly balanced preservation of both genders. In particular, pivoting struggling
with the feminine gender preservation, more so than zero-shot translation, contributed to more
biased outputs since, for feminine-intended words, pivoting produced the (wrong) masculine
gender more often than the (correct) feminine gender.

Considering the gender of the speaker using the gender-inflected words, we found gender
preservation of feminine words used by female speakers to be significantly worse than for male
speakers. In contrast, for the use of masculine words, we observed slightly better performances
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for female than for male speakers, which shows that models did not systematically discriminate
female speakers; however, their gender preservation behavior did, in fact, discriminate female
speaker using feminine words (“women talking about women”, i.e., about themselves or about
other women).

Regarding this revealing performance difference, our evaluation showed that zero-shot trans-
lation generally achieves a better balance between gender preservation results for female and
male speakers using feminine words than pivoting. While the differences were smaller than we
had hypothesized, this outcome confirms that zero-shot translation generates fewer gender-biased
outputs than pivot-based translation (when bridging via English), also because the unfavorable
“translation treatment” of women talking about women, albeit still existent, is not as pronounced
and, thus, not as damaging as for pivoting. According to our analyses, the difference in treat-
ing this specific case scenario contributed most notably to better zero-shot than pivot-based
translation regarding gender bias.

Research Question 2: Does the bridge language affect the gender biases perpetuated by
zero-shot and pivot-based translations?

Our experiments, in which we evaluated models’ performances using three different bridge
languages—English, German, and Spanish—each complying with a distinctive gender-inflectional
system, revealed their impact on models’ gender-biased translation behavior. The differences be-
came apparent when comparing the translation for sentences with speaker-related and speaker-
independent gender agreement: In English, knowledge about the gender of the referent necessary
for the correct gender-inflectional build-up of the translation of utterances with speaker-related
gender agreement was non-existent in our utterances; hence, there was no certainty of telling the
correct gender, whereas German or Spanish have gender-inflectional systems that support better
gender disambiguation required for speaker-related gender agreement—the latter even more so
than the former.

These gender-related language differences were reflected in the gender preservation per-
formances of models using the three different bridge languages. Translations for utterances
with speaker-related gender agreement were generally less accurate regarding the correct gender
preservation than those for utterances with speaker-independent gender agreement; when gen-
der ambiguity was higher (more often for speaker-related gender agreement), feminine gender
preservation suffered due to more frequent masculine outputs, most likely as a result of models
simply reflecting learned probabilities of gender occurrence in the training data. The models
bridging via Spanish achieved the most accurate and least biased gender translations for both
types of utterances. Bridging via German performed better than bridging via English for the
translation of utterances with speaker-independent gender agreement, while performing equally
well for speaker-related gender agreement.

Most notably, we find that with an increased level of gender inflection in the bridge language,
pivoting surpasses zero-shot translation regarding fairly balanced gender preservation for speaker-
related gender agreement. For speaker-independent gender agreement, we find that both zero-
shot and pivot-based translation are at least on par regarding balanced gender preservation for
feminine and masculine words. Altogether, zero-shot translation was less dependent on the bridge
language, making it more robust to changing training data or live data.

Research Question 3: Do translation quality improvements of zero-shot models reduce their
gender biases?
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All three evaluated modifications to the baseline encouraging language-agnostic hidden repre-
sentations, namely

1. removing a residual connection in the Transformer encoder to lessen positional correspon-
dence to the input tokens,

2. promoting similar source and target language representations through an auxiliary loss,
and

3. joint adversarial training penalizing successful recovery of source language signals in the
representations,

improved the gender preservation performances and reduced gender biases of zero-shot models
noticeably. Despite the persisting masculine bias, modifying the baseline contributed toward
closing the gender gap regarding more similar gender preservation results for feminine and mas-
culine words. Hence, the modifications reduced the detrimental treatment of feminine words,
especially when used by female speakers—which, inherently, is more common because it ap-
plies whenever women speak about themselves (where men would use masculine words instead)
or about other women—since correct translation accuracies were more balanced between both
speaker groups. Consequently, modifications improving zero-shot translation by generating more
language-independent hidden representations, making them more generalizable, also mitigated
zero-shot models’ gender biases.

None of the different modifications consistently outperformed the others and the level of im-
provement for each modification was different depending on the considered translation scenario.
However, the adversarial language classifier most notably improved the translation accuracy of
feminine and masculine words, whereas the auxiliary similarity loss most often had the most
positive effect on balanced gender preservation results.

