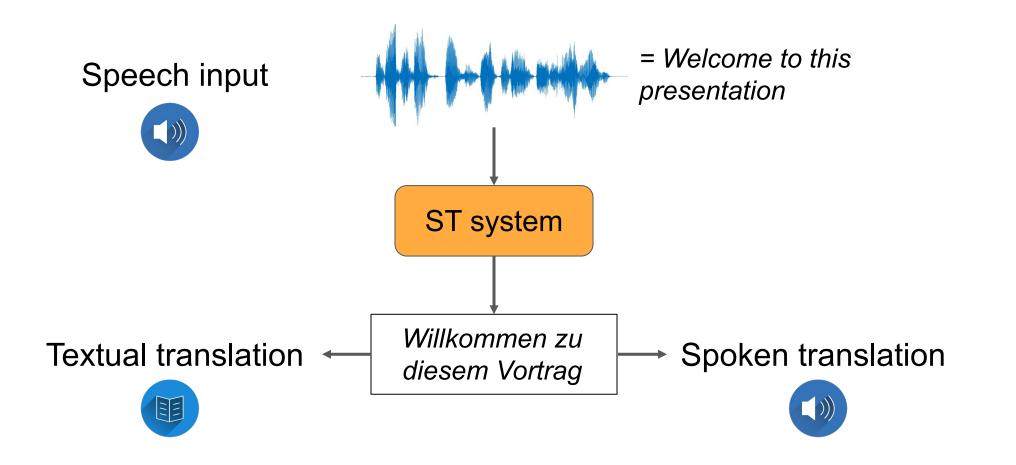


End to End Speech to Speech Translation

Jan Niehues

Speech Translation - Task

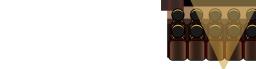


Motivation

Globalized world enables interaction between people from many cultures

Language barrier still main issue

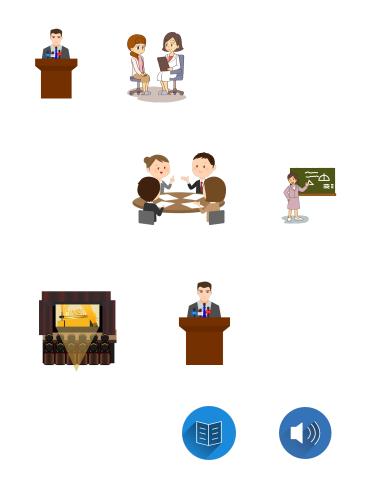
- Human interpretation or broken English
- Complement by automated speech translation?



Different Application Scenarios

Sequence

- Consecutive translation
- Simultaneous translation
- Number of speakers
 - Single/Multiple speaker
- Online/Offline systems
 - Latency: Time passes between speech & translation
- Output Modality



History

1990s: Limited domain consecutive translation (e.g. Verbmobil)

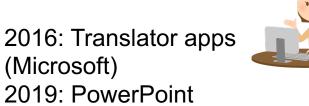
2012: KIT: Simultaneous translation of lectures 2015: Rise of deep learning

1991 Janus: First speech translation system for limited domains

2004-2007: Open-**Domain Continuous** Translation (TC-Star (European Parliament))

(Microsoft)

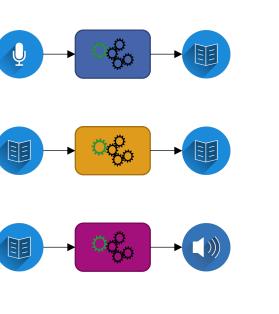
integration

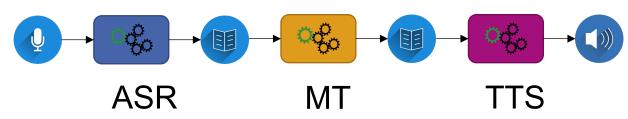


Basic Technology Automatic appach recognition (ASD)

Automated Speech Translation

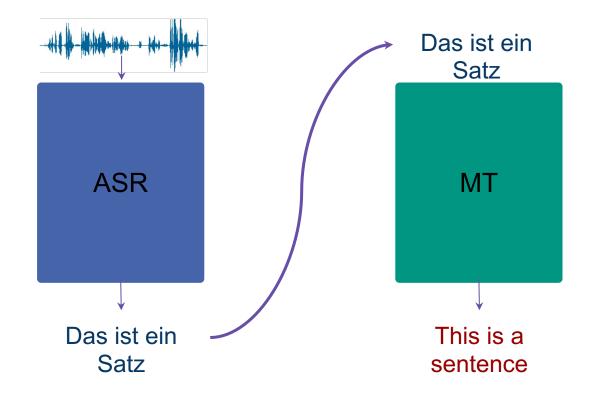
- Automatic speech recognition (ASR)
 - Transcript audio into source language text
- Machine translation (MT)
 - Translate from source language to target language
- Text-to-Speech (TTS)
- Serial combination of several components



