
Analyzing Machine Translation Using KNN
Data Stores

Bachelor’s Thesis of

Tobias Palzer

Artificial Intelligence for Language Technologies (AI4LT) Lab

Institute for Anthropomatics and Robotics (IAR)

KIT Department of Informatics

Reviewer: Prof. Dr. Jan Niehues

Second reviewer: Prof. Dr. Alexander Waibel

Advisor: M.Sc. Tu Anh Dinh

13th June 2023 – 13th October 2023

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

PLACE, DATE

. .

(Tobias Palzer)

Abstract

This study aims to provide an overview over multiple evaluation metrics for neural

machine translation using the transformer architecture. Those metrics are all retrieved

using similarity search over the generated embeddings of a translation model stored in

a datastore. They measure whether similar states were encountered during the training

phase, which increases the average translation quality, and how certain the model is in its

prediction.

Those metrics can be used both to analyse the model itself, as well as translations

created by other models. The effectiveness of these metrics is measured using single-token

evaluations and also sequence evaluations. Of this, results of the sequence analysis seem

especially promising.

Lastly, the specific requirements to the datastore were analyzed, showing that both a

reduced datastore, as well as datastore with a different data base, can be used instead of

the datastore consisting of all the embeddings of the training data of the machine learning

model.

i

Zusammenfassung

Diese Arbeit setzt sich zum Ziel, einen Überblick über mehrere Evaluationsmetriken für

neuronaleMaschinenübersetzung zu bieten. Hierbei wird die “transformer”-Modellarchitektur

verwendet. Diese Metriken werden alle über Ähnlichkeitssuche der Einbettungen der Trai-

ningsdaten eines Übersetzungsmodells gewonnen und in einem Datenspeicher abgespei-

chert. Sie messen, ob ähnliche Zustände während dem Trainieren des Modells existieren,

was die durchschnittliche Übersetzungsqualität erhöht, und wie sicher das Modell in seine

Vorhersagen ist.

Diese Metriken können sowohl benutzt werden, um das Modell selbst zu analysieren, als

auch um Übersetzungen anderer Quellen zu untersuchen. Die Effektivität dieser Metriken

wird durch Experimente getestet, die einzelne Tokens und Tokensequenzen betrachten.

Die Ergebnisse der Sequenzen sind dabei besonders vielversprechend.

Zuletzt wurden die genauen Anforderungen des Datenspeichers analysiert, wodurch

sich gezeigt hat, das sowohl ein reduzierter Datenspeicher, als auch ein Datenspeicher mit

anderen Daten als den Trainingsdaten, genutzt werden können.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Background 3
2.1. Sequence Generation with Neural Networks 3

2.1.1. Transformer Models for Machine Translation 4

2.2. Translation Evaluation . 4

2.3. Nearest Neighbor Datastores and Usage 6

3. Related Work 7

4. Method 9
4.1. Nearest Neighbor token store . 9

4.2. Evaluation metrics using the KNN-store 9

4.2.1. Obtaining the nearest neighbor metrics 11

4.3. Analyzing single tokens . 11

4.4. Analyzing token sequences . 12

5. Understanding knn metrics 13
5.1. Retrieved sentence examples . 13

5.2. KNN-metric behaviour . 14

6. Experiments and Evaluation 17
6.1. Setup . 17

6.1.1. Model structure . 17

6.1.2. Model training and data . 17

6.1.3. Test sets . 18

6.2. Single Token Experiments . 18

6.2.1. Remarks about the used scores 18

6.2.2. Analyzing self generated translations 19

6.2.3. Analyzing premade translations from other sources 21

6.3. Measuring the impact of the decoder layer 23

6.3.1. Results . 24

6.4. More fine-grained analysis of errors . 24

6.4.1. Errors on different parts of speech 24

6.4.2. Error Severity . 25

v

Contents

6.5. Experiments for sequences . 26

6.6. Verifying the impact of the datastore . 27

6.6.1. Reduced datastore . 27

6.6.2. Different datastore . 28

7. Conclusion 29

Bibliography 31

A. Appendix 35
A.1. Pre-Labelled dataset comparison . 35

vi

List of Figures

2.1. The Transformer Model Architecture . 5

5.1. KNN-distance of 3 datasets . 15

5.2. Sentence similarity of 3 datasets . 15

5.3. Highest likelihood tokens in relation to KNN-data 16

6.1. Occurrence of different error types by distance 20

6.2. Bucket-Analysis of sentence similarity and KNN-distance with self gener-

ated translations . 21

6.3. Validity of self-generated tokens in relation to retrieved tokens 21

6.4. Threshold analysis for premade translations 22

6.5. Density distribution of the news test set 23

6.6. Validity of premade tokens in relation to retrieved tokens 23

6.7. Average knn-distance categorized by part of speech 25

6.8. KNN-stats with different error severity 26

vii

List of Tables

5.1. KNN retrievals of correct translations . 13

5.2. KNN retrievals of incorrect translations 14

5.3. Distribution of knn-distance . 14

5.4. Distribution of sentence similarity . 14

6.1. Analyzing translations generated by the transformer model 19

6.2. Comparing knn-distance and sentence similarity 20

6.3. Analyzing existing translations . 22

6.4. KNN-distance results for each decoder layer 24

6.5. Analysing tokens by part of speech . 25

6.6. Correlation of the Comet-score with knn-distance 26

6.7. Using reduced datastores for analysis . 27

6.8. Using a different corpus as a datastore . 28

ix

1. Introduction

Due to the spread of the global internet, increasingly more people from all over the

world are communicating with each other. Despite widespread teaching of English, some

people might still prefer to use their native language when communicating or accessing

information. This might be because of comfort or lacking knowledge in foreign languages.

Translations created by humans are not sufficient to solve this issue for the following

reasons:

1. They are costly

2. They are not directly available and might take some time

3. They might infringe on the privacy of data, e.g. in private emails or messages

Therefore machine translation is used to enable people to freely access information and

communicate across national boundaries.

Machine translation was initially based on applied grammar and syntax rules (rule based

translation), which systematically translated speech based on individual components. This

approach has the following drawbacks: Those rules need to be defined for each language,

requiring experts with domain knowledge. Idiomatic language or proverbs would need

their own rule, as literal translation usually is not sufficient for a high-quality translation.

Statistical machine translation was the next approach, which collected statistical infor-

mation about languages from so called bilingual corpa. They then chose those words as a

translation, that are most likely to appear based on the information gathered in the corpus.

One advantage of this approach is that it can be reused for different languages, with the

major requirement being that a bilingual corpus between the language pair exists.

Starting after 2010, neural networks became used extensively for machine translation.

Recurrent Neural Networks (RNNs) were primarily used to process sequences by providing

memory cells which make neural networks remember state. This model architecture

existed before, but was adapted for machine translation [5]. Improvements were made by

using a different memory structure (e.g. LSTM [33] or GRU [5]), as well as introducing

attention mechanisms [2], which better remember previous states by dynamically looking

at encodings of the source sentence.

The transformer model [35] architecture presented an improvement to RNNs. No

memory cells are used anymore. Instead the whole sequence of tokens is processed at

once using multiple self-attention layers. Transformer models quickly became state of the

art in machine translation, as well as other natural language processing tasks, for example

large language models like GPT [3].

Despite all these improvements, translation models still make mistakes. Languages

are highly complex structures, and translations can be highly context dependent, which

1

1. Introduction

requires a deep understanding of the language, or even culture, of the speaker. However,

translation models used in isolation do not understand the concept of errors, and will

simply generate incorrect tokens.

When generating such a faulty translation, there might still be some hints which

indicate errors. In this thesis, we explore how to use embeddings generated by transformer

translation models as a measure of similarity to the training data. This is done by first

saving the embeddings of the training data in a datastore. When translating sentences

using this model, we compare our current state to the saved states from the training data.

We measure confidence by similarity to the training data, as well the amount of different

choices found in it. For this, we analyze both single tokens as well as token sequences.

Next, we compare which metrics are most suitable as a measure for confidence. Lastly, we

analyze how dependent this is on both the size and the exact data of the datastore.

2

2. Background

Machine translation is the task of generating a sequence (𝑦1, . . . , 𝑦𝑚) in the target Language
T based on a sequence (𝑥1, . . . , 𝑥𝑛) in the source language S. In addition to the meaning

of the translated sentence, the tone, and feel of a sentence should remain as close to the

original sentence as possible.

2.1. Sequence Generation with Neural Networks

As mentioned before, machine translation operates on sequences. Those sequences usually

consist of neither words or letters, but tokens. Tokens are subunits of words, ranging from

single letters, to whole words. An example of tokenization can be:

𝐿𝑒ℎ𝑟𝑒𝑟𝑖𝑛
𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒−−−−−−→ 𝐿𝑒ℎ𝑟𝑒𝑟 |𝑖𝑛; 𝐿𝑒ℎ𝑟𝑒𝑟 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒−−−−−−→ 𝐿𝑒ℎ𝑟𝑒𝑟

One advantage of splitting words in subunits is, that a model can reuse learned associations

of a token in multiple contexts, and does not need to learn them anew for each inflection

or conjugation. This means that the model can learn to add the suffix “in” to a noun in

order to change the grammatical gender of it. If this tokenization was not available, the

training data would need to include both forms for every profession in order to let the

model make accurate translations, whereas the use of tokenization enables the model to

learn this rule.

