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Abstract

With the number of scientific papers published every year growing and current large
language models (LLMs) showing state-of-the-art performance on natural language pro-
cessing (NLP) tasks, we ask the question if LLMs could be utilized to answer questions on
scientific papers to accelerate the work of scientists and improve science communication.
To investigate this question, we experiment with efficient, open-source LLMs that are based
on the popular LLaMA 2 model. As scientific papers are often thousands of words long, we
select special versions whose ability to process long context was enhanced. To evaluate
and improve these models, we use the Qasper dataset which contains 5,049 questions on
1,585 NLP papers. It also provides answers written by annotators. We analyze how well
the LLMs handle longer papers and questions that can only be answered by accessing
information from far out paragraphs. During our experiments, we see that the performance
of these LLMs drops with growing length and position of relevant information. Using
recent compute- and memory-efficient training techniques, we are able to fine-tune the
considered models on long contexts such as papers. We design different prompts for the
LLMs to solve the question answering task: From simple prompts to chain-of-thought
prompts that first extract the relevant paragraphs from the paper and then answer the
question. We also try splitting the paper into shorter, easier to process parts and modifying
the attention algorithm to ignore less important parts of the context. While we still observe
a performance loss with increased context length, our measures reduce the effects of this
flaw, and we can achieve an 𝐹1 score of 52.73 after fine-tuning with our best approach
compared to a score of 31.07 of the unmodified model. This best score on a subset of the
Qasper test set used in the long-context benchmark ZeroSCROLLS is 2.03 𝐹1 points better
than GPT-4 and only 4.17 points worse than the best model.
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Zusammenfassung

Da jedes Jahr die Anzahl veröffentlichter wissenschaftlicher Artikel steigt und große
Sprachmodelle (LLMs) den aktuellen Stand der Forschung in der Verarbeitung natürlicher
Sprache (NLP) darstellen, stellen wir die Frage, ob man eben jene LLMs nutzen könnte,
um die Arbeit von Forschenden in der Wissenschaft zu beschleunigen und die Wissen-
schaftskommunikation zu verbessern. Um dieser Frage nachzugehen, experimentieren wir
mit effizienten, öffentlich zugänglichen LLMs, die auf dem populären Modell LLaMA 2
basieren. Weil wissenschaftliche Artikel oft mehrere tausend Wörter lang sind, wählen wir
Versionen deren Fähigkeit zur Verarbeitung von langem Kontext verbessert wurde. Um
diese Modelle zu evaluieren und zu verbessern, nutzen wir den Qasper-Datensatz, der 5 049
Fragen zu 1 585 NLP-Artikeln enthält. Außerdem enthält es Antworten von Annotatoren.
Wir analysieren, wie gut die LLMs lange Artikel und Fragen handhaben, die nur beantwor-
tet werden können, indem auf weit entfernte Absätze zugegriffen wird, sehen wir, dass die
Leistung der LLMs mit wachsender Länge und Position der relevanten Information abfällt.
Durch das Verwenden von rechenleistungs- und speichereffizienten Techniken sind wir
in der Lage die betrachteten Modelle auf langem Kontext wie Artikeln feinzujustieren.
Wir entwickeln verschiedene Anweisungen für die LLMs, um die Aufgabe des Fragebe-
antwortens zu lösen: Von einfach Anweisungen bis zu Gedankengang-Anweisungen, die
zuerst die relevanten Absätze extrahieren und dann die Frage beantworten. Wir versuchen
außerdem, die Artikel in kürzere, einfacher zu verarbeitende Abschnitte aufzuteilen und
den Attention-Algorithmus zu modifizieren, damit er weniger wichtige Teile des Kontexts
ignoriert. Während wir immer noch eine Abnahme der Leistung mit längerem Kontext
beobachten, reduzieren unsere Maßnahmen die Auswirkungen dieser Schwäche und wir
können ein 𝐹1-Maß von 52.73 nach Feinjustierung mit unserem besten Ansatz im Vergleich
zu einemWert von 31.07 des unveränderten Modells erreichen. Dieser beste Wert auf einer
Teilmenge des Qasper-Testteils, der im Vergleichstest ZeroSCROLLS für langen Kontext
benutzt wird, ist 2.03 𝐹1-Punkte besser als GPT-4 und nur 4.17 Punkte schlechter als das
beste Modell.

iii





Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Problem Statements & Research Questions . . . . . . . . . . . . . . . . . 1
1.2. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Background and Related Work 3
2.1. Sequence Representation in NLP . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1. Language Modeling Task . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2. Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3. Pre-trained Models . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1. Impact of Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2. Instruction Tuning and RLHF . . . . . . . . . . . . . . . . . . . . 8
2.2.3. Representative LLMs . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4. Efficient Implementations for LLMs . . . . . . . . . . . . . . . . . 10

2.3. Question Answering Task . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1. Challenges and Approaches . . . . . . . . . . . . . . . . . . . . . 13
2.3.2. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. Approach 17
3.1. Task-agnostic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. Task-specific Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4. Experiments and Results 21
4.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2. Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.3. Hard- and Software . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.4. Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.5. Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2. Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1. Analysis by Context Length / Position . . . . . . . . . . . . . . . 24

4.3. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.1. Zero-shot Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2. QLoRA Fine-tuned . . . . . . . . . . . . . . . . . . . . . . . . . . 27

v



Contents

4.3.3. Evidence only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.4. Two-step Prompts . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.5. Split Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.6. Modify Attention Algorithm . . . . . . . . . . . . . . . . . . . . . 36
4.3.7. Final Comparison against Baselines . . . . . . . . . . . . . . . . . 36

5. Conclusion 39
5.1. Answers to Research Questions . . . . . . . . . . . . . . . . . . . . . . . 39
5.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 41

A. Appendix 51
A.1. Prompts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1.1. ZeroSCROLLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.1.2. LongBench (our version) . . . . . . . . . . . . . . . . . . . . . . . 51
A.1.3. Evidence only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.1.4. Two-turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.1.5. Two-turn, Advanced (Prefix for Evidence, Question Repeated) . . 52
A.1.6. Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.2. Answers from Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2.1. LongChat, Unanswerable . . . . . . . . . . . . . . . . . . . . . . 53

A.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.3.1. Two-step Prompt, r = 16 . . . . . . . . . . . . . . . . . . . . . . . 54

vi



List of Figures

2.1. Original Transformer architecture . . . . . . . . . . . . . . . . . . . . . . 4
2.2. (Q)LoRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. FlashAttention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4. Positional Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

vii





List of Tables

4.1. Qasper dataset statistics, question / evidence types . . . . . . . . . . . . . 21
4.2. Qasper dataset statistics, length / evidence position . . . . . . . . . . . . 22
4.3. All models, LongBench prompt, zero-shot . . . . . . . . . . . . . . . . . . 26
4.4. All models, LongBench prompt, zero-shot, analysis . . . . . . . . . . . . 26
4.5. LongChat-32k, LongBench prompt, QLoRA fine-tuned . . . . . . . . . . 27
4.6. Vicuna-16k, LongBench prompt, QLoRA fine-tuned . . . . . . . . . . . . 27
4.7. Vicuna-4k, LongBench prompt, QLoRA fine-tuned . . . . . . . . . . . . . 28
4.8. All models, LongBench prompt, QLoRA fine-tuned, analysis . . . . . . . 28
4.9. All models, evidence only, zero-shot . . . . . . . . . . . . . . . . . . . . . 29
4.10. All models, evidence only, zero-shot, analysis . . . . . . . . . . . . . . . . 30
4.11. LongChat-32k, evidence only, QLoRA fine-tuned . . . . . . . . . . . . . . 30
4.12. Comparison: LongChat-32k QLoRA fine-tuned on evidence only and full

paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.13. Comparison: LongChat-32k QLoRA fine-tuned on evidence only and full

paper, analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.14. LongChat-32k, two-step prompt . . . . . . . . . . . . . . . . . . . . . . . 32
4.15. LongChat-32k, two-step prompts, analysis . . . . . . . . . . . . . . . . . 33
4.16. LongChat-32k, two-step prompt, vary temperature . . . . . . . . . . . . 34
4.17. LongChat-32k, advanced two-step prompt . . . . . . . . . . . . . . . . . 34
4.18. Comparison of evidence extraction on <4k tokens . . . . . . . . . . . . . 35
4.19. Comparison of split prompts to each other and other prompts . . . . . . 35
4.20. Vicuna-4k and LongChat-32k, modified attention, analysis . . . . . . . . 36
4.21. Comparison: Our approaches against baselines from Qasper paper, dev

and test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.22. Comparison: Our approaches against baselines from Qasper paper, dev

and test set, evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.23. Comparison of our approaches against baselines from ZeroSCROLLS

benchmark, ZeroSCROLLS subset . . . . . . . . . . . . . . . . . . . . . . 38

A.1. Two-step prompt, r = 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

ix





1. Introduction

The number of scientific papers published every year is growing exponentially [26]. This
creates a problem for scientists but also the general public to keep upwith the developments
in science. A natural language processing (NLP) system that can reliably answer questions
on scientific papers could help in this situation. Scientists would benefit from such a system
as it could provide a quick way to find out if a new paper is relevant to the scientist’s work.
This could lead to higher productivity as scientists could have a better overview about
the current research landscape. Otherwise, they would have to read every paper at least
partially which is impractical in terms of time. The alternative is to potentially miss some
related research. Also, science communication could be improved as these systems could
be made accessible to the general public. If people have a better grasp about the current
state in science this could lead to better political decision making in democracies.

