Spoken Language Translation

Jan Niehues
Matteo Negri
Matthias Sperber
Sebastian Stüker
Marco Turchi

17/09/2019
jan.niehues@maastrichtuniversity.nl
Use cases

• Presentations
 - Conferences/Lectures

• Videos
 - Internet: Youtube, Facebook, ...
 - Television

• Every-day interactions
 - Tourist encounters, Medical care, Interactions with authorities
 - Telefon conversations

• Meetings
Overview

• Introduction

• Cascaded approach

• End-to-End Speech Translation

• Challenges:
 - Segmentation
 - Simultaneous translation
 - Spontaneous speech
Different Application scenarios

- **Sequence**
 - Consecutive translation
 - Simultaneous translation
 - Differences:
 - Segmentation
 - Speech overlap
Different Application scenarios

• Sequence

• Number of speakers
 - Examples:
 - Single speaker
 - E.g., presentations
 - Multiple speaker
 - E.g., meetings
 - Challenges:
 - Overlapping voice
Different Application scenarios

- Sequence
- Number of speakers
- **Online/Offline systems**
 - Offline: Translate audio in batch mode
 - E.g., movies
 - Online: Translate during production of speech
 - Real-time translations:
 - Translation as fast as speech input
 - Latency
 - Time that passes between speech and translation
 - Latency should be as minimal as possible
Different Application scenarios

• Sequence
• Number of speakers
• Online/Offline systems

• Presentation
 - Text
 - Audio
 - Additional TTS needed
Recent Data Resources

• Fisher data [Post et al., 2013]
 - Languages: Spanish to English
 - Domain: Telephone conversation

• MuST-C Corpus [Di Gangi et al., 2019]
 - Languages: English to 8 European Languages
 - Domain: TED

• LIBRI-TRANS [Kocabiyikoglu et al., 2018]
 - Languages: English to French
 - Domain: Audio books

• MASS [Boito et al, 2019], STC [Shimizu et al., 2014], BSTC, ..
Overview

• Motivation and Introduction

• Cascaded approach

• End-to-End Speech Translation

• Challenges:
 - Segmentation
 - Simultaneous translation
 - Spontaneous speech
Cascade Spoken Language Translation

- Serial combination of several models
 - Automatic speech recognition (ASR)
 - Machine translation (MT)

... Where were they? ...

... Wo waren sie? ...
Cascade Spoken Language Translation

• Serial combination of several models
 • Automatic speech recognition (ASR)
 • Machine translation (MT)
 • Segmentation

• Advantages:
 • Data availability
 • Modular system
 • Easy incorporation of new ASR/MT developments
Cascaded SLT: Challenges

• Error propagation
 - Even the best components lead to errors
 - Solutions
 - Ignore
 - Represent different hypotheses
 - N-Best lists
 - Lattices [Saleem et al, 2005; Matusov et al, 2005]
 - Make MT robust to errors [Tsvetok et al. 2014; Lewis et al., 2015; Sperber et al, 2017]

• Separate optimization
• Script for source language is needed
• Computational complexity
Overview

• Motivation and Introduction

• Cascaded approach

• End-to-End Speech Translation

• Challenges:
 - Segmentation
 - Speech output
 - Simultaneous translation
 - Spontaneous speech
End-to-End SLT

- Opportunity
 - Similar models for ASR and MT
 - Encoder/decoder with attention
End-to-End SLT

- Opportunity
- Directly learn mapping to target language text
 - [Duong et al., 2016; Berard et al., 2016; Weiss et al., 2017]

- IWSLT 2018 Evaluation:
 - Significant worse than cascaded models
E2E SLT - Challenges

• Input is audio signal
 - Longer sequences difficult to handle for NNs
 - Dependencies in time and frequency dimension
 - Approaches:
 - Apply techniques from automatic speech recognition
 - E.g. pyramidal encoder [Chan et al, 2016]

• Data availability
 - Few end-to-end speech translation corpora available
 - Often considerably smaller than MT and ASR training data
 - Complicated mapping between source and target sequence
 - Source transcript can be intermediate supervised signal
SLT Data

• Synthetic data:
 - Automatic generation by using TTS
 - [Berard et al, 2016; Kano et al, 2018;]
 - Challenge:
 - Generalization from TTS output to real audio signal

• Exploit other data sources by multi-tasking
 - Available data:
 - Speech data + transcripts
 - Parallel MT data
 - Idea:
 - Share parts of the network
 - Train SLT system using speech or MT data
Multi-task learning

• Pre-training (Kano et al., 2018):
 - Train encoder on ASR task
 - Reuse on SLT task
Multi-task learning