The first step when building a machine translation model is therefore to tokenize the

sentence data. The byte-pair-encoding algorithm [12], originally intended for text/file

compression can be adopted for tokenization the following way:

1. Set a target vocabulary size, e.g. 10000.

2. Each character is assigned a token.

3. Find the most common 2-gram of tokens in the corpus, and create a new token for

this 2-gram. Replace all occurrences of the 2-gram with the newly created token.

4. If the target vocabulary size has been reached, terminate, otherwise repeat the last

step.

The used tokenization algorithm “sentencepiece” [21] builds upon bpe.

3

2. Background

2.1.1. Transformer Models for Machine Translation

The transformer neural network structure was first invented specifically to improve

machine translation [35], but has found application in other natural language processing

applications, most notably the GPT models for general language generation [3]. In contrast

to the previous approach, a transformer network does not iterate over the input sentence

on a word-by-word basis. Instead, the input layer of the transformer consists of a fixed-size

array, which contains all the tokens of the source sentence, as well as an array for the

already generated tokens from the target sentence. In addition to the token, a positional

encoding is inserted for each token to provide information about word order.

The input layer is followed by multiple encoder and decoder layers. The last layer is

a probability distribution over the whole token dictionary. After a forward pass of the

model, a token of the output layer is chosen, e.g. the token with the highest probability,

and appended to the input layer together with a positional encoding.

In short this means, that a transformer needs only around half the amount of forward

passes compared to an RNN, as it does not need to process the input tokens sequentially.

Backpropagation now has a fixed cost per token, independent from the sequence length,

which decreases training time. In addition, this helps the network to learn “long range

dependencies”, as the whole sentence and context is always available for each pass, whereas

each token in an RNN is only seen once. Therefore, translation of longer sequences are

improved.

Each encoder and decoder layer includes “multi head attention”, which combines multi-

ple attention heads, which each have individual weights as trained parameters.

MultiHead(𝑄,𝐾,𝑉) = Concat (head1, . . . , headh)𝑊 𝑂

where head = Attention

(
𝑄𝑊

𝑄

𝑖
, 𝐾𝑊 𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖

)
In the decoder, Q consists of the previous layer, whereas K and V come from the encoder

output. The complete structure of the transformer architecture can be seen in figure 2.1.

2.2. Translation Evaluation

Translation evaluation can be used for multiple purposes: It can serve as a loss-function

during the training process of translation models. When used over a large amount of

sentence samples, they can be used to evaluate the quality of a model. A third use case

is to simply evaluate the translation quality in production settings, for example when

translating a large document using machine translation, and trying to find erroneous

translations which need to be manually fixed.

When evaluating the quality of translation, two main approaches are possible: The first

approach measures the similarity of the generated translation sentence to a given gold

translation. An instance of this is the Bleu-score [28], which (in short) works the following

way:

The modified n-gram word precision
1
, i.e. the percentage of n-word sub-phrases in the

hypothesis found in the reference translation, is calculated for multiple values of n. They

1
Actually a modified precision is used, which penalizes duplicate words in the target translation.

4

2.2. Translation Evaluation

Figure 2.1.: The Transformer Model Architecture

The image is freely provided by Google in their paper [35]

are then averaged using the geometric mean. Lastly a penalty is applied, which punishes

shorter translations.

The disadvantage of such an approach is that two correct translations can often still

use different words, which results in a lower Bleu-score. This makes it unsuitable for

evaluating the translation quality of single sentences. However, the Bleu-score remains a

reliable measure for evaluating the quality of whole translation systems, as this error is

averaged out over a larger dataset, and it provides high correlation with human judgement

[25]. A similar score is the chrF-score [29], where the similarity to a gold translation is

determined on the basis of single characters as opposed to complete words.

Quality estimation is a second approach which does not require a gold translation. It

usually uses neural networks in order to grade the quality of a translation. Therefore the

judgement of a specific translation is usually more accurate compared to scores that rely

on a gold translation. Machine translation evaluation metrics based on neural networks

outperform lexical metrics in reference to their correlation with human judgment created

by human experts [11].

One example of such a score used during the thesis is the COMET-score [30]. It works

by first creating cross lingual word embeddings of the hypothesis 𝒉 and the source 𝒔 using
existing models, e.g. Bert [7]. Those word embeddings are combined in a pooling layer to

create a sentence embedding:

𝒆𝑥 𝑗 = `𝐸
⊤
𝑥 𝑗
𝜶

5

2. Background

` and 𝛼 are trainable weights, and 𝐸⊤𝑥 𝑗 is a combination of multiple layers of the word

embedding. Based on the sentence embedding of the source and the translation the

following values are calculated:

|𝒉 − 𝒔 |
𝒉 ⊙ 𝒔

Those are then appended together with the original data and given to a feed-forward

neural network, which assigns a score between 1 and 0 to the translation. Additionally,

similar vectors created by a reference translation can also be used to train the model,

assuming such a translation is available.

As opposed to evaluating whole sentences, the correctness of individual tokens can also

be predicted. This can be done by assigning a confidence score to each token, or using a

binary classficator to assign “OK” and “BAD” labels.

2.3. Nearest Neighbor Datastores and Usage

This thesis makes extensive use of Faiss [16], which is a datastore designed to hold a

large number of embeddings, generated by neural networks. As opposed to databases,

such a vector datastore only contains simple numerical data, and has only limited ways to

access them. The standard method to search the datastore is to provide it with a specific

embedding, and receive a certain amount of similar embeddings (and their IDs) in return.

It is however not guaranteed to return the most similar embeddings. Due to the complexity

of the task and the large number of entries, this would not be possible without huge

performance costs.

One application for knn datastores is to use them to improve upon text generation [17]

or machine translation [18]. This is achieved by first training the model normally. After

that, the whole training data is encoded, and the generated embeddings are inserted into

the datastore. In this case, embeddings of every token of the sentence are inserted into the

datastore, instead of one embedding per sentence. To generate the embeddings, forced

decoding is used. In addition to the embedding, the next token from the target sentence,

i.e. the expected token during the training process, is also inserted
2
.

When translating a sentence, the current embedding is generated by the encoder and

decoder. The datastore retrieves similar embedding states, as well as the expected tokens

associated with the specific states. The information of which tokens are retrieved is

combined with the probability distribution output of the model, and a token is chosen.

It is possible to use any transformer layer, although language models received better

results when using the last decoder layer [17]. Instead of the training data, another corpus

can also be used as the basis of the datastore, thus making the knn-translation model adapt

to new domains, e.g. law, medicine, or IT.

Obviously, the datastore needs to be searched for every generated token, which increases

the translation time considerably, compared to only using the transformer model.

2
The Faiss datastore stores the embedding and the expected token in two different files. Values are linked

to each other by assigning them the same index.

6

3. Related Work

Trusting in the softmax output-probabilities as a measure of confidence is not sufficient

when evaluating whether a translated token is correct. To remedy this, multiple approaches

have been proposed, which include training machine learning models, and searching the

training data for similarity.

[14] proposes the use of the softmax probability of neural networks as a baseline for

estimating the confidence in a result for two related problems: The first task is misclas-

sification, where the generated token or assigned label is incorrect. The second task is

out-of-distribution detection, which detects whether a sample is part of a distribution that

often results in incorrect output of the model.

However [13] has shown classifiers often still have high probabilities even when their

results are wrong. Whereas a specific softmax probability in older model architectures

generally meant that around the same percentage of samples are predicted correctly, this

is not necessarily the case with newer architecture. Concretely, models can overestimate

their confidence and assign high probability outputs even on wrong labels.

[36] shows how this overestimated confidence of neural networks is also present in the

transformer structure, which is used in the thesis.

[8] trained a neural image classifier by giving it the option to ask for hints in exchange

for an additional loss penalty. This trains the model to only ask for hints if it is “confident”

in its results. The trained model is then used to estimate the confidence by counting

the number of hints used. This approach was adapted for machine translation using

transformers by [24]. Detecting out-of-distribution samples corresponds to out-of-domain

samples in machine translation. Based on the more accurate confidence measurement, the

labels can be smoothed, so that they are more similar to the actual confidence of tokens.

[26] uses the similarity of a sample to the training data of the transformer model as a

measurement of confidence. This approach is combined with the output probability for a

more comprehensive confidence assessment. Additionally the confidence is also measured

for tokens in the input language, which may be useful in certain applications.

[22] provides an alternative way of using the training data of a language model. It

uses influence functions to find out which sentences in the training data have the highest

influence on erroneous translations filters these sentences from the training data to retrain

a better model.

7

4. Method

The main goal of this thesis is to use an approach inspired by [26] to measure how much

information on translation confidence can be gained from similarity data. We introduce

different metrics, which will be compared in chapters 5 and 6.