Question answering (QA) systems often rely on task-specific machine learning models
that can only be used for this purpose. This also applies to rule-based systems, classical
machine learning models but also to modern deep learning models. Large Language
Models (LLMs) are a newer type of deep learning model trained to be general-purpose
models for NLP. Current LLMs are often used in an intuitive, conversational manner as
chatbots. There are commercial ones (e.g., OpenAI’s ChatGPT, Google’s Bard / Gemini)
and open-source frameworks (e.g., FastChat with LLMs like LLaMA). They show state-of-
the-art (SOTA) NLP performance and even display some reasoning capabilities and would
be one contender for the core of a QA system focused on scientific papers. They offer the
ability to answer follow-up questions and have an intuitive interface for most users. If the
used LLM is reversibly modified for this task, it could still be used in its general-purpose
setting.

1.1. Problem Statements & Research Questions

In this thesis we want to find out if we can develop a QA system for scientific papers based
on a small open-source LLM using state-of-the-art techniques to improve performance
further. The main challenges are the context length, the consequential memory require-
ments for inference and (possibly) training, and the weaker performance of open-source
LLMs compared to commercial ones.

The text part of scientific papers is typically about 3,000 to 10,000 words long [10]. This
translates to around 4,000 to 13,333 tokens assuming that one word amounts to around
1.3 tokens [51]. Earlier commercial LLMs like GPT-3 [12] or PaLM [16] have a context
window of 2048 (2k) tokens. The context window describes the maximum number of
tokens a model can effectively process. The base versions of newer commercial models
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1. Introduction

like GPT-3.5 and GPT-4 have context windows of 4,096 [48] and 8,192 [48] tokens while
open-source LLMs like LLaMA 2 [70] offer a 4,096 long context window.

Research Question 1: How well do LLMs process scientific papers – especially consid-
ering their length?
As Transformer models which serve as the basis for all previously mentioned LLMs

have a quadratic time and space complexity regarding the input length, inference and
especially training poses a great challenge. Additionally, the computing resources for
university students is limited, therefore this thesis has to rely on a single datacenter GPU
at once for most of the experiments. Also, as a question answering system for papers
should be available to any interested person, we will focus on small open-source models
as they are easier to run. Ideally, after applying methods like prompting and fine-tuning
our system should be able to perform at least similar to commercial state-of-the-art LLMs
on the task we focus on.
Research Question 2: How much does fine-tuning a small LLM on only a single

datacenter GPU increase performance on one specific task compared to bigger and better
LLMs?
A question answering system is only useful if the answers are reliably correct in an

acceptable number. Therefore, it is important to find out if fine-tuning an LLM to better
answer the questions leads only to fitting better to the answer format or if the answers
themselves get factually better. Can techniques like prompting lead to better results? How
does the system compare to human performance?

Research Question 3: Howmuch can prompting / fine-tuning improve the truthfulness
of the answers of the LLM? How high is the human performance?

1.2. Thesis Outline

The rest of this thesis is structured as follows: After this introduction, chapter 2 will cover
all concepts and techniques used including the machine learning models and the NLP
task. The following chapter 3 focuses on the approaches this thesis proposes to solve
the problems and research questions mentioned in the earlier section. After that, we
will discuss in chapter 4 our experimental setup and the results. The final chapter 5 will
conclude our findings.

2



2. Background and Related Work

In this chapter, we will introduce all concepts presented in this thesis. The first part will
focus on how sequences are represented in natural language processing (NLP, section 2.1).
This involves modeling language in general (subsection 2.1.1) and how modern deep
learningmodel work on a basic level (subsection 2.1.2). Wewill also discuss how they can be
pre-trained on unlabeled data (subsection 2.1.3). The second part will cover Large Language
Models (LLMs) (section 2.2), how they reached their current sizes (subsection 2.2.1) , and
how they are improved further from pre-training (subsection 2.2.2). After that we will
describe the specific models used in this thesis (subsection 2.2.3) while also mentioning
the techniques employed to allow efficient training (subsection 2.2.4). The final section
will explain the underlying question answering (QA) task (section 2.3), the challenges in
QA and methods to address these in LLMs (subsection 2.3.1), and the datasets we looked
at for this thesis for evaluation and training (subsection 2.3.2).

2.1. Sequence Representation in NLP

Scientific papers consist mostly of text in natural language, they have to be presented in
some kind of form to be usable for NLP systems. Sequences of words like sentences or
whole bodies of text are often represented as strings of so-called tokens which are the
result of the tokenization process which splits the text into machine-readable pieces [47].
This process can produce tokens with different levels of granularity: One extreme is that
tokens are characters or bytes leading to long sequences which may cause problems for
some machine learning models and also captures almost no semantic meaning. One the
other end of the spectrum, it is also possible to use full words as tokens which results in
a large vocabulary (meaning individual tokens use more information / space) or many
unknown tokens when the same tokenizer is used on unseen data. A compromise are
subwords [40, 63] as tokens.

2.1.1. Language Modeling Task

The language modeling task is to “learn the joint probability function of sequences of
words in a language” [9]. This function can be described by the following equation with𝑤
standing for a sequence of words with the length 𝑛 (Equation 2.1).

𝑝 (𝑤) =
𝑛∏
𝑖=1

𝑝 (𝑤𝑛 | 𝑤1, . . . ,𝑤𝑛−1) (2.1)

The number of possible combinations for a sequence of words grows exponentially with
the vocabulary size (typically tens of thousands) as the basis and the context length as the
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2. Background and Related Work

exponent. Not all possible or even all similar sentences will be seen during training. In
statistical machine learning, n-gram models generate tables with the conditional proba-
bilities for the next word for a large number of context sequences. With artificial neural
networks being universal function approximators [18, 31], they can be trained as language
models [9].

2.1.2. Transformers

The Transformer [72] is a type of artificial neural network that utilizes only the attention
mechanism (apart from multi-layer perceptron layers) in contrast to previous sequence
transduction models which (also) relied on recurrence [5, 66] or convolution [27, 36, 57].
Like in its initial publication where the application was machine translation, Transformer
models are primarily used in NLP [23, 58, 72] but also appear in computer vision [24].

Figure 2.1.: Left: The original Transformer architecture [72].
Top right: Structure of Multi-head attention [72].
Bottom right: Structure of Scaled Dot-Product Attention [72].

The original Transformer architecture is split into an encoder and a decoder (Figure 2.1)
like preceding deep neural network models [5, 66]. The encoder gets the entire input
sequence at once as input while the decoder receives the already generated output se-
quence as input. Initiated with a start token the decoder generates the output sequence
autoregressivly (one token per step) resembling the language modeling task. Both encoder
and decoder pre-process their inputs equally: They convert the sequence of tokens (repre-
sented as numbers) to vectors via learned embeddings to which they then add positional

4



2.1. Sequence Representation in NLP

encoding in the form of sine and cosine functions with different frequencies. This is
necessary as the Transformer model has no inductive bias about position.
The encoder and the decoder both consist of multiple blocks which are identical for

each part. The neural network layers inside these blocks are a multi-head attention
(MHA) and a two-layer feed-forward network (FFN). Each of these modules has a residual
connection which adds the module’s input to its output. This sum is then layer-normalized
although this normalization can also be done at the beginning of each block. The encoder
blocks consist of one MHA followed by one FFN while the decoder blocks have another
MHA between the first one and the FFN which attends to the final output of the encoder
(Figure 2.1). The “normal” self-attentions of the decoder apply a mask to their input to
avoid attending to future positions in the sequence (Figure 2.1). Each block gets the output
of the previous block as its input. After the final block, a linear (“unembedding”) layer
processes the output followed by the softmax function to get a probability distribution
between 0 and 1 over the vocabulary. This distribution is then used by a decoding strategy
to select the next token.