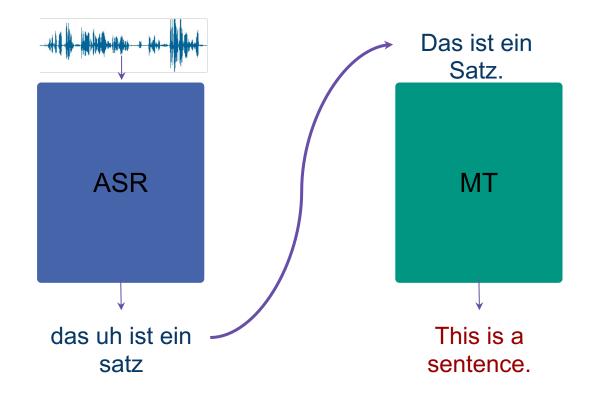


Karlsruhe Institute of Technology

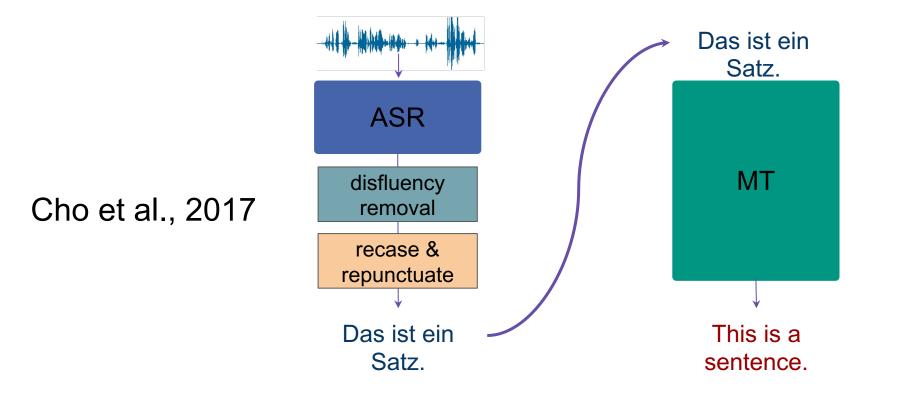
Cascaded Combination



Cascaded Combination



Cascaded Combination



Challenges - Cascade

Error propagation

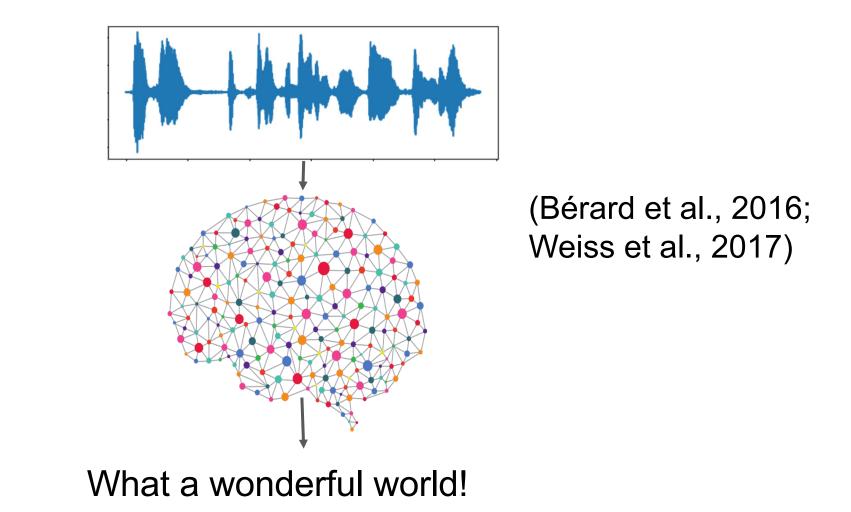
- ASR errors worse after translation
- More difficult to compensate by human
- MT adds additional errors

Reden (engl. speeches)

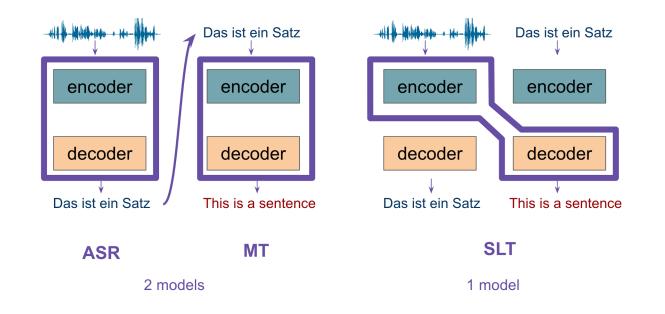
Reben (engl. vines)

- Opportunity:
 - Similar technology for ASR and MT

End-to-end SLT

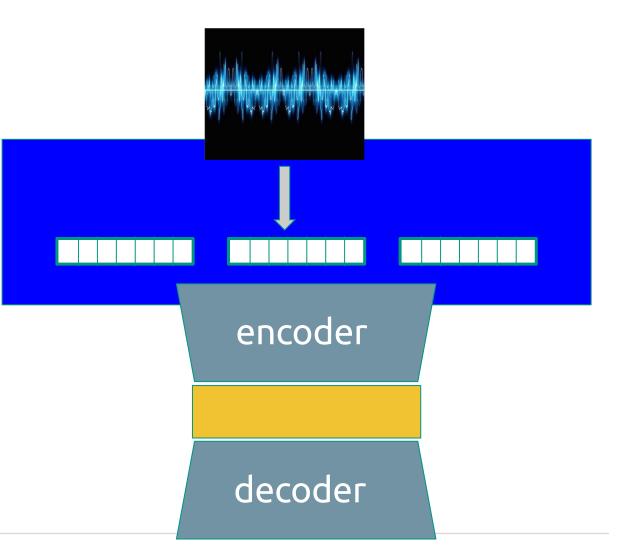


End-to-End Speech Translation

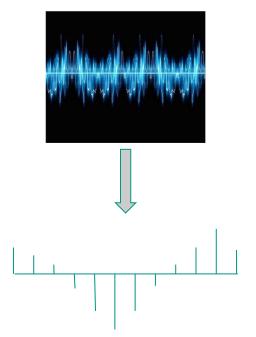


From text translation to speech translation

- Encoder-decoder models:
 - Can apply similar techniques
- Main differences to text translation
 - Input: Audio signal
 - Continuous
 - Longer



- Following best-practice from ASR
- Sampling
 - Measure Amplitude of signal at time t
 - Typically 16 kHz



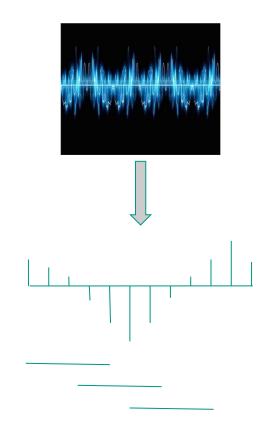
Following best-practice from ASR

Sampling

- Measure Amplitude of signal at time t
- Typically 16 kHz
- Windowing
 - Split signal in different windows
 - Length: ~ 20-30 ms
 - Shift: ~ 10 ms

Result:

One representation every 10 ms

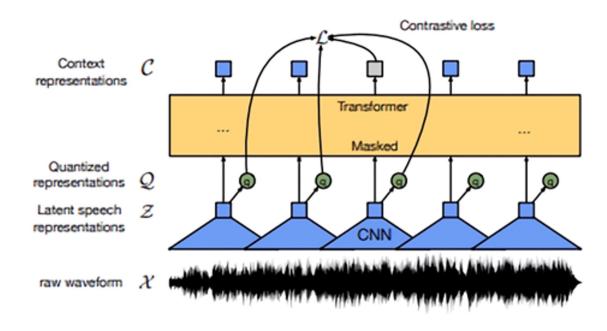


Input features:

- Signal processing:
 - Most common:
 - Mel-Frequency Cepstral Coefficients (MFCC)
 - Log mel-filterbank features (FBANK)
 - Idea:
 - Analyse frequencies of the signal
 - Steps:
 - Discrete Fourier Transformation
 - Mel filter-banks
 - Log scale
 - (Inverse Discrete Fourier Transformation)
 - Size:
 - 20-100 features per frame

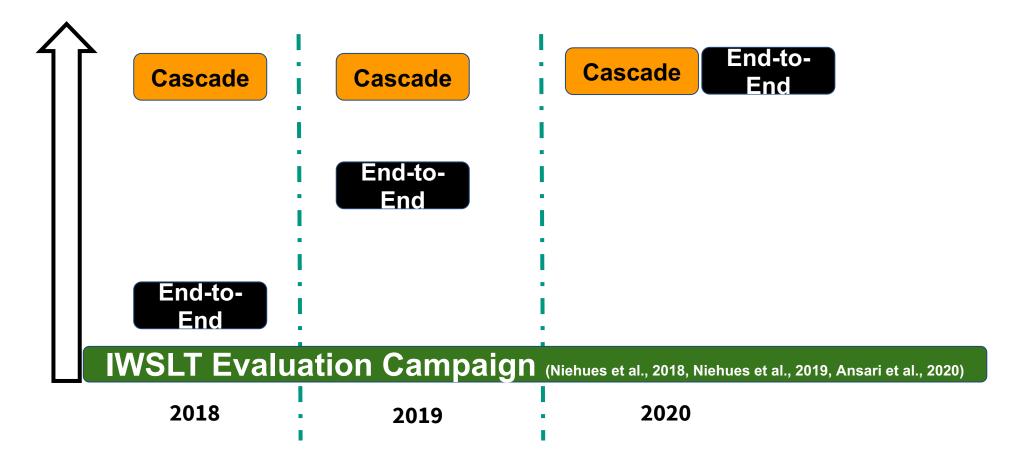
Input features:

- Signal processing:
- Deep Learning:
 - Self-supervised Learning
 - Predict frame based on context
 - E.g. Wav2Vec 2.0

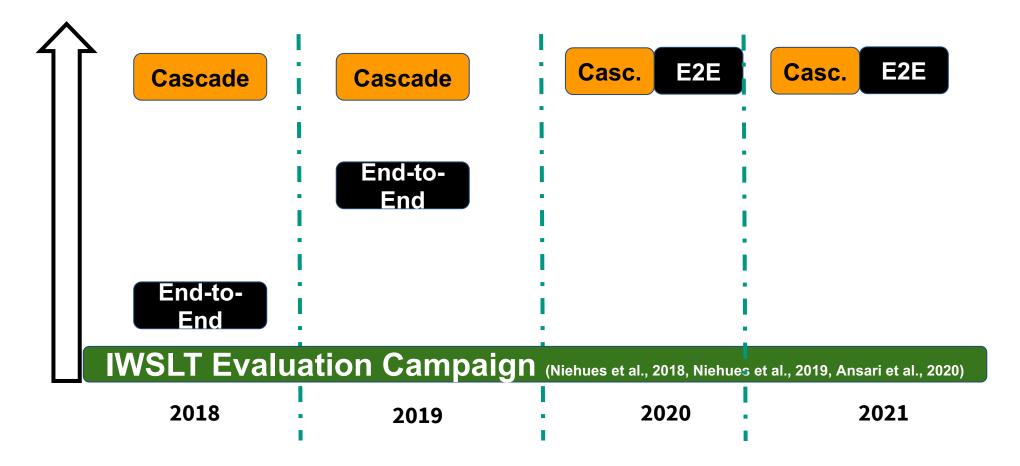


Baevski et al. 2020

Cascade vs End-to-End Systems



Cascade vs End-to-End Systems



Cascade vs End-to-End Systems

Cascade

- Large corpora for ASR and MT
- Less complex tasks
 Error propagation
 Information loss
 Higher latency

End-to-End

- Access to all audio information
- / Reduced latency
- ✓ Easier management
 Small corpora
 More complex task