In this section we elaborate on which specific data is used as a measure of confidence

when translating sentences, as well as how this data is obtained. After that, we will

describe how this data is used, namely for token-level confidence as well as sentence-level

confidence.

4.1. Nearest Neighbor token store

For the experiments, the knn-datastore implementation knn-box [38] was used. This

toolkit provides a command line interface to build a knn-datastore for an existing model,

as well as implementations of translation models which access the knn-datastore. Given

that the training data is comparably small, the whole training data can easily be added to

the datastore. When using knn-datastores for sequence generation, it is sufficient to only

use a part of the training data for the datastore, especially when the data is rather large.

This is however mainly for improving the performance by reducing the time searching the

datastore. The approach of this thesis is to find similar sentences in the training data. By

reducing the size of the datastore, information about certain sentences from the training

data is lost, which should weaken the effectiveness of the datastore as a similarity measure.

Therefore, the whole training data is put into the datastore, unless specifically mentioned

otherwise.

The datastore is accessed by taking the hidden state of a decoding step (e.g. before each

token of the hypothesis is generated), and searching for similar hidden states. This returns

a list of datastore entries, including the distance from the current hidden state, henceforth

referred to as knn-distance. The knn-distance is based on the distance metric built into

the Faiss datastore, which is the Euclidean (L2) distance between two embedding vectors

p and q by default, defined as:

𝑑 (𝑥,𝑦) =

√√
𝑛∑︁
𝑖=1

(𝑝𝑖 − 𝑞𝑖)2 (4.1)

4.2. Evaluation metrics using the KNN-store

We propose using the knn-distance itself as the first quality measurement metric. If only

samples with a high knn-distance are retrieved, it suggests that the currently translated

9

4. Method

sample has few similar states in the training data. Therefore the average translation quality

can be expected to be worse than sentences which retrieve samples with low knn-distance.

In addition to the the retrieved token, which is needed for knn-language models, the

sentence id of the training sample is also stored in the datastore. This allows for further

similarity analysis between the the retrieved training data and the sentence that is to be

translated. For instance, we can build sentence embeddings of the most similar source

sentences as well as the sentence that will be analyzed.

Our next method of quality measurement is to use cosine similarity between sentence-

level embeddings generated by [7][31] as a similarity measure independent from specific

translation model encodings and token positions. The cosine similarity is defined as:

cos(𝑥,𝑦) = ⟨𝑥,𝑦⟩
|𝑥 | × |𝑦 | (4.2)

This metric will from now on be referred to as sentence similarity. The difference between

the knn-distance and the sentence similarity is as follows:

The knn-distance is specific to themodel that is currently analyzed, whereas the sentence

embedding model is independent from the translation model and can be used to analyze

multiple translation models. The knn-distance is not supposed to measure the similarity

of whole sentences, but of the embeddings generated at specific token positions, which is

harder to assign meaning to. As we will show later, two very different sentences might

have a very similar embedding in the translation model, as long as they are responsible

for generating the same word. When looking at the sentence embedding, which contains

their whole meaning, they would have a lower similarity score, as only a small part of the

sentence is similar.

It should be noted, that the transformer model has a different embedding for each single

output token, whereas the sentence embedding model only has one embedding for the

whole input sentence. This measure can therefore be used to check whether sentences, that

are seen as similar by the translation model, are actually similar and not just transformed

into a similar representation by the translation model.

Other metrics that we derived from the knn data are:

• Number of different knn-proposals: If multiple different tokens are retrieved, it

implies a certain “uncertainty”, on which token to use. Of course, multiple different

tokens can be correct, but if the most similar states retrieved from the training data

all expect the same token, the token generated should more likely be correct

• Model prediction equals retrieved knn-tokens: If the token with the highest possible

likelihood as calculated by the translation model corresponds with a higher amount

of tokens retrieved from the training data, it is assumed to be more likely to be

correct.

These two metrics are restricted by how many nearest neighbors are retrieved from the

datastore (in our case 8). The knn distance starts with 0 and has no well defined limit,

whereas the sentence similarity ranges from 0 to 1. However there is only a comparatively

smaller range of retrieved neighbors, which limits the expressiveness of the last two

metrics.

10

4.3. Analyzing single tokens

4.2.1. Obtaining the nearest neighbor metrics

We retrieve the aforementioned data by first obtaining a translation. This is either done

by taking the gold translation if available, or letting the model generate a translation

hypothesis using beam search and taking the hypothesis with the highest likelihood.

Given a translation, another pass over the decoder is required in order to obtain the

hidden state of the transformer network after each pass of the decoder. Due to the design

of the fairseq library, this is also required for the translations created by the model itself.

However this is easily accomplished using forced decoding, which makes the model follow

a certain sequence of tokens, and update the inner state accordingly for each step.

Using the hidden states for each token in the sentence, the datastore can now be searched

for similar decoder states in the training data. After retrieving them, the data mentioned

in the previous section is built and appended to each token. As implied by the name,

the knn-datastore retrieves multiple similar states, e.g. the 8 most similar states found

heuristically. Depending on circumstances, looking at knn data of multiple states might

yield more information than only looking at the most similar state.

It should be noted, that obtaining this data is possible for each layer of the decoder,

provided an appropriate datastore was also created. The differences between the layers

will be discussed in a later experiment.

4.3. Analyzing single tokens

This thesis explores different applications of knn-data to analyze how they can be used

in order to measure the correctness of either single tokens, or token sequences. For

single tokens simple annotated data is used, which each token/word being assigned

either a “GOOD” label or a “BAD” label. Given that knn-data is token-based, word-based

annotations are applied to each token of a word. If the previous metrics can be used to

model token confidence, they will show a correlation to the table. For example, tokens

with higher knn-distance might be more likely to have a “BAD” label.

It should be noted, that labeling individual tokens is insufficient for comprehensively

evaluating a translation. If a word is missing in the translation it cannot be correctly

labeled. The binary classification might also be missing a lot of nuance, when grading a

token. While technically correct, there are often better word arrangements or expressions.

Evaluating whole sequences makes this possible.

For analyzing single tokens, the following methods were used:

• Sorting the tokens by their knn-data (e.g. knn-distance) and putting them in buckets.

When using flexible knn-data, e.g. knn-distance or sentence similarity, buckets of

equal size are used to provide more accurate data. For knn-data whose value range

is the number of retrieved tokens, the number of buckets is fixed

• Measuring their correlation using the Pearson correlation coefficient (PCC)

• Using knn-data as a binary threshold classificator and evaluating it with theMatthews

correlation coefficient (MCC) and the F-score

• Kernel density analysis between correct and incorrect tokens

11

4. Method

4.4. Analyzing token sequences

The previous methods analyzed how knn-data can be used to analyze whether a single

token is correct. For each data point, there is only limited data, and the binary classification

also limits the effectiveness of the analysis. When analyzing whole sentences, more data

for each instance is available, and different evaluation criteria are more suitable, e.g. a

score between 0 and 1.

Each sentence was translated using the transformer model, and assigned a score using

the comet [30] framework. The specific models used were “wmt20-comet-qe-da ” and

“wmt22-comet-da”. The second model also uses a reference translation in its evaluation.

As a first step, the knn distance of individual tokens is combined using different methods.

The resulting value’s Pearson correlation to the comet score is then calculated. We used

the following functions to combine the knn-data:

1. Arithmetic mean

2. Median value

3. Arithmetic mean of only the n highest distances

4. Arithmetic mean of only the n lowest distances

All those methods reduce the knn-distance of a whole sequence to a single value. However,

advanced methods, such as Recurrent Neural Networks for sequence processing, could

also be used to provide more accurate judgements, but are out of scope for this thesis.

12

5. Understanding knn metrics

After specifying what data is retrieved in which way, we will now further analyze how this

data behaves, and how it is normally distributed. Firstly, specific examples of sentences

retrieved by the knn-datastore are discussed. This serves to illustrate what type of sentences

the neural network considered similar. This is done on a case-by-case basis, and not a

statistical analysis. After that, we will present the statistical distribution of this data in 3

sample data sets.

5.1. Retrieved sentence examples

First, an example where the sentence is correctly translated is shown in table 5.1. It can

be seen that the retrieved target sentence is only present up to the expected token. The

last token of the target in the table is expected by the training data, but has not yet been

processed by the model. The source sentence on the other hand, is always processed

completely.

In this case, the sentence consists of simple grammar, which results in comparably low

knn-distance. With the exception of the first token, only a small amount of unique tokens

is retrieved at each step.

Next, an example of a sentence containing an error is found in table 5.2. The error

occured at token “called”, which was translated as “genannt”, even though it should be

translated as “gerufen” in this context. The first correct knn retrieval, which contains the

required token is the one with the eight lowest distance.

Additionally, the retrieval of token “von” instead of “hat” at the second position, has a

higher knn-distance and is also incorrect. However, in this case the model correctly chose

the token “hat”, even though it is not included in the knn-retrieval.

In both of these cases, the knn-distance is noticeably higher than the rest of the tokens.