6.2 Limitations & Future Work

Besides our findings, this work also features some limitations that can be explored in future work.
First, the data used in our experimental evaluation limited the scenarios to be examined. Future
work can examine translation of sentences with mixed gender (i.e., sentences include both femi-
nine and masculine words) and directions in- cluding languages from different language families
and with different gender systems to further study language differences. Second, developing a
large gender-annotated corpus suitable for MT training could most likely be used to improve
models’ gender preservation performance. A well-performing gender classifier could be used to
annotate the MuST-C dataset with token- or word-level gender labels. Third, we believe that the
metrics currently used to evaluate models’ gender biases are not ideal. about the phenomenon of
gender bias in translation requires appropriate and established metrics; the lack thereof currently
leaves room for improvement in evaluative procedures.

While there is a lot of potential for further research on this topic, it is crucial to acknowledge
that, ultimately, translation technology is bound by the principles of language, which subtly
reproduces societal asymmetries and embeds signs of sexism. Examples of evident linguistic
gender inequality include the consensual norm according to which the prototypical human is male
and the more subtle convention by which expressions referring to females are grammatically more
complex in many languages. Consequently, combating gender biases in translation technology
requires aware- ness of language use, as it is one of the most powerful means through which
sexism and gender discrimination is perpetrated and reproduced.
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Appendix A

Background

A.1 Basic Principles of Deep Learning

Deep learning refers to the broader family of ML algorithms based on ANNs leveraging represen-
tation learning. ANNs are a biologically-inspired programming paradigm. They emerged as an
attempt to exploit the architecture of the human brain to enable computers to learn from obser-
vational data to perform tasks that conventional algorithms had little success with. Specifically,
they are designed based on a core concept of natural intelligence, namely learning. In principle,
learning involves the ability to generalize from past experience to deal with new situations. As
such, learning can be narrowed down to the task of approximating a function that defines the
relationship between a set of inputs and an output. In view of this, an ANN is essentially a
function approximator, comprising a set of parameters which transform an input to an output.

Given large numbers of input and output pairs, the network can gradually adjust its parame-
ters based on measured deviations of its generated outputs from desired targets. This process of
updating the parameters is referred to as learning or training. During training, an ANN processes
an input into an output by passing it through subsequent layers, transforming it along the way.
Typically, an ANN consists of an input layer and an output layer, and one or multiple so-called
hidden layers in between. A layer consists of small individual units called neurons and different
layers may perform different transformations on their inputs. Stacking multiple layers enables
an ANN to perform efficient hierarchical feature learning, during which the hidden layers learn
useful representations of the data.

A key characteristic of ANNs is that they perform “end-to-end” learning: all parameters are
trained jointly and thus optimized simultaneously instead of sequentially. As a result, a single
algorithm learns to model the entire pipeline from initial inputs to desired outputs at once.
After a model is trained, it is tested on new instances to validate its ability to generalize, namely
being able to digest new data instances and make accurate predictions. The process of applying
a trained ANN to infer outputs for unseen instances is referred to as inference. While deep
architectures are a decade-old concept, it was not until recently that they delivered unprecedented
levels of performance. Reasons for the recent success of deep learning are increased accessibility
of training data, advancements in dedicated hardware customized for training, as well as open-
source toolkits enabling joint efforts for progress from the entire community. Nowadays, NMT
is widely adopted in the industry and is deployed in production systems by Google, Facebook,
Microsoft, Amazon, and many more.
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Appendix B

Experiments & Results

B.1 The “Blind Spot“ in BLEU-based Gender Bias Eval-
uation Causing Misleading Results

BLEU accounts differently for the neighboring (often gender-neutral) words surrounding the
gender-marked words in a translation, depending on whether the latter are translated correctly.
As a result, our BLEU-based assessment using gender-swapping is flawed in some specific scenar-
ios. The central idea behind BLEU is to measure “translation closeness” by counting matches
of n-grams, here, in a candidate and two reference translations, the Correct and the gender-
swapped Wrong reference. The number of gender-marked words in relation to gender-neutral
words in a sentence is small. Consequently, the majority of words participating in n-grams are
gender-neutral words, which are identical in Correct and Wrong references, as they only differ
in gender-marked words. If we imagine a candidate translation that matches one gender-marked
word (wC) contained in the Correct reference and another one (wW ) contained in the Wrong
reference, BLEU-based evaluation can fail to reflect the equal number of word matches for both
references.

The problem is that a single matched word not only contributes to a higher BLEU score
as a unigram but potentially also through broader n-gram matches in which its neighboring
words (if translated correctly) participate. Because of this, different word orders in otherwise
identical sentences can produce different BLEU scores, which is counterintuitive and misleading.
A simple scenario in which the unwanted effect emerges provides our example: If longer sequences
of matching gender-neutral words – which are the same in both references – adjoin wC than wW ,
then the BLEU score for the Correct reference is higher than the score for the Wrong reference,
despite having the same number of matching gender-marked words (one for each reference) and
otherwise identical gender-neutral words. Consequently, BLEU can signal different tendencies
than, for example, the accuracy, and is thereby misleading.
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B.2 Experiment Overview
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Il guidice lo considera un’adulta, mentre io vedo la bambina.

source
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mais je vois ce gamin.
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Figure B.1: Overview of the experimental setup and the procedures followed to investigate
gender bias in multilingual MT, specifically zero-shot and pivot-based translation, with and
without the proposed model modifications and using different bridge languages.
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B.3 Results

Table B.1: Average BLEU scores for zero-shot directions on the MuST-C test set and on
MuST-SHE. Zero-shot directions are {nl, pt, ro, ru} ↔ {nl, pt, ro, ru} for the MuST-C test set
and fr ↔ it for MuST-SHE.