The MHA module is the core of the Transformer model: It allows to process sequences
of tokens (may it be text, images, or other modalities) of variable length that are longer
than previously possible with Recurrent Neural Networks (RNNs) which suffer from the
vanishing gradient problem [8, 54]. All available tokens are linearly projected with different
weights resulting in queries 𝑄 , keys 𝐾 and values 𝑉 . The Attention function computes for
each token 𝑄 which other tokens 𝐾 are the most relevant for this step (Equation 2.2). This
is done with the dot-product. The result is then scaled by the inverse of

√
𝑑𝑘 where 𝑑𝑘 is the

dimension of the keys 𝐾 to avoid too large values possibly leading to small gradients [72].
After that a normalization with the softmax function converts the attention weights to a
pseudo-probability distribution modeling the importance of each token 𝐾 in the sequence
in relation to the currently processed token 𝑄 . To get the sequence weighted by their
importance the attention weights are multiplied with the values 𝑉 .

Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉 (2.2)

The authors found it to be beneficial to let the Transformer calculate multiple linear
projections 𝑄 , 𝐾 and 𝑉 (Equation 2.4, Figure 2.1) with smaller dimensions which are then
used in multiple attention functions in parallel. The results are concatenated to the original
dimension size and fed through a linear layer with weights𝑊 𝑂 (Equation 2.3, Figure 2.1).

MultiHead(𝑄,𝐾,𝑉 ) = Concat(head1, . . . , headℎ)𝑊𝑂 (2.3)

head𝑖 = Attention(𝑄𝑊 𝑄

𝑖
, 𝐾𝑊 𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 ) (2.4)

2.1.3. Pre-trained Models

Two of the first Transformer-based pre-trained LMs were BERT [23] and GPT [58].

BERT The Bidirectional Encoder Representations from Transformers (BERT) model is
an encoder-only Transformer model with 110M and 340M parameters, respectively [23].

5



2. Background and Related Work

The number of parameters corresponds to the number of weights of the artificial neural
network. The authors pre-trained it with unlabeled data with a sequence length of up to
512 tokens from the BooksCorpus (800M words) and the English Wikipedia (2500M words)
in a self-supervised manner: During training, 15% of the tokens are randomly masked and
the model has to predict the missing tokens from the remaining tokens as context. In this
Masked Language Modeling (MLM) the model has access to the whole input sequence
(from left to right and from right to left) except for the mentioned missing tokens. Another
training objective was Next Sentence Prediction (NSP): Given two sentences, BERT had to
classify the second sentence if it was following the first semantically.
To use the pre-trained BERT for downstream task, they fine-tuned on specific (much

smaller) datasets. For classification tasks, the final hidden state of a special classification
token put at the beginning of every sentence (also during pre-training) is used and then
processed by a single added output layer that was not present during pre-training. For
other tasks like sequence tagging the final hidden states of all tokens are fed into an output
layer. The authors saw positive transfer learning from this pre-training, scaling the model
size improving model performance and BERT advancing the state-of-the-art (SOTA) for
eleven NLP tasks.

GPT In the same year, the first version of the Generative Pre-Training (GPT) model was
published [58]. It consists of multiple Transformer-decoder-blocks without the cross-
attention to the (missing) encoder. The training procedure was similar to BERT: The
authors pre-trained the model with the language modeling objective (Equation 2.1) self-
supervised on unlabeled data (BooksCorpus). The model had to learn which token out of
the vocabulary is the most probable next token given all previous ones (within the context
window of 512 tokens).

For each specific task they made minor modifications to the architecture (adding a linear
output layer and aggregating the result(s)) and trained GPT on task-specific data. They
saw an improvement over RNNs like long short-term memory networks in performance
but also in the ability to process longer sequences. They found that including the language
model objective as an auxiliary objective during fine-tuning helps the model to generalize
(especially for larger datasets). Their method achieved a new SOTA for nine out of twelve
tested datasets including natural language inference (NLI), QA, semantic similarity, and
text classification.
With GPT-2 the authors showed that SOTA performance on NLP tasks can not only

be achieved by fine-tuning pre-trained language models with very small architectural
extensions but rather by using pre-trained language models directly in a zero-shot setting
[59]. Zero-shot learning is the technique using a deep learning model for a task it was not
explicitly trained on. The only information about the task the model gets is an instruction
for the task in natural language [12]. They show that performance scales with model size
(up to 1.5B parameters) when training on scraped internet data which enables the model to
learn different NLP tasks through the language modeling objective. Their dataset WebText
consists of 8M documents resulting in 40GB of text from websites that were favorably
linked by human users on the social media platform reddit.
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On seven out of eight language modeling benchmarks their models (sometimes not even
the biggest version) achieve SOTA performance. They investigated the overlap between
their training data and the evaluation data and it seemed to be not significantly higher
than the overlap within the task specific training and evaluation dataset. On more practical
tasks like summarization GPT-2 performs slightly better (with a task hint) than taking
three random sentences from the input and falls far behind task-specific models. They
did not fine-tune their model but a follow-up work [82] uses reinforcement learning from
human preference (roughly similar idea to paragraph 2.2.2) to fine-tune GPT-2 774M on
stylistic continuation and summarization which showed significant improvement over
zero-shot but still worse performance than the task-specific baselines.

2.2. Large Language Models

The foundation for most current Large Language Models (LLMs) like the Gemini [3],
GPT [12, 49], LLaMA [70, 71], Mistral [33, 34] and PaLM [4, 16] families is the same as
described previously (subsection 2.1.3). They are pre-trained on Internet-scale data and
have a Transformer decoder-only architecture with billions of parameters enabling them
to perform tasks they were not explicitly trained on.

2.2.1. Impact of Scaling

Scaling up unsupervised pre-trained Transformer-based models (both decoder-only and
full Transformers) to multiple billions of parameters was shown to be possible and that this
advanced the SOTA on NLP tasks [60, 61, 65]. Rather theoretical work discovered that the
loss of language models scales as a power-law of model and dataset size and the training
compute [38]. Inspired by this, the authors of GPT-3 scaled a model similar to GPT-2 up to
175B parameters resulting in strong performance on many NLP benchmarks including
some that require reasoning like 3-digit arithmetic [12] enabling them to perform more
complex tasks.
As they trained multiple sizes of the same model architecture, they observed large

performance gains especially in few-shot settings where the model gets up to hundreds
of examples together with its input during inference. The 175B model is also able to
generate news articles that humans can only identify in 52% of the cases with 50% being
random chance. Yet the authors discover that the language modeling objective may limit
the performance of these models on tasks that involve fill-in-the-blank, comparing two
pieces of content or re-reading that would benefit from a bidirectional architecture. They
also note that the objective weights every token equally and that learning from humans
like it was tried out for GPT-2 [82] or later on GPT-3 itself (paragraph 2.2.2) could provide
a better training signal and adding modalities like vision could improve understanding of
the physical world which was done later on models like GPT-4 [49] and Gemini [3].
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2.2.2. Instruction Tuning and RLHF

Even though LLMs offer impressive performance on many NLP tasks, they sometimes
make up facts, produce toxic context, or fail to follow instructions [52]. This may be a
result of the mismatch between the language modeling objective and the objective of
human users that the LLM should “follow the user’s instructions helpfully and safely” [52].

Instruction Tuning When given a few examples for a task, LLMs like GPT-3 show impres-
sive NLP capabilities. However, their zero-shot skills are much worse [77]. To improve
this, the authors of Finetuned Language Net (FLAN) propose instruction tuning [77]:
Fine-tuning a LLM with natural language instructions for twelve task types from 62 NLP
datasets. This technique improved the zero-shot performance of their 137B parameter
pre-trained LaMDA model [69] such that it outperforms the 175B GPT-3 in zero-shot on
20 out of 25 datasets and even in few-shot on some. The evaluation was done on a set of
held-out task types.
Further research on instruction tuning showed that scaling up the number of tasks in

the training data (1.8k) and including chain-of-thought (CoT) data dramatically improves
performance across several model sizes (from 80M to 540B), different prompting setups
(zero-shot, few-shot, CoT) and multiple benchmarks [17]. CoT describes a prompting
technique that includes the reasoning steps that lead to the result of the examples in a
few-shot setup [76]. The model then mimics these chains of thought which improves the
performance on reasoning tasks.