They also have the highest number of unique retrieved tokens, showing a lower confidence.

Chosen Token Source retrieval Target retrieval KNN-Distance Unique Retrieved Tokens

Das This is a degeneration of the retina. Das 53 4

ist This is a show that’s currently on in Tokyo. Das ist 71 2

eine This is a photographic representation, called Snapshots. Das ist eine 163 1

Demonstration ... is a demonstration of ist eine Demonstration 324 2

. This was a perfect introduction. Dies war eine perfekte Einführung. 133 1

Table 5.1.: KNN retrievals of correct translations

The translated sentence was “This is a demonstration.”.

13

5. Understanding knn metrics

Chosen Token Source retrieval Target retrieval KNN-Distance Unique Retrieved Tokens

Wer Who wrote that Wer 134 1

hat Any of you who rode the automobiles – was it yesterday? ... Wer von 664 4

Sie He made you. Er hat Sie 387 1

heute Here’s what some of you did this morning ... was einige von Ihnen heute 421 1

Morgen ... the talk we heard this morning ... den wir heute Morgen 313 3

genannt What were scientists called before? Wie wurden Wissenschaftler vorher genannt 569 5

? What were scientists called before? Wie wurden Wissenschaftler vorher genannt? 87 1

Table 5.2.: KNN retrievals of incorrect translations

The translated sentence was “Who called you this morning?”.

Type Average knn-distance Median knn-distance Standard deviation

Training Data 262.94 222.81 163.64

Non-Training Data 440.13 414.03 213.45

Random Noise 1084.84 1117.20 156.25

Table 5.3.: Distribution of knn-distance

All values are rounded to the the second decimal. Only the single nearest neighbor is

taken into consideration.

5.2. KNN-metric behaviour

To further analyze the behaviour of knn metrics, we analyzed their distribution in 3 cases:

1. Sentences found in the training data of the model, for examples of minimal distances

2. Sentences found in the test data

3. Random noise, i.e. random sequences of tokens, which should be as different from

the training data as possible, for examples of maximal distances

For the first two scenarios, 1000 sentences each were used. The third scenario also has

1000 token sequences.

Table 5.3 show some the initial results of the analysis of knn-distance. As expected, the

sentences found in the training data have the lowest average and median knn-distance.

The sentences not found in the training data have an average distance almost twice as high,

and the knn-distance of the random data is the highest by a far margin. Their graphical

distribution can also be seen in figure 5.1. It can be seen, that the range of values is widest

when analyzing non-training data, as this dataset also has the highest standard deviation.

When looking at the sentence similarity in table 5.4 and figure 5.2, the difference between

training data and non-training data becomes even more striking. The relevant sentence

Type Average cos.-sim. Median cos.-sim. Standard deviation

Training Data 0.98 1 0.02

Non-Training Data 0.23 0.20 0.02

Random Noise 0.09 0.08 0.01

Table 5.4.: Distribution of sentence similarity

All values are rounded to the second decimal. Only the single nearest neighbor is taken

into consideration.

14

5.2. KNN-metric behaviour

500 0 500 1000 1500
knn-distance of training data

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

De
ns

ity

500 0 500 1000 1500 2000
knn-distance of non-training data

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

De
ns

ity

500 0 500 1000 1500 2000
knn-distance of random data

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

De
ns

ity

Figure 5.1.: KNN-distance of 3 datasets

0.5 0.0 0.5 1.0 1.5
cos similarity of training data

0

5

10

15

20

De
ns

ity

0.5 0.0 0.5 1.0 1.5
sentence similarity of non-training data

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
cos similarity of random data

0

1

2

3

4

De
ns

ity

Figure 5.2.: Sentence similarity of 3 datasets

from the training data is almost always found as the most similar neighbor, which leads to

an average sentence similarity of 0.98. The knn-distance, as seen in table 5.3, did however

not reach values close to zero. This can be because, even though the sentences are found in

the training data, they do not exactly generate the same tokens as the reference translation,

which results in lower similarity. The sentence similarity instead only compared the source

sentences, which were correctly retrieved.

Figure 5.3 also shows the connection between the token with the highest output layer

likelihood and the knn-data. It can be seen, that this token is more likely to be chosen

when the knn-distance is smaller. Additionally, the higher the distance is, the less likely

the token is to be retrieved at least once within the top-{1,5,8} knn retrievals, meaning that

there are similar embedding states that expect different tokens, indicating less confidence

at higher distances. The same holds true for the sentence similarity in reverse, as higher

similarity indicates confidence.

15

5. Understanding knn metrics

200 400 600 800 1000
KNN-distance

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rc

en
ta

ge
 o

f t
ok

en
s

Most likely Token in Top1
Most likely Token in Top5
Most likely Token in Top8
Most likely Token equals model output

0.1 0.2 0.3 0.4 0.5
Sentence similarity

0.4

0.5

0.6

0.7

0.8

Pe
rc

en
ta

ge
 o

f t
ok

en
s

Most likely Token in Top1
Most likely Token in Top5
Most likely Token in Top8
Most likely Token equals model output

Figure 5.3.: Highest likelihood tokens in relation to KNN-data

Sentences from the second dataset were used. Each data point contains around 800 tokens.

16

6. Experiments and Evaluation

After giving an overview of the basic behaviour and distribution of knn-data, we will now

present how it behaves in relation to translation errors. The first experiments will analyze

the general effectiveness for single-token correctness as well as full sentence quality. This

analysis is further refined by differentiating between different parts of speech, as well as

different types of errors, each of which could show a different degree of influence based

on knn-data. Lastly, we will measure how the effectiveness of the method is influenced by

changing the datastore as well as the encoder layer from which the knn-data is sourced.

6.1. Setup

6.1.1. Model structure

In order to evaluate the inner workings of transformer translation models, we trained

a transformer model to translate from English to the German language. The model

architecture is provided by the fairseq modeling toolkit [27], which provides a variety of

predefined model architecture architectures and tools. However, as the goal of the thesis

is to analyze existing model structures, the standard transformer model by fairseq was

used, which is defined as follows:

The encoder first embeds the input array with the dictionary size into a data layer of

size 512 32-bit floating point numbers. After that, a positional encoding is added, which is

required by transformer structures in order to keep the word order of the sentence. Lastly

there are 6 standard encoder layers with self-attention.

The decoder also consists of an embedding layer, followed by 6 decoder transformer

layers with self-attention. Lastly, an output layer is added, which transforms the embedding

of size 512 into a distribution over the dictionary size, in this case 10112.

This results in a model with a total of 54,493,184 parameters, corresponding to ≈ 220

mega-byte. Additionally, the model is trained using dropout [15] and uses the adam

optimizer [19] with 𝛽 values 0.9 and 0.98.

6.1.2. Model training and data

The described model is trained on a corpus of TED talks, which each consist of a person

holding a speech on a topic of interest. The sample data was provided during the 11th

International Workshop on Spoken Language Translation [4]. The data is formatted by

sentences, which each sentence being used as single translation/training step. Before the

input can be given to the transformer model, the words are first tokenized, i.e. broken

down into subwords, using “sentencepiece”-library by Google [21]. For this a total of 10000

17

6. Experiments and Evaluation

different tokens are allowed. The dataset has a total size of 174443 training sentences for

each language pair, which is comparably small. The training lasts for around 3 to 4 hours

on one GPU.

6.1.3. Test sets

Depending on the experiment, a number of different test sets were used. These are the

following:

TED test data: The test partition of the TED dataset [4] with sentences not used during

training, which contains 100 sentences with 2110 labeled tokens.

News test data: An out of domain dataset [1], which contains 100 sentences with 3503

labeled tokens.

We labeled the previous two datasets by hand, differentiating between 8 different kind

of errors: Correct, Wrong word, Word order, Ending, Obsolete Word, Proper noun / name,

Non-Translation, Incomplete Translation. These labels were inspired by [23] and [34].

However, they do not distinguish between error severity. Additionally, sentences larger

than 200 characters where sorted out, in order to make labeling them easier.

Multilingual Quality Estimation and Automatic Post-editing Dataset (QE) [37]:
This dataset contains a large amount of translation data, generated by different machine

translation models as well as humans. The words are labeled by different human judges.

The labels are defined by a character-level interval which specifies the error type and

severity. If part of a token is erroneous, the whole token will be considered as such. It

is possible for a token to be part of multiple errors in the original dataset. However, we

adapted this dataset to only include a maximum of one error-type per token. In the experi-

ments, this was simplified to only include the translations created by a single translation

model “Online-A.1574”, and the judge “rater4”. This results in 708 sentences containing

44153 tokens. Including correct tokens, there are 4 different types of error severities,

as well as 8 different types of error (No Error, Fluency, Accuracy, Style, Terminology,

Locale-Convention, Non-Translation, Other).

WMT Quality Assessment 2023 (QA): This dataset contains 954 source sentences
[9][10], as well as target sentences

1
. This results in a total of 30180 tokens in the target

language. Each word has a "Good" or "Bad" label assigned to it.