Challenges

Data

- Other data sources
- Pre-trained models

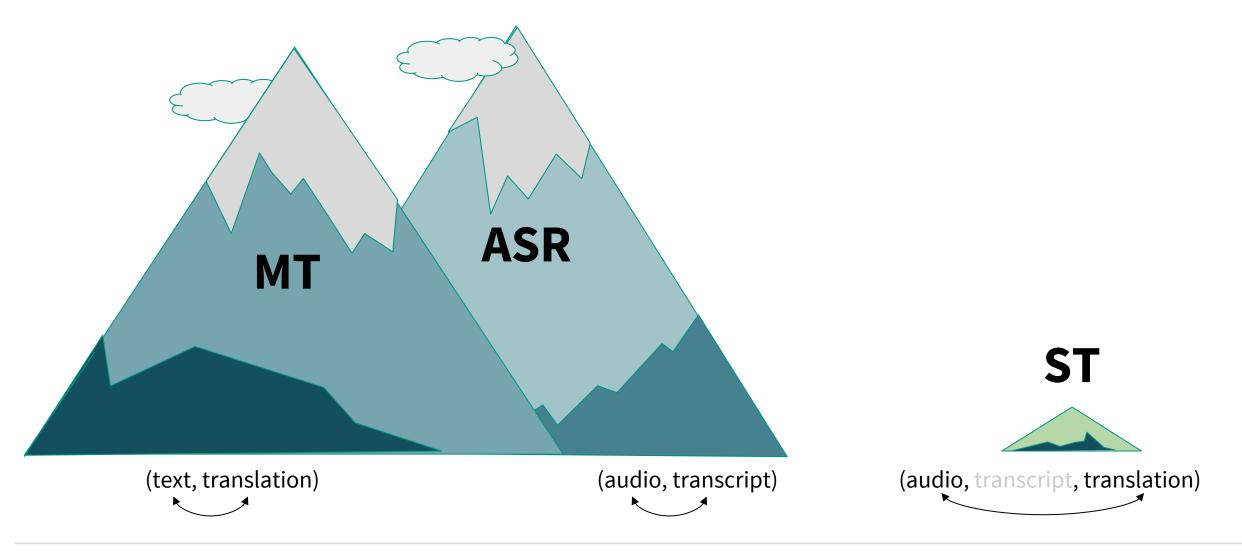
Audio

- Input length
- High variability
- Unsegmented

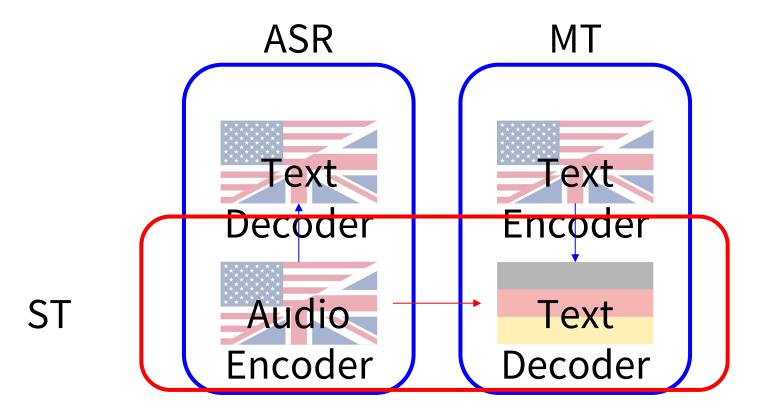
Output

- Audio
- Low latency
- Additional constraints

Available data



Integration of additional data sources

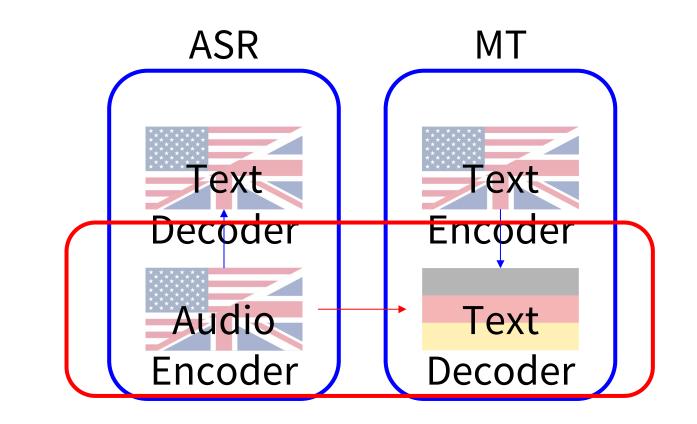


ST

Multi-task

Setting

Train all three tasks jointly



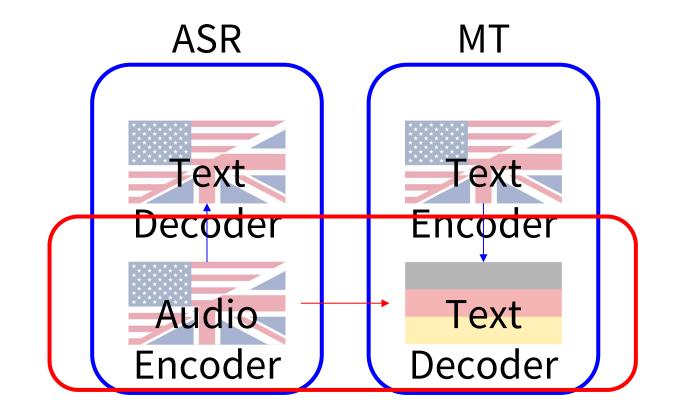
ST

Setting

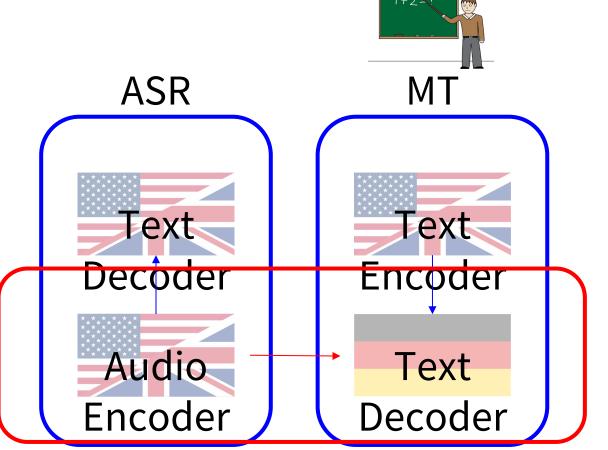
Multi-task

Pre-training

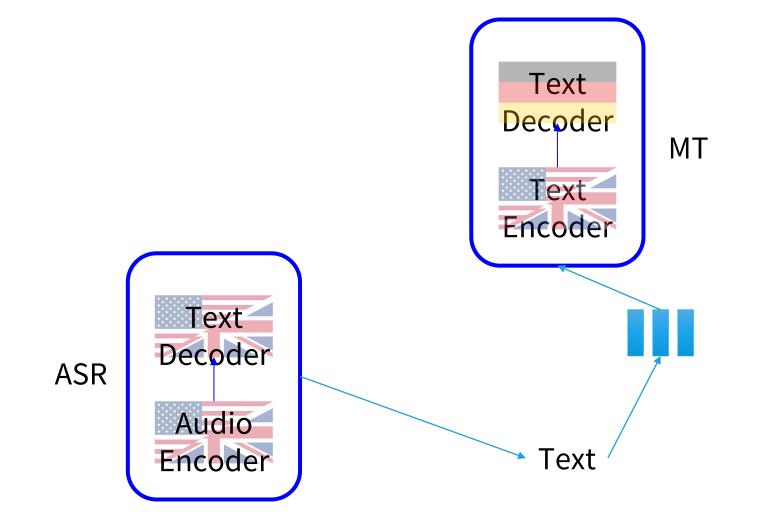
- Train ASR and MT
- Reuse part of the model for ST