- Pre-training (Kano et al., 2018):
 - Train encoder on ASR task
 - Reuse on SLT task
Multi-task learning

- **Pre-training (Kano et al., 2018):**
 - Train encoder on ASR task
 - Reuse on SLT task

- **Multitasking (Weiss et al., 2017):**
 - Train SLT and ASR jointly

- **Challenge:**
 - Data efficiency
 - How much gain from ASR/MT data?
2-stage NN Model

• SLT needs to learn complicated mapping
 - Supervised intermediate signal available

• Stack different decoders
 - Attend to source language decoder hidden states

• Triangle version:
 - Attend to source audio and source text
 [Anastasopoulos Chiang, 2018]

• Shared context vectors:
 - Ignore hard decisions of source language decoder [Sperber et al;2019]
Overview

• Motivation and Introduction

• Cascaded approach

• End-to-End Speech Translation

• Challenges:
 - Segmentation
 - Simultaneous translation
 - Spontaneous speech
Challenges - Segmentation

• Many applications:
 - Continuous audio stream
 - No punctuation in spoken language

• Automatic segmentation and punctuation needed
 - Readability
 - Semantic
 - “Let’s eat Grandpa!”
 - “Let’s eat, Grandpa!”
 - Cascaded SLT:
 - MT often operates at sentence level
Challenges - Segmentation

- Add segmentation as additional component

Approaches:

- Sequence labeling [Lu and Ng, 2010]

Integration:

- Between ASR and MT
- After MT
- Include into MT
Challenges – Simultaneous Translation

• Generate translation while speaker speaks

• Tradeoff:
 - More context improves speech recognition and machine translation
 - Wait as long as possible
 - Low latency is important for user experience
 - Generate translation as early as possible

• Challenge:
 - Different word order in the language
 - SOV vs SVO

<table>
<thead>
<tr>
<th>German</th>
<th>Ich</th>
<th>melde</th>
<th>mich</th>
<th>zur</th>
<th>Interspeech</th>
<th>2019</th>
<th>an</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gloss</td>
<td>I</td>
<td>regester/cancel</td>
<td>myself</td>
<td>to</td>
<td>Interspeech</td>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>English</td>
<td>I</td>
<td>????</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges – Simultaneous Translation

• Approaches:
 - Learn optimal segmentation strategies
 - Stream decoding
 - Dynamically learn when to generate a translation
 - Re-translate
 - Update previous translation with better ones
Simultaneous Translation:
Learn optimal segmentation strategies

- **Idea:**
 - Create segments that optimizing tradeoff between segment length and translation quality

- **Advantages:**
 - No changes to the NMT system

- **Disadvantage:**
 - Shorter context during translation

- **E.g.:**
 - Oda et al., 2014

Example:
Ich melde mich zur Interspeech 2019 an
Simultaneous Translation: Stream decoding

- **Idea:**
 - At each time step:
 - Decided to output word
 - Wait for additional input

- **Methods:**
 - Dynamic decision (Cho et al, 2016; Gu et al, 2017; Dalvi et al, 2018)
 - Fixed schedule (Ma et al, 2019)

- **Advantage:**
 - Longer context into the past is available

- **Disadvantage:**
 - Major changes to the architecture
 - Balance between latency and quality
Simultaneous Translation: Re-translation

• Idea:
 - Directly output first hypothesis (low latency)
 - If more context is available
 - Update with better hypothesis (high quality)
 - Not only for MT, but for all components [Niehues et al, 2016]
 - Example:
 - Ich melde mich → I register
 - Ich melde mich von der Klausur ab → I withdraw form the exam

• Advantages:
 - Low latency and high quality

• Disadvantages:
 - Bad user experience if there are many updates
 - High computation cost
Challenges – Spontaneous speech

• Speech often spontaneous
 - Disfluencies

• Cascaded approach
 - Special model to generate clean text
 - E.g., as sequence labeling task [Cho et al, 2014]

• End to End:
 - Jointly learn to translate and remove speech disfluencies [Salesky et al, 2019]
 - Challenge:
 - Data resources
Summary

• Speech translation adds additional difficulties
 - Segmentation
 - Disfluencies
 - Simultaneous translations

• Cascade models often still state of the art

• Significant improvements in end-to-end models
Future research directions

• Simultaneous E2E Speech Translation
 - Segmentation
 - Stream decoding

• Different data conditions
 - Multilingual models
 - Low/Zero resource models

• Prosody

• Manual interaction
16th IWSLT 2019

Hong Kong
2nd - 3rd November 2019
16th International Workshop on Spoken Language Translation

Important Dates:

Sep. 1: Paper Submission
July 1 - Sept. 8: Evaluation Period
Oct. 13: Acceptance - Notification

www.iwslt.org