Reinforcement Learning from Human Feedback (RLHF) Reinforcement Learning from Hu-
man Feedback (RLHF) tries to further reduce the discrepancy between the language
modeling objective and the user’s needs [52]: The 1.3B version of the resulting model
InstructGPT that is based on GPT-3 is preferred over the full 175B GPT-3 model in human
evaluation. The training method of the authors start similar to FLAN: They improve
GPT-3 by fine-tuning it with prompt-answer pairs provided by human labelers. This part
resembles the supervised fine-tuning (SFT) of FLAN. Following this the authors started a
new data collection: The labelers get presented a few sampled model outputs from one
prompt which the labelers then rank by preference. These rankings are then used to train
a reward model to predict the users’ choices. The authors modified a 6B version of GPT-3
with the unembedding layer removed to output a scalar reward value. Now during the
reinforcement learning part, the previously trained SFT model (policy) generates an output
to a prompt which the reward model rates. Based on this the policy is updated improving
the model to follow the preference of users.

2.2.3. Representative LLMs

As we want to experiment on LLMs themselves which includes fine-tuning and modifying
them, we utilized available open-source models.

LLaMA Large Language Model Meta AI [1] (LLaMA) is a family of publicly available LLMs
ranging from 7 to 70 billion parameters (in version 2) [70, 71]. As other current LLMs [4,
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49], LLaMA is a Transformer-based deep learning model trained on next-token prediction
/ the language modeling objective. Following the work on training-compute-optimal LLMs
[30], the authors focus on training smaller models with more data (and more compute) to
achieve better inference-compute efficiency.
The architecture is a decoder-only Transformer with some modifications from prior

publications: Inspired by GPT-2 [59] and GPT-3 [12] the normalization is done on the
input of each sub-layer instead of the output to stabilize training. Like in PaLM [16],
they replaced the activation function of the original Transformer ReLU with the SwiGLU
activation function. The authors use no absolute positional embeddings in LLaMA, instead
they add rotary positional embeddings (RoPE), which were already used for GPT-Neo [11],
at each layer.
The used datasets are all publicly available. For the first version of LLaMA, 67% of the

training data comes from the CommonCrawl dataset with all non-English data removed.
Another 15% are from C4 - a pre-processed CommonCrawl variant. 4.5% each are from
Github, Wikipedia (multiple languages) and the book corpora Gutenberg and Books3.
Another 2.5% and 2.0% are from the ArXiv preprint server and the question-answer website
Stack Exchange respectively. For version 2 the used training data is also publicly available
online but the specific mix is not disclosed in the paper [70]. The authors increased the
number of tokens to 2T while again up-sampling more reliable data for less hallucinations.
The first version of LLaMA was only pre-trained with the language modeling objec-

tive. They also tried a small amount of the advanced instruction tuning described above
(paragraph 2.2.2) resulting in a 5.5 percentage point gain on the MMLU benchmark for
the 65B instruction-tuned LLaMA-I model surpassing even Flan-PaLM (62B) which is
also instruction tuned. For LLaMA 2, the author created Chat-versions which are heavily
modified with instruction tuning or supervised fine-tuning (SFT) and RLHF. They started
with SFT they already used for LLaMA-I and added high-quality data they collected via
annotation vendors. For RLHF, the annotators wrote prompts, get two sampled model
responses (different model variants, different temperatures) and then label the responses
with their degree of preference which should focus on helpfulness and safety. This data
was then used to train the reward model (paragraph 2.2.2).

Vicuna Vicuna is a collection of fine-tuned LLaMA models [15, 81]. For their 13B model,
they claim over 90% of GPT-3.5’s performance [15] evaluated with their LLM-as-a-judge
framework which utilizes a strong LLM (like GPT-4) as an automatic chatbot evaluator
[81]. GPT-3.5 [50] is a model related to InstructGPT [52] and serves as a basis for ChatGPT
[50]. The fine-tuning data is collected from the ShareGPT website where "users can share
their ChatGPT conversations" [81]. They used 125k conversations for training a 7B, 13B
and a 33B version based on LLaMA 1. For LLaMa 2, only 7B and 13B versions exist called
Vicuna v1.5.1 The fine-tuning data was 370M tokens long.

On top of these models fine-tuned for better chatbot performance, there are models
with longer context windows than the original LLaMA model (version 1: 2k, version 2: 4k

1https://github.com/lm-sys/FastChat/blob/97065ff7caa3ae4ca28c661b7424f7ae4cca539b/docs/vi
cuna_weights_version.md
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[70]) with up to 16k and 32k tokens using a technique similar to Positional Interpolation
developed independently [39, 42].

2.2.4. Efficient Implementations for LLMs

As Transformer models and especially Large Language Models get larger and larger, a need
for compute-efficient training (primarily interesting for research groups lacking sufficient
compute resources) and inference (primarily interesting for companies providing services)
of these models arises. For example, the biggest Transformer model whose size is known
has 1.571 trillion parameters [25], high-performing commercial LLMs have a few hundred
billion parameters [12, 16], and even publicly available LLMs like LLaMA 2 have versions
with up to 70 billion parameters [70].

Figure 2.2.: Comparison between full fine-tuning, LoRa fine-tuning and QLoRA fine-tuning
[22].

(Q)LoRA Low-rank adaption (LoRA) [32] is a method to reduce the number of parameters
changed when fine-tuning LLMs and therefore decreasing the training time and memory
requirements. The weight matrices are split into the pre-trained weights𝑊0 ∈ R𝑑×𝑘 which
are frozen during training and the adapter weights Δ𝑊 ∈ R𝑑×𝑘 = 𝐵𝐴. When calculating
the result of a layer ℎ both weight matrices are used (Equation 2.5).𝑊0 consists of 𝐵 ∈ R𝑑×𝑟

(random Gaussian initialization) and 𝐴 ∈ R𝑟×𝑘 (initialization with zero) where 𝑟 is the
LoRA rank - the hyperparameter determining how many parameters are changed. The
authors only adapt the attention layers and note that training all weight matrices inside
the attention block leads to better results than only training a subset of them. The other
layers (e.g., the FFN block) were not investigated.

ℎ =𝑊0𝑥 + Δ𝑊𝑥 =𝑊0𝑥 + 𝐵𝐴𝑥 (2.5)

When using LoRA to train [32] GPT-2 Medium (∼355M parameters) and Large (∼774M
parameters) on the E2E NLG Challenge, the LoRA-trained model version achieved the best
results almost all the time while modifying less parameters (0.1% of original parameters)
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than full fine-tuning and any other adaption method tested. All methods were trained
for the same number of epochs. For GPT-3 175B the picture is similar: LoRA matches or
outperforms full fine-tuning with only ∼3% of the parameters trained. With a higher rank
which results in the adapter having ∼22% of the parameters the adapted model outperforms
the fully fine-tuned one in every case. Especially GPT-3 175B shows the practical benefits
of LoRA. The training sees a speedup of 25% while the memory requirements are reduced
by about 2/3 from 1.2TB to 350GB.

There are several other fundamental advantages of LoRA over other parameter-efficient
adaptations: As the parameters trained when using LoRA are added to the pre-trained
weights, the total number of parameters of the model stays the same. Even if the number
of “normal” adapters is small, as they have to be computed sequentially to the other
weights, they can add a noticeable latency during inference [32]. When a LoRA-trained
model is deployed its adaptation can easily be swapped by subtracting the adapter weights
and adding different adapter weights. In this scenario multiple adapted models can be
efficiently stored by having only the pre-trained model and the much smaller adapters
saved. A benefit compared to methods like prefix tuning or prompt engineering is that
the available sequence length is not reduced due to added tokens in front of the input.
The authors also note that LoRA is relatively stable concerning the number of trained
parameters of GPT-3 175B, while other methods need more careful hyperparameter tuning
[32].