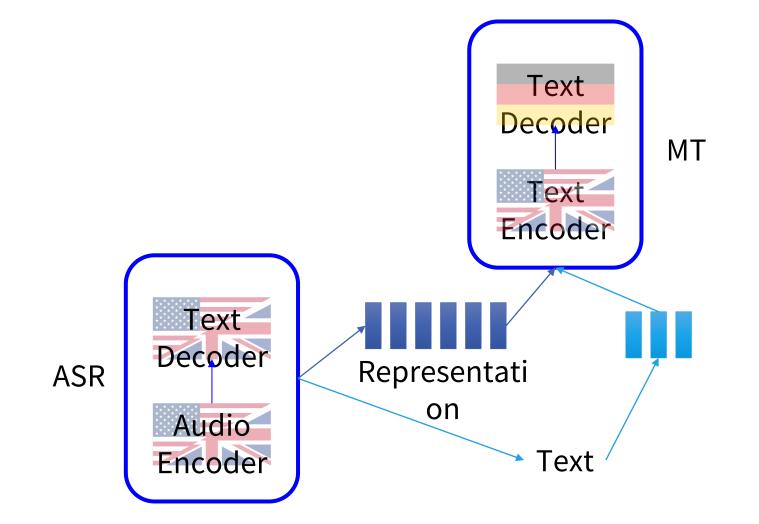
- Multi-task
- Pre-training
- Knowledge distillation
 - Take MT model
 - Train ST based on training signal from MT



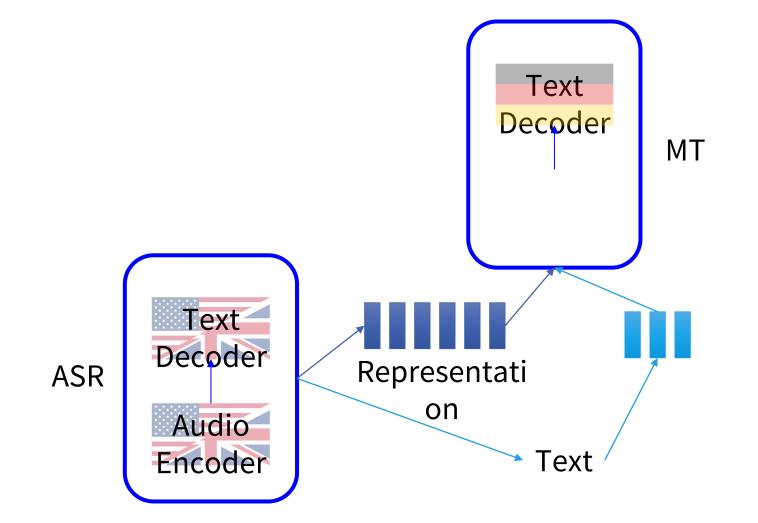
Integrating pre-trained models



Integrating pre-trained models



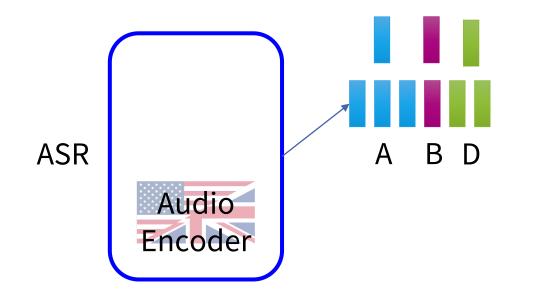
Integrating pre-trained models



Compression Layer

CTC compression (Gaido et al, 2021)

- Collapse adjacent representations with same index by averaging
- Remove redundant and uninformative vectors



Challenges

Data

- Other data sources
- Pre-trained models

Audio

- Input length
- High variability
- Unsegmented

Output

- Audio
- Low latency
- Additional constraints

Challenges

Data

- Other data sources
- Pre-trained models
- Audio

Input length

- High variability
- Unsegmented

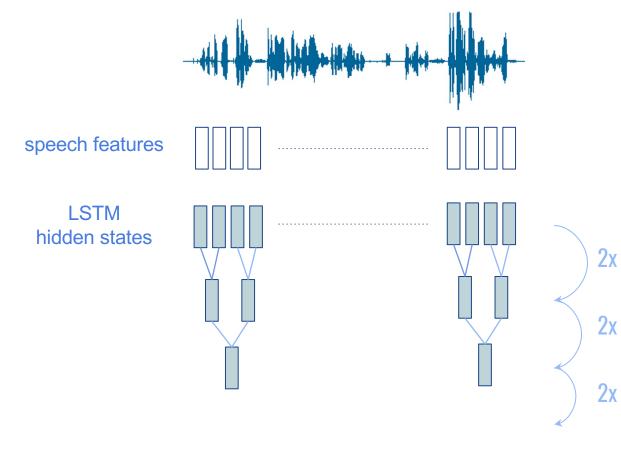
Output

- Audio
- Low latency
- Additional constraints

Sequence Length

- IWSLT test set 2020
 - Segments: 1804
 - Words: 32.795
 - Characters: 149.053
 - Features: 1.471.035

Pyramidal Encoder



- Motivation: do not need attention to the granularity of speech features
- Reduce dimensionality *through* encoder
 - concatenation
 - sum
 - skip

-

- linear projection

Linear projection, ASR: (Zhang et al. 2017; Sperber et al. 2018)

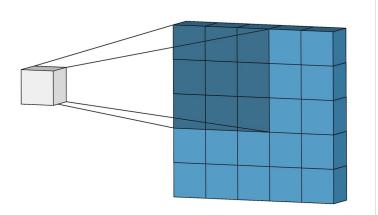
Pyramidal encoder in ST: (Weiss et al. 2017; Salesky et al. 2019; Sperber et al. 2019; Salesky et al. 2020)