Training Data
X ↔ Model

MuST-C MuST-SHE

Zero-Shot Pivot Zero-Shot Pivot

en

Baseline (B) 3.7 17.4 3.8 25.6
B + AUXSIM 11.1 15.7 15.8 24.0
B + ADVLAN 15.9 17.0 25.3 25.0
Residual (R) 14.3 17.2 22.9 24.9
R + AUXSIM 15.1 15.6 23.4 23.4
R + ADVLAN 16.0 17.0 25.6 25.4

de

Baseline (B) 6.8 14.6 13.7 21.6
B + AUXSIM 8.6 13.5 15.8 20.4
B + ADVLAN 10.7 14.0 18.6 20.2
Residual (R) 10.9 14.3 19.8 20.8
R + AUXSIM 12.4 13.3 20.0 19.8
R + ADVLAN 11.1 14.3 19.9 21.3

es

Baseline (B) 13.2 16.5 20.0 26.1
B + AUXSIM 14.1 14.6 23.1 24.4
B + ADVLAN 15.5 16.1 25.2 25.6
Residual (R) 15.1 16.3 24.5 25.9
R + AUXSIM 14.7 14.4 24.3 23.8
R + ADVLAN 15.3 15.8 24.7 24.4
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Table B.2: Utterance Category 1 & 2: Average BLEU scores for Correct (higher ↑ is better)
and Wrong (lower ↓ is better) MuST-SHE references complemented with the difference (Delta ↑
= Correct−Wrong) of the scores for the two reference sets. Results for both gender word forms
(All) are additionally broken down by referent gender (Feminine, Masculine). For the Correct
scores and the Deltas, bold scores denote the best results per approach and underlined are the
best of both approaches if one is better.
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Table B.3: Utterance Category 1 & 2: Average accuracy scores for Correct (higher ↑ is
better) and Wrong (lower ↓ is better) MuST-SHE references complemented with the difference
(Delta ↑ = Correct−Wrong) of the scores for the two reference sets. Results for both gender
word forms (All) are additionally broken down by referent gender (Feminine, Masculine). For the
Correct scores and the Deltas, bold scores denote the best results per approach and underlined
are the best of both approaches if one is better.
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Table B.4: Utterance Category 1: Average accuracy scores for Correct (higher ↑ is better)
and Wrong (lower ↓ is better) MuST-SHE references with speaker-related gender agreement,
complemented with the difference (Delta ↑ = Correct−Wrong) of the scores for the two reference
sets. Results for both gender word forms (All) are additionally broken down by referent gender
(Feminine, Masculine). For the Correct scores and the Deltas, bold scores denote the best results
per approach and underlined are the best of both approaches if one is better.
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Table B.5: Utterance Category 2: Average accuracy scores for Correct (higher ↑ is better)
and Wrong (lower ↓ is better) MuST-SHE references with speaker-independent gender agreement,
complemented with the difference (Delta ↑ = Correct−Wrong) of the scores for the two reference
sets. Results for both gender word forms (All) are additionally broken down by referent gender
(Feminine, Masculine). For the Correct scores and the Deltas, bold scores denote the best results
per approach and underlined are the best of both approaches if one is better.
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Table B.6: Utterance Category 1 & 2 Average accuracy scores for Correct (higher ↑ is
better) and Wrong (lower ↓ is better) MuST-SHE references complemented with the difference
(Delta ↑ = Correct−Wrong) of the scores for the two reference sets. Results for both gender
word forms (All) are additionally broken down by referent gender (Feminine, Masculine) and by
speaker gender (Female or Male). For the Correct scores and the Deltas, bold scores denote the
best results per approach and underlined are the best of both approaches if one is better.
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Table B.7: Utterance Category 2: Average accuracy scores for Correct (higher ↑ is better)
and Wrong (lower ↓ is better) MuST-SHE references with speaker-independent gender agreement,
complemented with the difference (Delta ↑ = Correct−Wrong) of the scores for the two reference
sets. Results for both gender word forms (All) are additionally broken down by referent gender
(Feminine, Masculine) and by speaker gender (Female or Male). For the Correct scores and the
Deltas, bold scores denote the best results per approach and underlined are the best of both
approaches if one is better.
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