Europarl data [20]: This corpus was only used to serve as an additional datastore. It

contains around 2000000 en-de parallel sentences, of which around 170000 were used.

6.2. Single Token Experiments

6.2.1. Remarks about the used scores

When using the knn-data for a binary classification, a threshold is needed for the MCC and

the F-score. In the following results, either the threshold with the highest score is used,

or multiple possible threshold values are displayed in a graph. The Pearson correlation

1
It originally included 1000 sentences, but some sentences had to be filtered out due to conflicts during the

tokenization phase.

18

6.2. Single Token Experiments

Dataset Pearson Correlation F-Score- MCC-Score

In-Domain/Ted-Talk, knn-distance 0.21 0.27 0.18

In-Domain/Ted-Talk, Probability 0.07 0.08 0.05

Out-of-Domain/News, knn-distance 0.21 0.36 0.20

Out-of-Domain/News, Probability 0.14 0.12 0.05

Table 6.1.: Analyzing translations generated by the transformer model

For F-score and MCC-score the threshold with the highest value was chosen. All values

are rounded to the second decimal value

coefficient works without a threshold, and allows for directly analyzing the correlation

between number values (e.g. knn-distance) and the binary classification.

For the F-score, the following is to be kept in mind: It is calculated using the this formula:

𝐹 =
2

recall
−1 + precision

−1

When using a variable threshold, the F-score has a minimum value > 0. This is because

precision of 1 can always be achieved by simply choosing a threshold which includes

all incorrect tokens, even if it results in a lower precision. The MCC is therefore a more

suitable measurement “which produces a high score only if the prediction obtained good

results in all of the four confusion matrix categories (true positives, false negatives, true

negatives, and false positives)” [6]. However, for the sake of completeness, the F-score is

still included.

The usage of knn data is compared against the baseline of using the last layer of the

transformer model, i.e. the output probability.

6.2.2. Analyzing self generated translations

For judging self generated translations, two datasets were used. The first dataset is the

TED-talk dataset, providing an in-domain dataset. The second used dataset is the news

dataset [1], providing an out of domain dataset.

6.2.2.1. Results

Table 6.1 shows the result of the experiment. It clearly shows an improvement when using

the knn-distance as an evaluation metric as opposed to the output probability. Given that

the model will chose tokens with a higher probability more often, the usefulness of taking

the probability is limited. Therefore even wrong tokens might have a high probability, or

they would not have been chosen.

No clear difference between in-domain and out-of-domain data can be seen for the

knn-distance metric when looking at the Pearson Correlation and the MCC. The small dif-

ference found is more prominent when looking at the probability baseline. The remaining

differences when using the knn-distance as a metric can be explained as variance in the

datasets.

19

6. Experiments and Evaluation

100 200 300 400 500 600 700
KNN-distance

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pe
rc

en
ta

ge
 o

f t
ok

en
s

Incorrect words
Word order
Word ending
Additional word
Entity name
Source words
Incomplete words

100 200 300 400 500 600
KNN-distance

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pe
rc

en
ta

ge
 o

f t
ok

en
s

Incorrect words
Word order
Word ending
Additional word
Entity name
Source words
Incomplete words

Figure 6.1.: Occurrence of different error types by distance

This figure displays occurrence of errors separated by error type. Each data point

represents around 438 different tokens of the news dataset (left) or 422 tokens of the TED

dataset (right).

Number of Neighbors PC of knn-distance PC of sentence similarity

1 0.210 0.099

2 0.210 0.121

4 0.207 0.126

8 0.205 0.139

Table 6.2.: Comparing knn-distance and sentence similarity

For each token, the knn-distance and sentence similarity of the {1,2,4,8}-nearest neighbors

is averaged and used as metric. The Pearson correlation (PC) is rounded to the third

decimal.

Figure 6.1 shows how the knn-distance is affected by different types of errors. Sadly

due to a big imbalance between the occurrence of different error types little knowledge

can be gained. In the news dataset it seems errors besides “incorrect words” react to the

knn-distance, but this is less visible in the second dataset. More labeled data with the less

common errors might explain which is correct.

Table 6.2 compares the usage of the knn-distance metric against the sentence similarity

metric. It also averages multiple metrics of the {1,2,4,8}-nearest neighbors. It can be seen

that the knn-distance has correlation of around two times the correlation of the sentence

similarity. Interestingly, the knn-distance correlation is almost independent of the amount

of nearest neighbors (increasing the values yields only slightly worse results), whereas the

sentence similarity sees noticeable improvement when increasing the amount of values.

The two metrics are further compared in figure 6.2.

Given that the knn-distance is noticeably better, the experiments in later sections will

only make use of this metric, and not the sentence similarity.

Figure 6.3 shows the results of analyzing the number of different retrievals, and the

number of retrievals identical to the token chosen by the model. Notably, no clear corre-

lation can be seen in the TED dataset, but there is correlation in the news dataset. This

20

6.2. Single Token Experiments

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Cos similarity

0.70

0.75

0.80

0.85

0.90
Pe

rc
en

ta
ge

 o
f c

or
re

ct
 to

ke
ns

Label correct
total correct tokens

100 200 300 400 500 600 700 800
KNN-distance

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Pe
rc

en
ta

ge
 o

f c
or

re
ct

 to
ke

ns

Label correct
total correct tokens

Figure 6.2.: Bucket-Analysis of sentence similarity and KNN-distance with self generated

translations

The translations were created with the News data set. Each bucket has around 207 tokens.

The y-value consists of the proportion of correct tokens in a bucket.

0 2 4 6 8
Retrived KNN-tokens that equal token chosen by model

0.0

0.2

0.4

0.6

0.8

Pe
rc

en
ta

ge
 o

f c
or

re
ct

 to
ke

ns

1 2 3 4 5 6 7 8
Different KNN-recommendations

0.82

0.84

0.86

0.88

0.90

0.92

Pe
rc

en
ta

ge
 o

f c
or

re
ct

 to
ke

ns

Label correct
total correct tokens

1 2 3 4 5 6 7 8
Different KNN-recommendations

0.60

0.65

0.70

0.75

0.80

0.85

Pe
rc

en
ta

ge
 o

f c
or

re
ct

 to
ke

ns

Label correct
total correct tokens

Figure 6.3.: Validity of self-generated tokens in relation to retrieved tokens

The self-labeled TED dataset was used for the first two figures, and the news set dataset

for the last image.

might be due to the smaller sample size of the labeled tokens, but also shows that these

two metrics are not very robust.

6.2.3. Analyzing premade translations from other sources

Given that teacher forcing is used in order to generate knn-data, it is theoretically possible

to generate this data for any sequence of tokens. This can therefore be used to grade

existing translations, for example machine generated translations or translations created

by human translators. To analyze the feasibility of this approach, two datasets are used:

The QE and QA dataset both include errors split by type. In this experiment, the

annotations are interpreted either as correct or incorrect.

6.2.3.1. Results

Figure 6.3 lists the results of this experiment. It can be seen that the results vary greatly

between the two datasets. The QA dataset yields results similar to translating the trans-

lation generated by the model itself, e.g. having a correlation of around 0.17. However

21

6. Experiments and Evaluation

Dataset Pearson-Correlation F-Score MCC-Score

QA: KNN-Distance 0.17 0.34 0.14

QA: Output-Probability 0.20 0.36 0.18

QE: KNN-Distance 0.07 0.24 0.06

QE: Output Probability 0.11 0.26 0.10

Table 6.3.: Analyzing existing translations

For F-score and MCC-score the threshold with the highest value was chosen. All values

are rounded to the second decimal value.

0 200 400 600 800 1000 1200
Treshold with KNN-Distance

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Precision
Recall
f-score
MCC-score

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Treshold with Probability

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Va
lu

e

Precision
Recall
f-score
MCC-score

Figure 6.4.: Threshold analysis for premade translations

The QA dataset was used.

the QE dataset does only find a smaller correlation between the knn data-data and the

annotations, with the correlation being 0.07. The first dataset suggests that knn-methods

can be used to detect errors in other datasets, whereas the second one suggests that the

metrics are not refined enough. One possible explanation for this is the different severity

of errors found in the two datasets. Upon observation, it seems that the overall translation

quality of the sentences found in the second dataset is already quite high. The annotated

errors are therefore more of a style or tone mistake of the specific wording. These are

labeled as such, but the knn-data does not seem to be sophisticated enough to reliably

detect such errors. This shows the limitation of using knn-metrics to analyze translations

on a per token basis. Further descriptions of errors found in these datasets are found in

Appendix A.

Additionally, the usage of the output probability of the decoder still seems to yield

slightly better results than the knn-distance. The results when using the knn-distance

as a measure are slightly worse than analyzing translations created by the transformer

model itself, which suggests that this method loses some of its effectiveness when forced

to emulate different translations, but could also be because of the specific datasets used.

It should be noted, that in this case, both the usage of knn-distance as well as the output

probability yield mostly comparable results (using the QE-dataset), whereas analyzing

translations created by the model itself showed a stark contrast between these two metrics.