Listen, Attend, and Spell (Chan et al. 2015)

8x temporal reduction

Dimensionality Reduction

Two directions: (1) temporal and (2) feature dimension Convolutional layers enable *fixed-length downsampling*



Scale sequence length and feature dimension linearly by a factor corresponding to the convolutional kernel size and stride length

Challenges

Data

- Other data sources
- Pre-trained models
- Audio
 - Input length
 - High variability
 - Unsegmented

Output

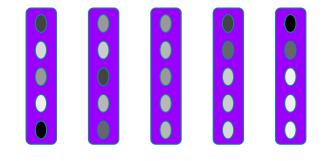
- Audio
- Low latency
- Additional constraints

Variation

- Many different ways to speech same sentence
- Limited training data
- Data augmentation
 - ASR investigated several possibilities
 - Noise injection (Hannun et al., 2014)
 - Speed perturbation (Ko et al., 2015)
 - Successful technique in deep learning ASR
 - SpecAugment (Spark et al., 2019)
 - Also applied in ST (Bahar et al, 2019)

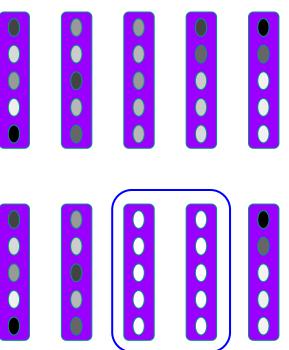
SpecAugment

- Directly applied on audio featuresIdea:
 - Mask information



SpecAugment

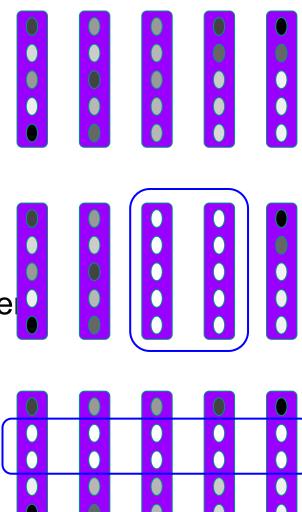
- Directly applied on audio features
- Idea:
 - Mask information
- Time masking
 - Set several consecutive feature vector to ze



SpecAugment

- Directly applied on audio features
 Idea:
 - Idea:
 - Mask information
- Time masking
 - Set several consecutive feature vector to ze

- Frequency masking
 - Mask consecutive frequency channels



Challenges

Data

- Other data sources
- Pre-trained models
- Audio
 - Input length
 - High variability
 - Unsegmented

Output

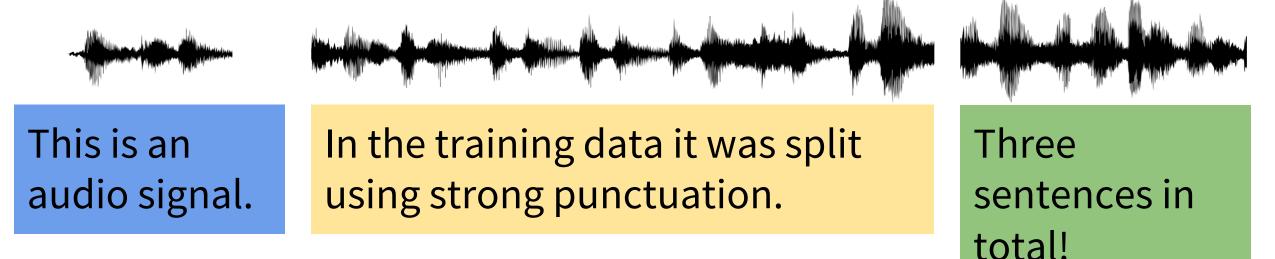
- Audio
- Low latency
- Additional constraints

- No segmentation in audio signal
- Segment audio
 - Using voice activity detection
 - Supervised classification

Utterance segmentation - Problem

Mismatch between training and evaluation data

Training corpora: "sentence-level" split of continuous speech

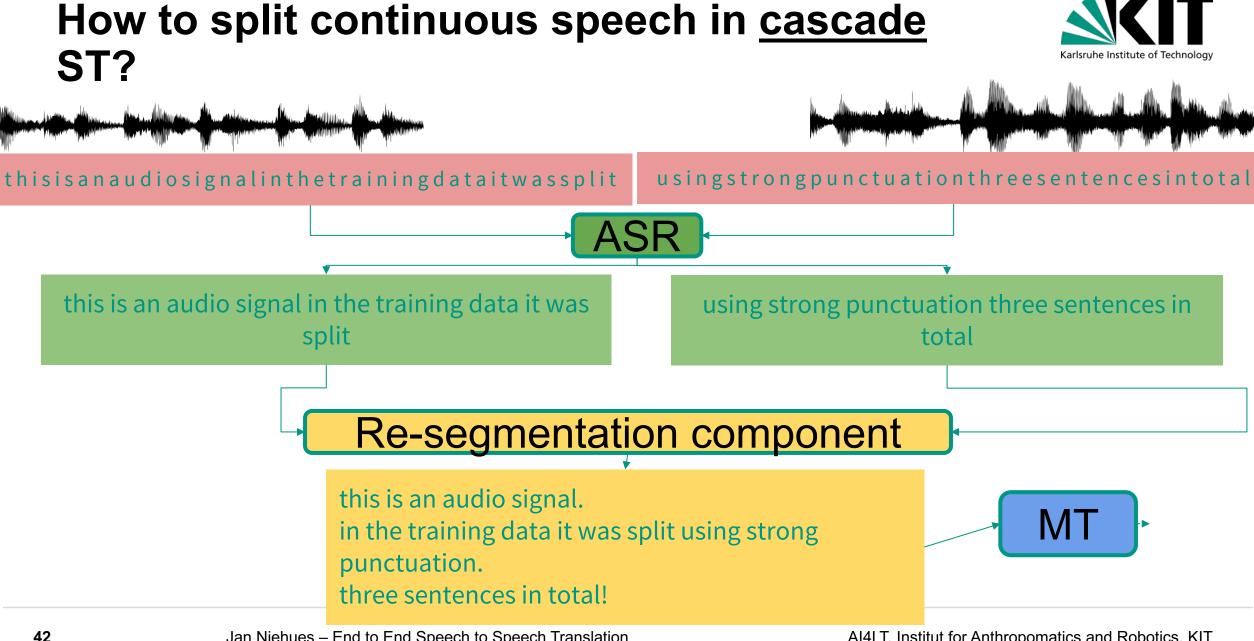


Utterance segmentation - Problem

Mismatch between training and evaluation data

- Training corpora: "sentence-level" split of continuous speech
- At run-time: unsegmented continuous speech