To further reduce the compute and memory requirements of fine-tuning, the authors of
Quantized LoRA (QLoRA) [22] propose quantizing the pre-trained model that is frozen
during LoRA training to 4-bit data types. When the quantized weights are used for matrix
calculations, they get dequanitized to 16-bit types temporarily. To achieve this, they
use the 4-bit NormalFloat (NF4) data type which they claim is information theoretically
optimal for this application. During the quantization process, floating-point numbers called
quantization constants are calculated. To reduce their impact on memory consumption,
they quantize these numbers too with a process called Double Quantization resulting
in 0.37 bits per parameter less on average. To avoid memory spikes during gradient
checkpointing that results in out-of-memory issues they use the NVIDIA unified memory
feature and allocate paged memory for the optimizer states that then get swapped into
the main (CPU) memory when the GPU memory is full and gets swapped back when
needed. These improvements reduce the average memory requirements of LLaMA 65B
from >780GB to <48GB enabling fine-tuning on a single professional GPU enabling teams
with less resources to fine-tune models which is essential to turn pre-trained LLMs into
e.g., useful chatbots. Standard LoRA only adapts the attention weights, replicating this
with QLoRA leads to worse performance than full fine-tuning. The author found that the
number of LoRA adapters is the most critical hyperparameter (opposed to the total number
of adapted parameters). Therefore, they also adapt all linear layer blocks. To demonstrate
QLoRA they fine-tune LLaMA from sizes 7B to 65B on two instruction following datasets
(Alpaca and FLAN v2) with full fine-tuning and QLoRA. When comparing their 5-shot
MMLU accuracy the mean score for the QLoRA-trained models is 0.1 percentage points
better than full fine-tuning.
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Figure 2.3.: Memory hierarchy of GPUs, the FlashAttention algorithm and the runtime
behavior of “normal” attention vs. FlashAttention [20].

FlashAttention Despite all their strengths, Transformers have the weakness of scaling
quadratically in sequence length. In general, models that use approximate attention to
reduce this effect have a reduced quality or offer no wall-clock speed-up [20]. FlashAtten-
tion [20] proposes an IO-aware variant of attention: Moving the data in a non-naive way
inside the memory hierarchy. For training and running inference of LLMs like GPT [12] or
LLaMA [70, 71] high-performance GPUs are used. They have a memory hierarchy similar
to the traditional one with CPU cache made of static random-access memory (SRAM) and
main memory made of dynamic random-access memory (DRAM). GPUs feature very fast
but small SRAM cache (megabytes range) and slower but still fast much bigger High Band-
widthMemory (HBM) memory (tens of gigabytes) (Figure 2.3). When running the attention
algorithm (Equation 2.2) the data in form of vectors has to be moved from the memory to
the cache, used for calculations and moved back to the memory. During standard attention,
the product of the query 𝑄 and keys 𝐾 and the result of the softmax function produce
intermediate matrices taking up 𝑂 (𝑁 2) (𝑁 is the sequence length) not directly needed for
the final results but for the backward pass. The authors of FlashAttention propose the idea
of splitting the inputs 𝑄 and 𝐾 into blocks (tiling) and applying softmax per block rather
than the whole matrix while storing some statistic values for recomputing the attention
matrices during the backward pass (Figure 2.3). Now only 𝑂 (𝑁 ) additional memory is
needed. Instead of performing all these operations consecutively with every operation
loading from memory to cache and storing from cache to memory, the authors fuse them
into one kernel (one load / execute / store GPU operation). With FlashAttention GPT-2
can be trained 1.7 times faster than the then fastest implementation. FlashAttention also
eases longer context windows: Even if the context length of GPT-2 is increased by four
times the training still runs 30% faster and achieves a 0.7 better perplexity in language
modeling on the OpenWebText dataset.

FlashAttention 2 [19] improves this further by addressing some weaknesses the authors
found during their analysis of the first version: FlashAttention only achieves around
25-40% of the maximum FLOPs/s that the hardware is theoretically capable of. The authors
therefore reduce the (rather small) number of non-matmul FLOPs as GPUs have special
units for matrix multiplications that allow an up 16× higher throughput. As GPUs are
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highly parallel, a program is executed by a high number of threads. These threads are
grouped into “warps” consisting of 32 threads each. Multiple warps make up a thread
block. The authors discovered a suboptimal work partitioning between these thread blocks
and warps which results in unused hardware resources or unnecessary communication
between these thread groups. They found that the existing parallelization over the batch
size and the number of heads can be a problem for long sequences as in that case the batch
size and possibly the number of heads is lower. Therefore, FlashAttention 2 parallelizes also
over the sequence length. Regarding the work partitioning between warps, they discovered
that the splitting of 𝑄𝐾⊺ leads to unnecessary synchronization, so they only split 𝑄 and
make 𝐾 accessible to all warps. These measures and some other minor improvements
speed up the attention calculation by 1.3× to 1.5× (depending on sequence length) for the
forward pass and by 2× for the backward pass. The end-to-end training throughput for
GPT-style models with sizes 1.3B and 2.7B parameters is around 1.3× higher for sequence
lengths of 2k and 8k.

2.3. Question Answering Task

Question answering is an NLP task that focuses on answering questions based on related
context or knowledge [75]. This task can be grouped into different partially overlapping
categories [53]: The question type can be multiple choice (MC) where one or multiple
correct answers have to be selected resembling a classification problem. The opposite of
this is conversational QA where the system has to freely generate the answer. The type of
answer can also be categorized: A factoid answer usually only contains a few words while
definition-based QA demands definitions as answers from a knowledge base. There are
hybrid forms of this where the QA system has to interpret the question carefully to answer
with the correct type. The type of context can also differ as it may be present as knowledge
(typically organized as a knowledge graph) or as harder to manage raw text. Modern
QA system mostly use deep learning-based models like (fine-tuned) BERT- or GPT-style
models. Earlier (classical) machine learning systems use methods [53] like support vector
machines [35], decision trees or naive Bayes in a classification setup where the features
are pre-defined. It is also possible to design rule-based QA systems with surrogate tasks
like semantic class tagging and entity recognition that assign scores given the question
and a context piece. The answer is the sentence in the input with the highest score.

2.3.1. Challenges and Approaches

Scientific papers present great challenges as context for QA when using LLMs for multiple
reasons: They are often thousands of tokens long exceeding the context window of 4k
for models like LLaMA 2. Also, they consist of long unstructured (except sectioning etc.)
raw text making it hard to determine which part is important to answer the question. The
answer type is also not clear as the question could be about explaining some concepts
presented in the paper, simple facts or even yes or no questions, or the question could be
unanswerable.
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Figure 2.4.: Positional encoding if the RoPe method is extrapolated vs. interpolated [13].

The unstructuredness and length of the context is especially problematic even for long-
context LLMs as researchers found [45]: For multi-document QA where the LLM has
to select the relevant context part from multiple options, the performance curve has a
U-shape with respect to the position of the documents as the ones at the beginning and the
end are better retrieved than those in the middle. Some models like GPT-3.5 and MPT [68]
even have the same problem [45] on a simpler synthetic task that involves the retrieval of
a value from a JSON object given a key.

As most LLMs are Transformer-based, their time complexity and memory consumption
scales quadratically in sequence length because of the attention algorithm which makes
both the training and inference with long context a problem. If one does not want to
use approximate attention as this may introduce inductive bias or reduce performance in
general [78], there are techniques to still handle long context.

Positional Interpolation The context length an LLM can handle is determined by the
length of the samples of the training data during its pre-training. Fine-tuning extends
the context window only very slowly in terms of training steps [13]. Although there
are extrapolation techniques that enable inference on longer context than the model
was trained on (Figure 2.4), many LLMs use positional encodings (e.g., Rotary Position
Embedding (RoPE) like LLaMA [70, 71]) that show weak performance during extrapolation
[13]. The authors of Positional Interpolation (PI) propose the idea of stretching the original
context window (𝐿) to the new maximum length 𝐿′ by down-scaling the position indices
that are the input to the positional encoding function (Figure 2.4). RoPE uses a vector-
valued complex function 𝑓 (𝑥,𝑚) where 𝑥 is the embedding vector and 𝑚 the position
index. For PI,𝑚 is replaced by 𝑚𝐿

𝐿′ so the maximum distance between tokens stays the
same.
The authors trained all sizes of LLaMA 1 (context window: 2k) on the next token

prediction objective for only 1000 steps on longer context and showed for fine-tuned
models (no PI, 8k) with up to 33B parameters that they have a higher perplexity which
rises as the evaluation context window increases. On the other hand, the perplexity of
models with PI decreases or only slightly increases with longer evaluation sequences.
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For models with up to 13B parameters, they show similar behavior on context windows
of up to 32k tokens. They also note that models with PI have only slight performance
degradation within their original context window of 2k tokens.