22

6.3. Measuring the impact of the decoder layer

500 0 500 1000 1500
KNN-Distance

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200
De

ns
ity

Severity
Correct
Incorrect

500 0 500 1000 1500
KNN-Distance

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

De
ns

ity

Severity
Correct
Incorrect

500 0 500 1000 1500
KNN-Distance

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

De
ns

ity

Severity
Correct
Incorrect

Figure 6.5.: Density distribution of the news test set

This shows the distribution when taking the average of the {1,4,8}-nearest neighbors

0 2 4 6 8
Retrived KNN-tokens that equal token chosen by model

0.0

0.2

0.4

0.6

0.8

Pe
rc

en
ta

ge
 o

f c
or

re
ct

 to
ke

ns

1 2 3 4 5 6 7 8
Different KNN-recommendations

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

Pe
rc

en
ta

ge
 o

f c
or

re
ct

 to
ke

ns

Label correct
total correct tokens

Figure 6.6.: Validity of premade tokens in relation to retrieved tokens

The QA dataset was used to provide the labels.

Figure 6.5 shows the density distribution of correct and incorrect tokens, in dependence

on how many next neighbors are used as a reference. It seems that the difference is slightly

more pronounced when looking at a higher number of neighbors, although the overlap of

the two distributions remains high.

Figure 6.6 shows that the number of different retrievals, and the number of retrievals

identical to the token chosen by the model, do show a relation to the validity of the token.

This suggests that the results of the self generated tokens are caused by an insufficient

sample size and that these two metrics could be part of a confidence measurement, though

they might not be very sufficient.

6.3. Measuring the impact of the decoder layer

The previous experiments all used the last layer of the transformer decoder (but not the

output layer) as the basis for the knn-datastore. Retrieved decoder states are usually those

that expect the same next token, even when the total sentence might have little relevance

apart from the expected token.

Therefore, it might be interesting to inspect how the chosen decoder layer impacts the

performance of the retrieved metrics. It could be possible that lower levels of the decoder

23

6. Experiments and Evaluation

Decoder Layer Pearson Correlation F-Score MCC-Score

0 <0.01 0.21 0.02

1 0.04 0.30 0.04

2 0.05 0.31 0.05

3 0.07 0.32 0.08

4 0.09 0.32 0.09

5 0.12 0.33 0.12

6 0.17 0.34 0.14

Table 6.4.: KNN-distance results for each decoder layer

The QA dataset was used. All numbers are rounded to the second decimal.

provide a better measure of similarity, as the encoding could be better suited to measure

the similarity of the whole sentence, instead of just retrieving encoding states which

mostly result in the same output token. For this purpose, a datastore for each decoder

layer was generated and analyzed.

6.3.1. Results

Table 6.4 shows the result of the analysis. It can be seen that the effectiveness steadily

rises with each layer. The Pearson Correlation additionally has a large jump at the last

layer, which is not as pronounced in the F-score and the MCC-score. Therefore, upper

decoder levels as basis for the datastore seem to be more suited than lower levels, when

evaluating a translation using knn-distance. This is similar to when using knn retrievals

for translations, where upper levels also yielded better results [18].

6.4. More fine-grained analysis of errors

6.4.1. Errors on different parts of speech

It might be plausible to assume that certain parts of speech are more directly influenced by

knn metrics than others. For example, some parts of speech like pronouns or prepositions

fulfill more grammatical roles in a sentence, whereas others are more dependant on specific

words, e.g. nouns. Part of Speech labeling was done by the spaCy library [32].

Figure 6.7 shows the average knn-distance listed by part of speech. It seems that the

knn-distance for most types of speech is between 400 and 500. The next step is to analyse

whether a change in knn-data has a more direct effect on certain parts of speech compared

to others.

One problem with this approach is, that it decreases the sample size, as only a reduced

number of tokens are available for each individual part of speech. Therefore it is harder to

make conclusive judgements about the validity of the data. For this reason the QA dataset

is used in this experiment: It provides a large amount of premade tokens, which as shown

previously can be analyzed using knn-data.

24

6.4. More fine-grained analysis of errors

0 100 200 300 400 500
KNN-Distance

DET (1681)
ADJ (2083)

NOUN (9022)
PROPN (5306)

VERB (3090)
PUNC (3365)

X (1085)
ADP (1736)
ADV (892)
NUM (68)

PRON (582)
CCONJ (700)
SCONJ (181)

AUX (213)
PART (100)
PUNCT (76)

Figure 6.7.: Average knn-distance categorized by part of speech

Part of Speech Pearson Correlation MCC

all parts of speech 0.17 0.14

DET 0.09 0.10

ADJ 0.11 0.10

NOUN 0.14 0.13

PROPN 0.17 0.16

VERB 0.09 0.10

PUNC 0.17 0.16

X 0.29 0.30

ADP 0.12 0.11

ADV 0.21 0.18

PRON 0.19 0.17

CONJ 0.13 0.15

Table 6.5.: Analysing tokens by part of speech

The QA dataset was used and only parts of speech with at least 500 tokens were

considered.

Table 6.5 shows the results of this analysis. As can be seen, the correlation of the

knn-distance to the correctness varies by part of speech.

6.4.2. Error Severity

The QE dataset has annotations separated by error severity: No Error, mild, severe. Given

that a higher knn-distance corresponds to a higher likelihood of a token being incorrect,

it seems likely that this effect is more pronounced between different categories of error

severities. This means, that a severe error would be more likely to have a high knn-distance

than a mild error, which in turn is more likely to have a higher distance than a token

without any errors.

However, the used dataset previously already demonstrated a low sensitivity for on

knn-distance. Therefore, it is unlikely to receive meaningful data in this experiment.

25

6. Experiments and Evaluation

500 0 500 1000 1500
KNN-Distance

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175
De

ns
ity

Severity
Correct
Major
Minor
Neutral

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25
Cos-similarity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

Severity
Correct
Major
Minor
Neutral

Figure 6.8.: KNN-stats with different error severity

The premade labels from the QE dataset were used.

Test set Mean Median Max 10 Max 5 Max 1 Min 10 Min 5 Min 1

Ted 1 (has target) 0.58 0.52 0.58 0.58 0.53 0.07 0.06 0.01

Ted 2 0.57 0.50 0.56 0.57 0.52 0.07 0.06 0.01

Ted (reduced) 0.45 0.36 0.42 0.44 0.45 0.09 0.05 0.02

News (reduced) 0.45 0.38 0.53 0.50 0.41 0.03 0.14 0.28

QA 0.22 0.20 0.16 0.16 0.15 0.15 0.09 0.05

Table 6.6.: Correlation of the Comet-score with knn-distance

The first four test sets were translations generated by the model, whereas the fifth dataset

used forced decoding. Ted 1 also uses a target translation for evaluating the translation

quality, whereas Ted 2 and the other test sets only use the source sentence and the

translation hypothesis for generating a score. The reduced test sets are the sentences, that

were labeled by hand in the previous chapter.

6.4.2.1. Results

Figure 6.8 shows the result of this experiment. Sadly, no relevant differences can be seen in

the distribution of the different error severities. This is not surprising, given that any errors

in general were almost unable to be detected in this dataset, where the Pearson-Correlation

between the knn-distance and the correctness of a token remained only 0.07 (table 6.3).

Therefore, this method is not suitable to analyze the error severity, at least in this dataset.

6.5. Experiments for sequences

Next, we analyzed complete sentences by comparing knn-distance to the comet score.

Figure 6.6 lists the results of this experiment. In general, a comparably high correlation

is found between the knn-distance and the comet score, at least compared to experiments

on single tokens. The best score was delivered by methods 1 and 3. Both of these methods

are susceptible to outliers of certain tokens: The arithmetic mean can be greatly influenced

by a lower number of high values, and the other metric specifically only samples the

highest values found in the sentence.

26

6.6. Verifying the impact of the datastore

Datastore Capacity Pearson Correlation F-Score- MCC-Score

100% 0.210 0.273 0.185

80% 0.197 0.270 0.168

60% 0.198 0.279 0.179

40% 0.195 0.279 0.184

20% 0.195 0.265 0.163

10% 0.181 0.266 0.168

5% 0.171 0.262 0.171

2% 0.138 0.248 0.142

1% 0.148 0.260 0.163

Table 6.7.: Using reduced datastores for analysis

The TED dataset was used for this analysis. For all values, knn-distance was used as the

metric.

Higher knn-distance corresponds to a lack of similar states generated by the training

data. The previous experiments have shown, that this in turn leads to a higher likelihood

of erroneous tokens. Thus, the two methods which are most influenced by the higher

distance yield the best results. The median, which is resistant to outliers, is therefore a

worse metric than the average when trying to find a correlation to the comet score.

Conversely, only looking at the lowest distances yields worse results, even compared to

the median knn distance. This can be explained the following way: Incorrect translations

also include many correct tokens, which will then be taken as the sole criteria for this

metric. On the other hand, correct translations obviously do not include incorrect tokens,

which is why using the maximum distance is a better method.