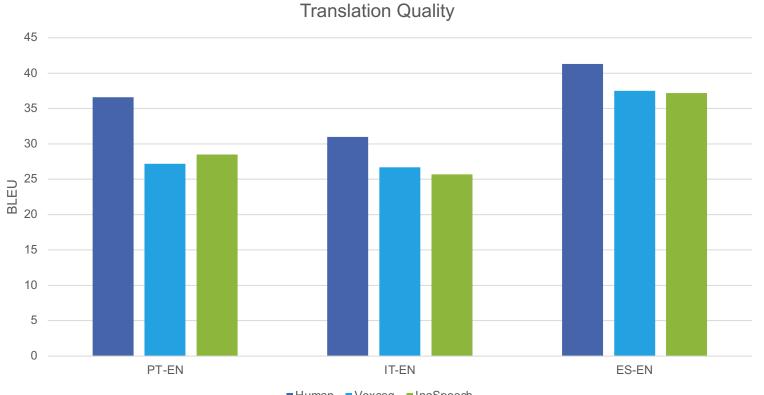
thisisanaudiosignalinthetrainingdataitwassplitusingstrongpunctuationthreesentencesintotal



Jan Niehues – End to End Speech to Speech Translation

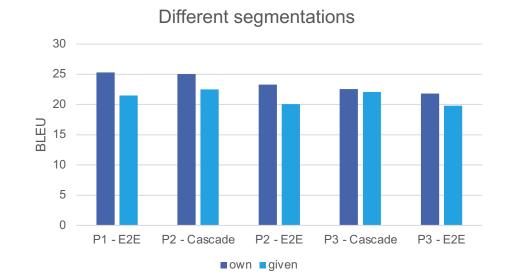
AI4LT, Institut for Anthropomatics and Robotics, KIT

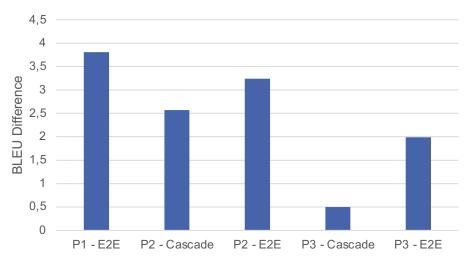
Unsegmented audio



■Human ■Voxseg ■InaSpeech

Unsegmented audio – IWSLT 2020

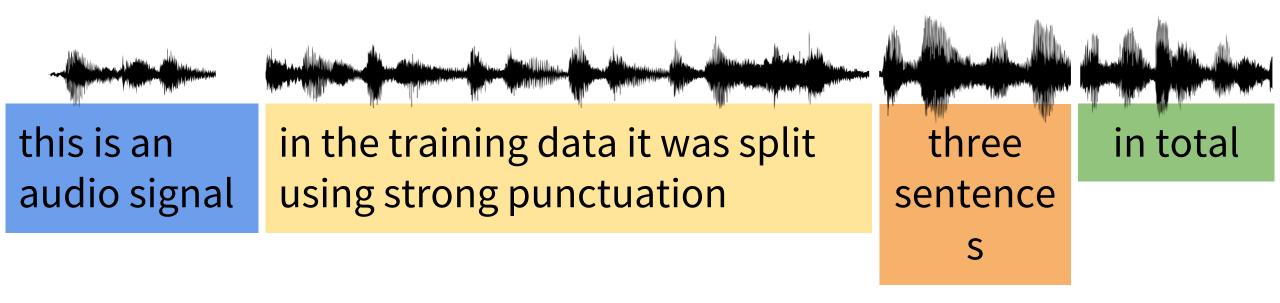




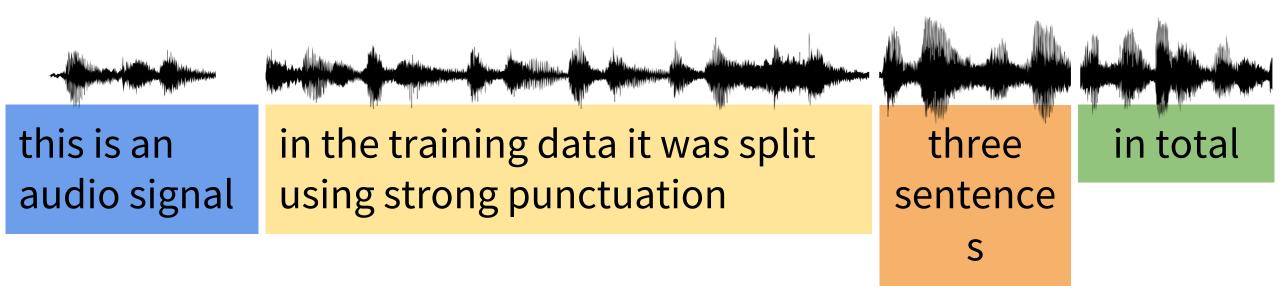
Difference

thisisanaudiosignalinthetrainingdataitwassplitusingstrongpunctuationthreesentencesintotal

this is a naudio signal in the training data it was split using strong punctuation three sentences in total



this is a naudio signal in the training data it was split using strong punctuation three sentences in total