Retrieval-augmented Generation Another idea is to compress the given context to fit
inside the context window by augmenting the LLMs with a retrieval method [41, 78] that
extracts only relevant parts from the context. The retrieval method can be included at
pre-training [28], fine-tuning [41] or inference [78]. These methods can also enable the
model overall to run faster as the sequence processed by the LLMs is shorter.
A retriever model gets a long context and a short query as input and determines the

importance of each part of the context [78]. For example, Dragon [44] a state-of-the-art
retriever both in supervised and zero-shot usage with a dual-Transformer-encoder archi-
tecture takes the query and each part of the context one by one as inputs. The resulting
vectors can then be used to compute the most relevant passages by calculating the dot
product between the query vector and every passage vector. Some works suggest that
retrieval-augmentation enables models with shorter context length (e.g., 4k) to match mod-
els with longer context length (e.g., 16k) [78] while others observe no general performance
improvement [6]. This may depend on model size as bigger models seems to benefit more
from retrieval-augmentation.

2.3.2. Datasets

To evaluate LLMs on question answering on scientific papers, we need data consisting of
papers and related questions and answers.

Datasets on Scientific Papers Datasets that cover the topic of scientific papers focus
on various aspects. Many [14, 37, 56, 43, 74, 79] focus on the review process which
yields different artifacts: The review itself with comments and possibly a rating by the
reviewer. For some reviews exist rebuttal letters by the paper author to react to the review.
A meta-reviewer summarizes the other reviews into a meta-review together with an
acceptance score. These artifacts enable different tasks: (Meta-) Review Generation [43,
74], acceptance prediction / paper rating [37, 79], Argument Pair Extraction from reviews
and corresponding rebuttals [14], and Multi-document Summarization on reviews [56].

Qasper As the primary focus of this thesis is the answering of specific questions on
scientific papers with LLMs, we need a dataset different to the ones mentioned above. The
Question Answering over Scientific Research Papers (Qasper) dataset [21] is a collection
of 1585 NLP papers with 5049 questions (split into train / validation / test: 2593 / 1005
/ 1451). Each of these questions was formulated by an NLP practitioner who only read
the title and abstract of the corresponding paper. The answers were then answered by
other NLP practitioners who also selected the paragraphs, figures or tables (“evidence”)
in the paper that are relevant to answer the question (which may be none). There are
four types of questions / answers in this dataset: Extractive (questions can be answered
by copying chunks of the relevant paragraph), abstractive (free text answers that are not
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literally in the paper), yes/no questions and questions that are unanswerable. Like for
the SQuAD dataset, the authors chose a span-level 𝐹1 score as their metrics. If there are
multiple reference answers, the maximum of the 𝐹1 score will be used. They also provide
a baseline model: The challenges of long context and different answer types (arbitrarily
long text or simply yes/no / unanswerable) excluded many already existing models like
BERT-style models or decoder-only LLMs. The authors chose the Longformer 16k model:
The Longformer-Encoder-Decoder (LED) [7] has a similar architecture to the original
Transformer with the difference of a local attention window and a global attention at
pre-specificed points of interest which enables a linear time complexity in sequence length.
With a context window of 16k, Longformer can encode 99% of the dataset’s papers.

Datasets focused on Long Context In recent times a lot of new LLMs have been published,
many of which offer longer context windows (>4k). To make comparison easier, multiple
benchmarks sets have been created to test their abilities across different task types.
ZeroSCROLLS [64] is a benchmark focused on long text understanding in a zero-shot

setting. The included task types are summarization, question answering and aggregation.
Aggregation tasks involve “contextualizing and aggregating information from different
parts of the input” [64] that goes beyond simple summarization or QA. For example, one
aggregation task in ZeroSCROLLS is to determine the percentage of positive reviews given
hotel reviewswithout ratings. A 500-item subset of Qasper is part of the question answering
section. The authors evaluated open-source models like Flan-T5-xxl [60] and Flan-UL2
[67] (both encoder-decoder, instruction tuned with FLAN method paragraph 2.2.2), closed
models like GPT-3 [12, 50] (different variants), GPT-4 [49], and Claude [55] and a task-
specific model CoLT5-xl [2]. ZeroSCROLLS itself does not contain any training data. Their
results show that GPT-4 is the best model on average, yet on Qasper it does not always
follow the answer format allowing the encoder-decoder models to achieve slightly higher
𝐹1 scores.
A similar benchmark called LongBench also includes Qasper [6] but only 200 or 224

(LongBench-E) examples respectively. Opposed to ZeroSCROLLS it is bilingual (English
and Chinese) and incorporates more task types: Single-document QA, multi-document
QA, summarization, few-shot learning, synthetic tasks, and code completion. The authors
evaluated a different set of LLMs: Closed ones like GPT-3.5-Turbo-16k and open-source
ones like Llama2-7B-chat-4k, Vicuna-v1.5-7B-16k, and LongChat-v1.5-7B-32k. They find
that GPT-3.5 outperforms the open-source models but still struggles on longer contexts
and they report substantial improvements on long context understanding on models
whose position embeddings were scaled up with techniques like Positional Interpolation
(paragraph 2.3.1) and fine-tuned on longer sequences.
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To improve the performance of the general-purpose LLMs, we apply different techniques
ranging from prompting to fine-tuning. The first kind of techniques we introduce are
generally used to positively influence the behavior of LLMs and therefore not specific to
question answering on scientific papers. To further optimize the model for our use case,
we also employ task-specific techniques.

3.1. Task-agnostic Techniques

As the name “Large Language Models” suggests, LLMs have a high number of parameters
spanning from a few billions to trillions, resulting in big file sizes and also in high memory
consumption when they are fully loaded into memory to run inference. This is why in
production, LLMs are mostly only used in inference and not fine-tuned for specific use
cases as training requires even more compute and memory. Another approach to influence
the behavior of an LLM is to prompt it with instructions that are optimal for a specific
task.1 The process of finding such optimal prompts is often called “prompt engineering”.

Zero-shot Prompting As the long context posed by scientific papers is one of our main
problems, we can not use few-shot prompting as this would require including examples
in the input which would only increase the challenge of long context. One example
would consist of a whole paper, a question, the instruction, and the corresponding answer.
Therefore, we have to resort to zero-shot prompting which only includes the instruction
for the model as a kind of learning signal. This is the easiest and computational cheapest
option as no parameters are changed and the model is used like during “normal” inference
with the difference that the instruction to solve the task is carefully selected for that
specific task. We list all our used prompts in section A.1.

Supervised Fine-tuning By combining the previously mentioned efficient methods (sub-
section 2.2.4) of implementing and training Transformer-based models, we are able to
fine-tune a small LLM on long context. We replace the standard attention algorithm with
FlashAttention 2 which is faster and more memory-efficient in sequence length which
is especially important for the long context in our case. Additionally, we use QLoRA
for fine-tuning the model. LoRA only changes a fraction of the parameters of the model
which reduces the compute and memory consumed during the backward pass. QLoRA
quantizes the model weights that are used during the forward pass reducing the memory
requirements even further.
1https://huggingface.co/docs/transformers/main/en/tasks/prompting
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As the parameters learned via (Q)LoRA are added (𝑊 + Δ𝑊 ) to the existing parameters
we do not increase the number of parameters. This means after fine-tuning the inference
time stays the same. As the addition of the adapters is reversible by subtracting the adapter
weights from the original model weights, we can still use the model in a general-purpose
setting by switching to other task-specific adapters (e.g., writing abstracts / reviews
for scientific papers). Alternatively, the adapter weights can be added during inference
(increasing latency) which may be more useful when switching tasks frequently. As only a
fraction of the parameters has to be changed by (Q)LoRA to be effective, multiple different
adapters can be stored alongside the model without consuming unacceptable amounts of
storage.

3.2. Task-specific Approaches

On top of these two more general techniques, we employ more task-specific variations to
increase performance and explore the limitations and potentials of the models we looked
at.

Evidence-only Prompt As the dataset we use also contains the extracted relevant para-
graphs needed to answer the question (“evidence”) for each question, we want to find
out how our investigated models perform if we provide them with the evidence only –
both during inference and training. This should give use an idea of the upper limits of
the performance of the models as this task should be easier as the model has to process
fewer tokens. Another benefit could be reduced training compute / time. Additionally, we
think that a comparison between these fine-tuned models and those that received the full
paper during training should indicate how much our fine-tuning improves our goal of
long-context understanding and how much it just improves instruction following.