Additionally, the correlation was quite low with the QA dataset. As it was the only

dataset analyzed, where the translation was forced and not decided by the model itself,

this might suggest that this method is more useful at evaluating translations generated by

itself. Overall, the comparably high correlation achieved using such a simple methology

seems promising.

6.6. Verifying the impact of the datastore

In this section, the impact of the datastore on the accuracy of the analysis is measured.

For this purpose, we exchanged the standard datastore, which contains the whole training

data of the translation model, for either a reduced datastore or a datastore with completely

different data.

6.6.1. Reduced datastore

When using knn-datastores for translation, the whole training data is not required, given

sufficient training data [18]. However, this is a different use case, and does not necessarily

hold true for token analysis. For this, the single-token-validity experiment was repeated

on different reduced variants of the datastore.

27

6. Experiments and Evaluation

Dataset used in the Datastore Pearson Correlation F-Score MCC-Score

Training dataset, TED talk 0.21 0.273 0.185

Different dataset, Europarl dataset 0.15 0.24 0.14

TED/Training, News 0.21 0.37 0.20

Europarl, News 0.19 0.36 0.20

Table 6.8.: Using a different corpus as a datastore

Table 6.7 shows the result of the experiment. In total, the effect of reducing the datastore

was smaller than expected. The Pearson correlation remains largely unchanged between

80% and 20% of the total datastore capacity, with changes only coming into effect at <=10%

capacity. This suggests, that only a smaller part of the training data is sufficient for the

analysis.

6.6.2. Different datastore

Another way to detect whether similarity between the training data and the currently

translated sentence is actually used is to exchange the content of the datastore. As

previously mentioned, the knn-datastore can be filled with unrelated translation data,

which was not used in the training process, and still works as intended. Therefore, this

method might only measure the similarity of a translation to decoder states of correct

translations. While such measurements might still be used to judge the quality of a

translation, it would be a weaker metric. Ideally, a stronger correlation can be found when

using the training data of the model, while a smaller, but still identifiable correlation is

found when using other valid translations as a data source.

The dataset of the European Parliament [20] served as substitute data for the datastore.

Around the same amount of sentences (170000), as found in the original datastore, was

used to build the datastore.

Figure 6.8 shows the results of this experiment. It can be seen, that the Pearson corre-

lation drops from 0.21 to 0.15 in the in-domain TED test dataset. When using the news

test set, the reduction is even smaller. This represents a lower reduction in correlation

than expected, and suggests that while similarity to the training data can be a factor that

increases the usefulness of the method, the effectiveness mostly stems from the similarity

to existing, correct sentences.

28

7. Conclusion

The introduced metrics can be used to a certain extent to analyze errors. This is however

heavily dependent on the type of error, and it seems to struggle with high level errors, e.g.

the used register, or tone of voice.

Approaches for single tokens, or whole sentences are possible. Single tokens had a

comparably low correlation with knn data. This might be, because the task of binary

classification is harder, and the presented metrics do not provide enough information to

handle this task with a high effectiveness.

Additionally, the knn-distance had a higher correlation to the correctness of a single

token, while also needing fewer nearest neighbor look-ups. The other two metrics which

counted identical retrieved tokens only showed positive results when using a larger dataset,

indicating a lower correlation.

Evaluating whole sequences yielded more promising results. Given a comparably high

correlation of knn-distance to existing scoring methods, further work can be done to

incorporate this data into quality evaluation systems. For instance, a sequence model

could be trained to estimate the quality of a translation based on the sentence as well as

its knn-distance per token.

However, the displayed metrics were not influenced that much by the specific datastores.

Changing the content or the size of the datastore had only a small influence on the results.

Therefore, the used implementation seems to mostly measure how similar a translation is

to correct translations, whereas the similarity to the actual training data has a comparably

small effect.

The advantage in this is that reduced datasets can be used to analyze a translation, which

is especially important for very large training data. Additionally, the training data might

not always be available, so using different data as a substitute seems to be an alternative.

29

Bibliography

[1] url: https://data.statmt.org/news-crawl/en/.

[2] Dzmitry Bahdanau, KyunghyunCho, and Yoshua Bengio.NeuralMachine Translation
by Jointly Learning to Align and Translate. 2016. arXiv: 1409.0473 [cs.CL].

[3] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.14165
[cs.CL].

[4] Mauro Cettolo et al. “Report on the 11th IWSLT evaluation campaign”. In: Proceed-
ings of the 11th International Workshop on Spoken Language Translation: Evaluation
Campaign. Lake Tahoe, California, Dec. 2014, pp. 2–17. url: https://aclanthology.
org/2014.iwslt-evaluation.1.

[5] Kyunghyun Cho et al. Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. 2014. arXiv: 1406.1078 [cs.CL].

[6] Giuseppe Jurman Davide Chicco. “The advantages of the Matthews correlation

coefficient (MCC) over F1 score and accuracy in binary classification evaluation”.

In: BMC Genomics. 2020.

[7] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-

guage Understanding”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for

Computational Linguistics, June 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423.

url: https://aclanthology.org/N19-1423.

[8] Terrance DeVries and GrahamW. Taylor. Learning Confidence for Out-of-Distribution
Detection in Neural Networks. 2018. arXiv: 1802.04865 [stat.ML].

[9] Marina Fomicheva et al. “MLQE-PE: A Multilingual Quality Estimation and Post-

Editing Dataset”. In: arXiv preprint arXiv:2010.04480 (2020).

[10] Marina Fomicheva et al. “Unsupervised Quality Estimation for Neural Machine

Translation”. In: Transactions of the Association for Computational Linguistics 8
(2020), pp. 539–555.

[11] Markus Freitag et al. “Results of WMT22 Metrics Shared Task: Stop Using BLEU

– Neural Metrics Are Better and More Robust”. In: Proceedings of the Seventh Con-
ference on Machine Translation (WMT). Abu Dhabi, United Arab Emirates (Hy-

brid): Association for Computational Linguistics, Dec. 2022, pp. 46–68. url: https:

//aclanthology.org/2022.wmt-1.2.

[12] Philip Gage. A New Algorithm for Data Compression. 1994. url: http : / / www .
pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM.

31

https://data.statmt.org/news-crawl/en/
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2014.iwslt-evaluation.1
https://aclanthology.org/2014.iwslt-evaluation.1
https://arxiv.org/abs/1406.1078
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/1802.04865
https://aclanthology.org/2022.wmt-1.2
https://aclanthology.org/2022.wmt-1.2
http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM
http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM

Bibliography

[13] Chuan Guo et al. On Calibration of Modern Neural Networks. 2017. arXiv: 1706.04599
[cs.LG].

[14] Dan Hendrycks and Kevin Gimpel. “A Baseline for Detecting Misclassified and

Out-of-Distribution Examples in Neural Networks”. In: CoRR abs/1610.02136 (2016).

arXiv: 1610.02136. url: http://arxiv.org/abs/1610.02136.

[15] Geoffrey E. Hinton et al. Improving neural networks by preventing co-adaptation of
feature detectors. 2012. arXiv: 1207.0580 [cs.NE].

[16] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with
GPUs. 2017. arXiv: 1702.08734 [cs.CV].

[17] Urvashi Khandelwal et al. Generalization through Memorization: Nearest Neighbor
Language Models. 2020. arXiv: 1911.00172 [cs.CL].

[18] Urvashi Khandelwal et al. Nearest Neighbor Machine Translation. 2021. arXiv: 2010.
00710 [cs.CL].

[19] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980 [cs.LG].

[20] Philipp Koehn. “Europarl: A Parallel Corpus for Statistical Machine Translation”. In:

Proceedings of Machine Translation Summit X: Papers. Phuket, Thailand, Sept. 2005,
pp. 79–86. url: https://aclanthology.org/2005.mtsummit-papers.11.

[21] Taku Kudo and John Richardson. SentencePiece: A simple and language independent
subword tokenizer and detokenizer for Neural Text Processing. 2018. arXiv: 1808.06226
[cs.CL].

[22] Tsz Kin Lam, Eva Hasler, and Felix Hieber. Analyzing the Use of Influence Functions
for Instance-Specific Data Filtering in Neural Machine Translation. 2022. arXiv: 2210.
13281 [cs.CL].

[23] Peter Lang. “A Classification of Errors in Translation and Revision”. In: (2008).

[24] Yu Lu et al. Learning Confidence for Transformer-based Neural Machine Translation.
2022. arXiv: 2203.11413 [cs.CL].

[25] Nitika Mathur, Timothy Baldwin, and Trevor Cohn. “Putting Evaluation in Context:

Contextual Embeddings Improve Machine Translation Evaluation”. In: Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics. Florence,
Italy: Association for Computational Linguistics, July 2019, pp. 2799–2808. doi:

10.18653/v1/P19-1269. url: https://aclanthology.org/P19-1269.

[26] Jan Niehues and Ngoc-Quan Pham. “Modeling Confidence in Sequence-to-Sequence

Models”. In: Proceedings of the 12th International Conference on Natural Language
Generation. Tokyo, Japan: Association for Computational Linguistics, Oct. 2019,

pp. 575–583. doi: 10.18653/v1/W19-8671. url: https://aclanthology.org/W19-

8671.