Challenges

Data

- Other data sources
- Pre-trained models

Audio

- Input length
- High variability
- Unsegmented

Output

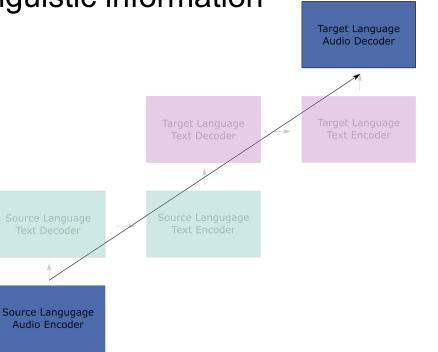
- Audio
- Low latency
- Additional constraints

Jointly train ASR, MT and TTS Opportunities:

- Retaining paralinguistic and non-linguistic information
 - Maintain source speaker voice
 - Emotion
 - Prosody
- Fluent pronunciations of names, …

First approach:
 Jia et al, 2019

Speech output

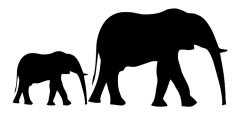


Low latency

Partial information

- Online: Translate during production of speech
- Generate translation before full sentence is known

Speech		
Translation		



Challenges – Simultaneous Translation

Generate translation while speaker speaks

- Tradeoff:
 - More context improves speech recognition and machine translation
 - Wait as long as possible
 - Low latency is important for user experience
 - Generate translation as early as possible

Challenge:

Different word order in the languages

С

German	Ich	melde	mich	zur	Summer	School	an
Gloss	I	register/ cancel	myself	to	summer	School	
English	I	????					

Simultaneous Translation

Approaches:

- Learn optimal segmentation strategies
- Re-translate
 - Update previous translation with better once
- Stream decoding
 - Dynamically learn when to generate a translation

Re-translate

Directly output first hypothesis
 If more context is available:

- Update with better hypothesis
- Example:
 - Ich melde mich
 - I register

Niehues et al, 2016

- Ich melde mich von der Klausur ab
- I withdraw from the exam

Stream decoding

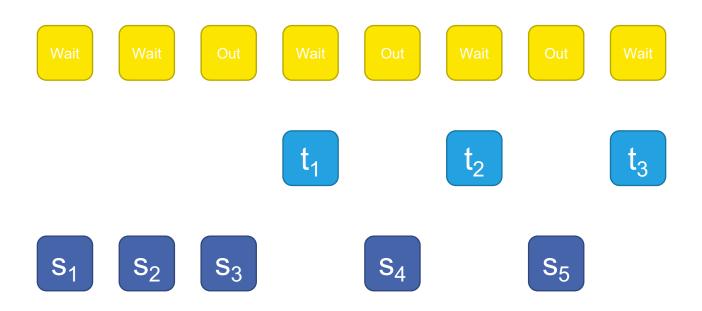
Idea:

- At each time step:
 - Decided to output word
 - Wait for additional input
- (Kolss et at., 2008)

Stream decoding - Decoder

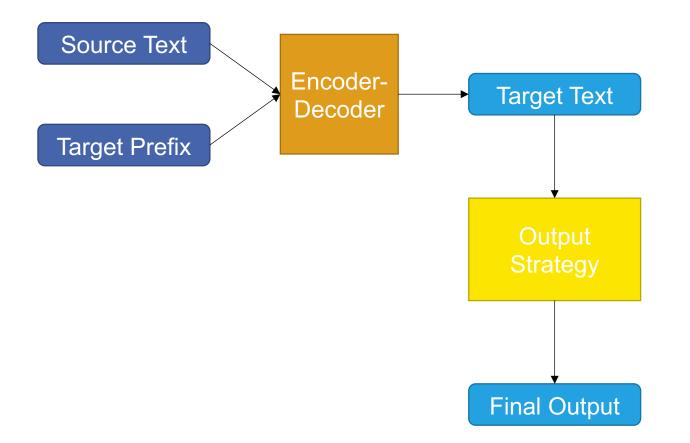
Methods:

- Dynamic decision Cho et al, 2016; Gu et al, 2017; Dalvi et al, 2018
- Fixed schedule (Ma et al, 2019)
 - Wait-k policy



Relation to re-translate

Decoding with fixed target prefix



Stream decoding strategies

Local agreement [Liu et al, 2020]

- Output if previous and current output agree on prefix
- Variation [Yao et al., 2020]:
 - Predict the next source word instead of relying on the previous input

Input	Prefix	Target Text	Final Output
1	Ø	All model trains	Ø
1,2	Ø	All models art	All
1,2,3	All	All models are wrong	All models
1,2,3,4	All models		

What is special about Subtitling?

- Importance of time
- Text needs to satisfy spatial and temporal constraints

In and out times based on speech rhythm

Length: max. 2 lines (of ≈ length) max. 42 characters/line

Reading speed: max. 21 characters/second

Segmenting into proper subtitles

This kind of harassment keeps women <<u>eob</u>> from accessing the internet - <<u>eol</u>> essentially, knowledge. <<u>eob</u>>

```
10
00:00:31,066 --> 00:00:34,390
This kind of harassment keeps women
11
00:00:34,414 --> 00:00:36,191
from accessing the internet --
essentially, knowledge.
```

59

Evaluation campaign

- International Conference of Spoken Language Translation (IWSLT)
 - Largest evaluation campaign on Spoken Language translation
 - 4 tracks
 - 22 teams

Next event:

IWSLT 2023 collocated with ACL (Toronto)

Anastasopoulos et al, 2022

Tutorial EACL 2021: End-to-End Speech translation

Jan Niehues, Maastricht University jan.niehues@maastricht university.nl

Elizabeth Salesky, Johns Hopkins University esalesky@jhu.edu

Marco Turchi, Fondazione Bruno Kessler turchi@fbk.eu

Matteo Negri, Fondazione Bruno Kessler <u>negri@fbk.eu</u>

https://st-tutorial.github.io/

SIG-SLT Talk Series

Month virtual presentation by international research

- Speech Translation
- Join Google groupe for more information
 https://iwslt.org/sigslt/

End-to-End Speech to Speech Translation

Questions

Contact:

- jan.niehues@kit.edu
- https://ai4lt.anthropomatik.kit.edu/