Two-step Prompt Chain-of-thought prompting [76] showed that splitting a task into
subtasks can help LLMs to solve them. Therefore, we split the question answering into
two tasks: First the model has to find the evidence – all relevant paragraphs to answer
the question. After that we prompt it to answer the question based on the extracted
paragraphs in the previous step. As the dataset includes the evidence for every question,
we can evaluate the performance of the evidence extraction and also train the model on
this auxiliary task specifically. As unanswerable questions and some yes/no questions
are annotated with no evidence, we have to use a placeholder during inference (included
in the prompt) and training. We assume that generating this placeholder provides more
information and is easier for the models than generating nothing.

On top of a possible performance increase, extracting the relevant paragraphs is a useful
task on its own: It could be useful for the user the see the context of the answer inside
the paper to gain further insight. Also, this could improve interpretability as the user can
see through this intermediate step how the system arrived at an answer. This could be
especially useful if the model fails and produces a wrong answer.

There are also some downsides: We have to run inference twice as this approach requires
the model to generate its input for the second step. As the context can be very long, this
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may result in an unacceptable latency increase between issuing the question to the QA
system and getting the answer. Also, as the model generates its own input (apart from the
second prompt), this approach may lead to cascading errors.
Similar approaches were investigated for science QA on short context [46, 73, 80], for

(Chinese) multi-document QA [29], and in the original publication of the Qasper dataset
[21] (but the model was no current LLM).

During training, the most common evidence presented to the model is the placeholder
we use for no evidence as almost all other evidence is from different papers and different
questions and as a result is a diverse collection of strings. We therefore include a prefix in
the training data and a hint in the prompt that every non-empty extracted evidence starts
with this prefix. We argue that this helps the model to avoid resorting to generating the
“easiest” evidence which is none or the placeholder. Attention Strengthening Question
Answering [29] includes a similar technique which inserts hints to predict the indices of the
most relevant document in multi-document QA. We also adopt their approach of placing
the question before and after the context to achieve a “contextual-aware representation”.
To further reduce the number of generated empty evidence, we lower the number of
examples in our training data where no evidence should be found to push the model into
generating non-empty evidence more frequently.

Split Prompt As we discovered that our tested models with extended context windows
still show a performance degradation on context exceeding the original context window,
we split the context into parts that fit inside this original context window. With a naive
rule-based approach, we fuse the resulting answers per split into one final answer. For
the two-step prompt, we remove all placeholder strings for empty evidence if the model
generated non-empty evidence for at least one part of the context. If there are multiple
instances of non-empty evidence, we simply concatenate them together in the order of the
split they are from. We also tried this approach with the one-step prompt. Here, we filter
out the answer that the question is unanswerable given the split as context. Otherwise,
we operate in the same way as for the two-step prompt.

Modify Attention Algorithm During manual investigation of the internal values of the
attention function with the Inseq2 [62] tool to interpret sequence generation models, we
found that most of the attention weights are very small numbers. Our hypothesis is that
when we mask a portion of these tokens that the model attributes very small attention
weights too, this now freed probability mass of the attention matrix can move to the
more important tokens, highlighting them and potentially leading to better answers. Our
masking works by finding the indices of the 𝑘 lowest values over the sequence length
inside the attention matrix. We set all these attention weights to the lowest possible value
of negative infinity. The softmax function after that in the standard attention algorithms
sets these values to zero.

2https://inseq.org/en/latest/index.html
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4. Experiments and Results

After describing the setup we used to run our experiments, we will list all experiments we
ran and discuss their results.

4.1. Experimental Setup

In the following, we will describe our experimental setup to enable easy reproducibility
of our experiments and results. This includes a description of the used dataset, our
preprocessing of it, the utilized hard- and software, the hyperparameters we used during
inference and training, and the models we experimented with. When we refer to numbers
in tokens and use unit prefixes like k we mean the binary prefixes.1 This means that e.g.,
4k tokens mean 4,096 tokens.

4.1.1. Dataset

The Qasper dataset (paragraph 2.3.2) we used to evaluate and train the considered models
consists of a total of 1,585 NLP papers with 5,049 questions on these papers. The authors
provide the following dataset splits: train (2,593 questions), validation (1,005 questions),
and test (1,451 questions). The four types of questions appear in different frequencies
(Table 4.1) and the authors evaluated the performance of their model for each question
type individually. The dataset website2 provides an official evaluation script.

Question type Frequency
Extractive 51.8%
Abstractive 24.2%
Yes/No 13.9%
Unanswerable 10.2%

Evidence type Frequency
Text 81.6%
Table/Figure 11.6%
None 12.8%

Table 4.1.: Qasper dataset statistics [21]: question / evidence types; the percentages for the
evidence types add to over 100% because answers can include multiple evidence
types.

As this thesis covers also how well LLMs handle long context, we take a look at the
models’ performance per paper length (Table 4.2) and absolute position of the related
paragraphs (“evidence”). Each question in the dataset is annotated with an evidence field
which contains the paragraphs or tables / figures that are needed to answer the question.
1https://en.wikipedia.org/wiki/Binary_prefix
2https://allenai.org/data/qasper

21

https://en.wikipedia.org/wiki/Binary_prefix
https://allenai.org/data/qasper


4. Experiments and Results

For 12.8% questions, this field is empty. This is predominantly the case for unanswerable
questions but also for some yes/no (boolean) questions. It is important to note that paper
length can be determined for unseen papers while evidence position is unclear.
For the final analysis, we use a subset of the Qasper test split that is part of the Zero-

SCROLLS (ZC) benchmark. We saw a similar statistic for this subset as for the (custom)
splits we used during development and final analysis. We therefore assume that the ZC
subset of Qasper will be representative for the performance of our approaches.

Models dev-short dev test ZC
Questions / % 990 100 1,005 100 1,451 100 500 100
Paper length
0k – 4k 333 34 333 33 511 35 149 30
4k – 8k 593 60 593 59 802 55 312 64
8k – 64 6 79 8 138 10 39 8
Absolute evidence position
0k – 4k 794 80 799 80 1182 81 405 81
4k – 8k 173 17 180 18 263 18 91 18
8k – 6 1 11 1 18 1 7 1
No evidence 77 8 78 8 99 7 37 7

Table 4.2.: Qasper dataset statistics we created for our research questions: paper length
and absolute evidence position; the numbers for absolute evidence position
exceed the total number of questions because the evidence for a question can
be from multiple paragraphs.

4.1.2. Data Preprocessing

During the development, we used the development / validation split of Qasper to evaluate
our approaches and choose the best one. Five of the papers lead to out-of-memory errors
during inference. We therefore exclude these five papers from our results and call the
resulting split “dev-short”. As these five only account for around 1.8% of the 281 papers
in the dev split, we assume that this does not skew our view of the quality of the models.
Also, the distribution of the length / position bins is not changed much (Table 4.2). All
removed papers have more than 16k tokens.

As our tested models have text as their only modality, it cannot process the figures and
tables provided with the dataset. We therefore remove all questions from the training data
that mention figures or tables in their evidence field. This type of evidence starts with the
string FLOAT SELECTED and can therefore be reliably removed.
As training data, we use the training split of the Qasper dataset. As input, we use a

prompt template from the LongBench benchmark dataset [6] where the paper text and
the question are inserted the same way as for zero-shot prompting. The target is the
answer from the dataset. Many questions are annotated with multiple possible answers.
We assume that most of them are equally good as training data as in general multiple
answers to a question can be correct. In some cases, they clearly heavily disagree with
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each other e.g., one possible answer is “Unanswerable” and the other is “Yes” or “No”. We
remove these cases. We also have to limit the training data to texts with a maximum of
8,192 tokens as longer inputs cause out-of-memory errors even with techniques to increase
memory efficiency like QLoRA and FlashAttention.

4.1.3. Hard- and Software

For evaluation and training of the tested models we need high-performance GPUs. There-
fore, we use the bwUniCluster 2.03 for our experiments. Depending on availability, we use
the NVIDIA A100 with 80 GB of accelerator memory or the NVIDIA H100 with 94 GB.
The bwUniCluster 2.0 allows the use of NVIDIA Enroot4 which enables running Docker5
containers on the computing cluster. We use the PyTorch container6 by NVIDIA to train
the models in our experiments. FlashAttention is only implemented per GPU type at the
moment and comes pre-installed with this container.