32

https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/1610.02136
http://arxiv.org/abs/1610.02136
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/1911.00172
https://arxiv.org/abs/2010.00710
https://arxiv.org/abs/2010.00710
https://arxiv.org/abs/1412.6980
https://aclanthology.org/2005.mtsummit-papers.11
https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/1808.06226
https://arxiv.org/abs/2210.13281
https://arxiv.org/abs/2210.13281
https://arxiv.org/abs/2203.11413
https://doi.org/10.18653/v1/P19-1269
https://aclanthology.org/P19-1269
https://doi.org/10.18653/v1/W19-8671
https://aclanthology.org/W19-8671
https://aclanthology.org/W19-8671

[27] Myle Ott et al. “fairseq: A Fast, Extensible Toolkit for Sequence Modeling”. In:

Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics (Demonstrations). Minneapolis, Minnesota: Association

for Computational Linguistics, June 2019, pp. 48–53. doi: 10.18653/v1/N19-4009.

url: https://aclanthology.org/N19-4009.

[28] Kishore Papineni et al. “Bleu: a Method for Automatic Evaluation of Machine Trans-

lation”. In: Proceedings of the 40th Annual Meeting of the Association for Computa-
tional Linguistics. Philadelphia, Pennsylvania, USA: Association for Computational

Linguistics, July 2002, pp. 311–318. doi: 10.3115/1073083.1073135. url: https:

//aclanthology.org/P02-1040.

[29] Maja Popović. “chrF: character n-gram F-score for automatic MT evaluation”. In:

Proceedings of the TenthWorkshop on Statistical Machine Translation. Lisbon, Portugal:
Association for Computational Linguistics, Sept. 2015, pp. 392–395. doi: 10.18653/

v1/W15-3049. url: https://aclanthology.org/W15-3049.

[30] Ricardo Rei et al. “COMET: A Neural Framework for MT Evaluation”. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
Online: Association for Computational Linguistics, Nov. 2020, pp. 2685–2702. doi:

10.18653/v1/2020.emnlp- main.213. url: https://aclanthology.org/2020.

emnlp-main.213.

[31] Nils Reimers and Iryna Gurevych. “Making Monolingual Sentence Embeddings

Multilingual using Knowledge Distillation”. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing. Association for Computational

Linguistics, Nov. 2020. url: https://arxiv.org/abs/2004.09813.

[32] spaCy: Industrial-strength NLP. url: https://spacy.io/.

[33] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with
Neural Networks. 2014. arXiv: 1409.3215 [cs.CL].

[34] Irina Temnikova. “Cognitive Evaluation Approach for a Controlled Language Post-

Editing Experiment”. In: Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10). Valletta, Malta: European Language

Resources Association (ELRA), May 2010. url: http : / / www . lrec - conf . org /

proceedings/lrec2010/pdf/437_Paper.pdf.

[35] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL].

[36] Shuo Wang et al. “On the Inference Calibration of Neural Machine Translation”.

In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, July 2020, pp. 3070–

3079. doi: 10.18653/v1/2020.acl-main.278. url: https://aclanthology.org/

2020.acl-main.278.

[37] WMT QE Shared Task 2023. 2023. url: https://wmt-qe-task.github.io/.

[38] Wenhao Zhu et al. kNN-BOX: A Unified Framework for Nearest Neighbor Generation.
2023. arXiv: 2302.13574 [cs.CL].

33

https://doi.org/10.18653/v1/N19-4009
https://aclanthology.org/N19-4009
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://aclanthology.org/W15-3049
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://aclanthology.org/2020.emnlp-main.213
https://aclanthology.org/2020.emnlp-main.213
https://arxiv.org/abs/2004.09813
https://spacy.io/
https://arxiv.org/abs/1409.3215
http://www.lrec-conf.org/proceedings/lrec2010/pdf/437_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2010/pdf/437_Paper.pdf
https://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2020.acl-main.278
https://aclanthology.org/2020.acl-main.278
https://aclanthology.org/2020.acl-main.278
https://wmt-qe-task.github.io/
https://arxiv.org/abs/2302.13574

A. Appendix

A.1. Pre-Labelled dataset comparison

In chapter 6 different prelabeled sentences from two different dataset were analyzed.

However, the found correlation differed strongly between the two datasets. By inspecting

the actual translation errors found in the datasets, we try to provide some context for this

phenomenon. First, we take a look at 5 sentences of the QA dataset:

• At Milepost 20, the uphill grade remained at a constant 2.0% ever since before

Milepost 4.

Bei Milepost 20 blieb die Steigung seit Milepost 4 konstant bei 2,0

• Population densities of eastern grey kangaroos usually peak near 100 per km2 in

suitable habitats of open woodlands.

Die Bevölkerungsdichte östlicher grauer Kängurus erreicht in geeigneten Leben-

sräumen offener Wälder in der Regel fast 100 pro km 2.

• Vermeil previously led the St. Louis Rams to a victory in Super Bowl XXXIV.

Vermeil zuvor führte die St. Louis Rams zu einem Sieg in Super Bowl XXXIV.

• Fort Brown inflicted additional casualties as the withdrawing troops passed by the

fort.

Fort Brown verursachte zusätzliche Opfer, als die zurückziehenden Truppen an

der Festung vorbeizogen.

• Housing is guaranteed for freshmen and sophomores, but not for juniors and seniors.

DasGehäuse ist fürNeulinge und Sophomoren garantiert, nicht aber für Junioren

und Senioren.

Next are some examples of the QE dataset. Errors are once again highlighted, and the

specific error type is inserted in brackets after the error.

• we have contacted the family to discuss the situation with them

und wir haben uns mit der Familie in Verbindung gesetzt, um die Situation gemein-
sam zu besprechen (style/awkward, minor)

• Lay said the letters all have a message at the bottom urging people to go paperless.

"" I’m thinking they had to take down half of a forest just to send this,"" she said.

35

A. Appendix

"Lay sagte, die Briefe hätten alle eine Botschaft am unteren Ende, in der dieMenschen

aufgefordert werden, papierlos zu werden (Style/Awkward, minor). ""Ich denke,

sie mussten einen halben Wald abnehmen (Accuracy/Mistranslation, major), nur

um das zu senden"" (Fluency/Punctuation, minor)

• European nations were so eager to negotiate with Iran that they suggested the US ...

Europäische Länder strebten derart nach Verhandlungen mit dem Iran, dass sie
vorschlugen, dass (Style/Awkward, minor) die USA ...

• ""Three out of the six countries, that is the chancellor of Germany, prime minister

of Britain, and president of France, all insisted for the meeting to be held, saying

that the US would lift all sanctions,"" stated the Iranian president.

"""(Fluency/Punctuation, minor) Drei der sechs Länder, also der Kanzler (Accu-
racy/Mistranslation, minor) Von (Fluency/Spelling, minor) Deutschland, Premier-

minister von Großbritannien und Präsident Frankreichs, haben alle darauf bestanden,

dass das Treffen stattfinden sollte, und erklärten, dass die USA alle Sanktionen

aufheben würden"", erklärte (Style/Awkward) der iranische Präsident."

• Trump quickly denied that he had offered Iran any relief, tweeting that Tehran had

asked him to lift sanctions as a prerequisite to talks, but that he had ""of course""

refused.

Trump verneinte schnell, dass er dem Iran jegliche Entlastungen angeboten habe,

und schrieb auf Twitter, dass der (Fluency/Grammar, minor) Teheran ihn als Vo-

raussetzung für Gespräche darum gebeten hätte, die Sanktionen aufzuheben, er dies

aber „natürlich“ abgelehnt habe.

In this dataset, a lot of errors in the second dataset are labeled as “Style/Awkward”.

In General, style errors should be harder to detect than simple word mistranslations.

Additionally the model seems to make a lot of punctuation errors, where it fails to use

punctuation according to German conventions. Aside from these points, some translations

marked as wrong lack an obvious error. For example, translating “chancellor” to “Kanzler”

cannot be called a translation error.

36

	Abstract
	Zusammenfassung
	Introduction
	Background
	Sequence Generation with Neural Networks
	Transformer Models for Machine Translation

	Translation Evaluation
	Nearest Neighbor Datastores and Usage

	Related Work
	Method
	Nearest Neighbor token store
	Evaluation metrics using the KNN-store
	Obtaining the nearest neighbor metrics

	Analyzing single tokens
	Analyzing token sequences

	Understanding knn metrics
	Retrieved sentence examples
	KNN-metric behaviour

	Experiments and Evaluation
	Setup
	Model structure
	Model training and data
	Test sets

	Single Token Experiments
	Remarks about the used scores
	Analyzing self generated translations
	Analyzing premade translations from other sources

	Measuring the impact of the decoder layer
	Results

	More fine-grained analysis of errors
	Errors on different parts of speech
	Error Severity

	Experiments for sequences
	Verifying the impact of the datastore
	Reduced datastore
	Different datastore

	Conclusion
	Bibliography
	Appendix
	Pre-Labelled dataset comparison