We run all our experiments (inference and training) with the FastChat7 [81] framework
which is an open-source platform for “training, serving, and evaluating large language
model based chatbots”. It is developed by the Large Model Systems Organization (LMSYS
Org).8 The LMSYS Org also operates the LMSYS Chatbot Arena9 [81] which tries to
compare the performance of current LLMs against each other in a chatbot setting. FastChat
provides code to easily run models, feed them with input data, and store their answers.
Besides regular fine-tuning it also provides a (Q)LoRA implementation that can utilize
FlashAttention. This script is run with the DeepSpeed10 library.

4.1.4. Hyperparameters

All following stated hyperparameters are the same on all experiments if not stated differ-
ently per experiment.

During inference, we run the models with a temperature of 0.0 which equates to greedy
decoding.11 FastChat code also uses a temperature of 0.0 for tasks like extraction and
reasoning.12 This fits our requirements as we want the most accurate and truthful answer.
Also, we saw a degradation in performance when raising the temperature. We let the
models generate up to 1,024 tokens.
Our training configuration is the same as the example from FastChat: We use a LoRA

rank 𝑟 of 8 and a LoRA Alpha of 16. Rank 𝑟 = 8 results in 4,194,304 trainable parameters
out of 6,742,609,920 for LLaMA 2 7B based models. The dropout is 0.05 and we apply no
3https://wiki.bwhpc.de/e/Main_Page
4https://github.com/NVIDIA/enroot
5https://docs.docker.com/
6https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
7https://github.com/lm-sys/FastChat
8https://lmsys.org/
9https://chat.lmsys.org/
10https://github.com/microsoft/DeepSpeed
11https://huggingface.co/blog/how-to-generate
12https://github.com/lm-sys/FastChat/blob/085c2c37dca426059f023e2a080c45717c742fd1/fastchat/

llm_judge/common.py
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weight decay. The learning rate is initialized with 2e-5 with a warm-up ratio of 0.03 and a
cosine learning rate scheduling. We do no extensive hyperparameter search because of
time constraints regarding compute and because the authors of QLoRA already noted that
the most important “hyperparameter” is the location of the adapted parameters inside the
model. We train each model for 5 epochs on the training split after our preprocessing. We
chose this duration as it could be done within a few hours on a single GPU, and we saw
performance saturation within this training duration.

4.1.5. Models

We use three models with different context window lengths in our experiments. The
creators of FastChat (LMSYS Org) provide the Vicuna family (paragraph 2.2.3) of LLMs.
We only test the smallest available models with around 7 billion parameters for compute
and memory efficient experiments and as this is the only model size that has a LongChat
version. This version has a context window of 32k tokens. Vicuna 7B-4k has the same as
LLaMA 2 (4k) and Vicuna 7B-16k’s was extended to 16k. We use the models of version
v1.5 which indicates that they are based on LLaMA 2 instead of LLaMA 1 like the previous
versions. We omit the parameter count in the following from the models’ names as they
are the same of every model we tested.

4.2. Evaluation Metrics

We use different metrics to evaluate our approaches regarding our specific focus but also
to ensure comparability to other work.

𝐹1 As the paper proposing Qasper and work using Qasper as a benchmark, we use the 𝐹1
score to evaluate our models. The 𝐹1 score is the harmonic mean of precision and recall:

𝐹1 = 2 precision + recall
precision · recall (4.1)

While we use the 𝐹1 score for all question types, the example of unanswerable questions
highlights its usefulness: It tells us howmany unanswerable questions themodel recognizes
as unanswerable (recall) and howmany of the claimed unanswerable questions are actually
unanswerable (precision).

For Qasper, the official evaluation script calculates scores on a span-level. When there
are multiple reference answers for a question, the script uses the maximum 𝐹1 score from
all possible ones. We also use this script to see how our approaches perform for the
different question types. The script and our tables refer to yes/no questions as “boolean”
and to unanswerable questions as “none”.

4.2.1. Analysis by Context Length / Position

Additionally to the 𝐹1 score used by the official evaluation script from theQasper dataset, we
evaluate the models by splitting the evaluation data into (partially) overlapping groups. We
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want to evaluate per paper length and absolute evidence position. During our experiments,
we also investigated the relative position. However, we saw no U-shape (in terms of
performance per evidence position from paper beginning to end) of the performance. This
corresponds to prior work [45] which found this strong primary and recency bias only in
large (>7B) models. We measure length / distance in tokens as this enables a comparison
to the (declared) context window lengths of the models we investigated.
To bin the evaluation sets, we tokenize the whole paper texts from the JSON files that

the dataset website provides. We used the tokenizer from Vicuna-16k, but the number
of tokens should be the same for the other tokenizers. For the evidence positions, we
determine the position of the first token of the evidence paragraphs inside the paper text.
We assume this is representative as most evidence is at most a few sentences long. If there
are multiple evidence paragraphs that are not continuous in the dataset, we bin potentially
one paper multiple times.

Paper Length As the context windows of some of tested models were extended beyond
their initial length, we want to find out if this enables the models to process longer context
as well as context within the original context windows or if the performance differs per
paper length. Here, we bin per paper as the length is the same for all associated questions.
We count the number of tokens after tokenizing the concatenated text fields from the
JSON files of a paper.

Evidence Position It is also important to find out if the position of the relevant information
(evidence) inside the paper or the total length of the text does affect performance more.
We will take a look at the absolute toke position of the evidence. For “Unanswerable” and
some yes/no questions there is no evidence in the dataset. We put these questions into a
separate bin (“No evidence”). A model tasked to extract the evidence should output no
paragraphs here. Instead, they should generate the string “No relevant paragraphs found”
which we include in the prompts and filter out of the answers before calculating the 𝐹1
score. In contrast to the length binning, we group the evaluation data per question as the
evidence positions differ in general per question and not per paper.

4.3. Results and Discussion

We start our experiments with all available small (7B parameters) models from LMSYS
Org with varying context window lengths: Vicuna-4k, Vicuna-16k, and LongChat-32k.

4.3.1. Zero-shot Prompt

First, we run all tested models with a zero-shot prompt (Table 4.3). We use the template
from LongBench [6] (subsection A.1.2). We saw similar performance for the models with
extended context windows while the one with the original window of 4k tokens performed
a lot worse. While LongChat is able to answer the “normal” questions better, it seems to
be unable to handle unanswerable questions. Also, its ability to answer yes/no questions
is more limited than Vicuna-16k. Qualitative analysis showed that LongChat almost never
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outputs “Unanswerable” and even if it does, the answer is a whole sentence which ignores
the instruction in the prompt (examples: subsection A.2.1). We assume that this difference
between Vicuna-16k and LongChat-32k is a result of slightly different fine-tuning resulting
in worse instruction following for LongChat.

Models Vicuna-4k Vicuna-16k LongChat-32k
Answer 𝐹1 8.82 24.79 24.19
Answer 𝐹1 by type
extractive 6.55 22.07 26.51
abstractive 4.81 15.98 20.78
boolean 25.16 59.66 36.79
none 13.28 19.75 0.04

Table 4.3.: Models we tested, dev-short set, LongBench prompt [6], zero-shot.

Our deeper analysis (Table 4.4) shows that the three models perform similar for pa-
pers that are 4k tokens long or shorter. After this threshold, the “normal” model is not
able to perform any kind of position extrapolation. The other two models show similar
performance while the 32k version is able to better answer questions whose relevant
paragraphs are at higher token positions. The overall performance differs not that much
because LongChat struggles with questions that require no evidence (most of them are
unanswerable). We assume that the lower 𝐹1 score of LongChat on papers with more
than 8k tokens is a result of this weakness and not a general property. We conclude
from this experiments that Positional Interpolation (or similar techniques) improves the
long-context understanding of LLMs in the domain of scientific papers. But we also see
that their performance drops with longer papers and especially questions whose evidence
is outside of the original context window are harder. At least this is the case for our simple
zero-shot prompt.

Models Bin count Vicuna-4k Vicuna-16k LongChat-32k
Answer 𝐹1 per paper length
0k – 4k 333 25.53 27.20 25.47
4k – 8k 593 0.40 24.01 24.08
8k – 64 0.00 19.55 18.51
Answer 𝐹1 per absolute evidence position
0k – 4k 794 9.79 25.82 26.73
4k – 8k 173 0.38 18.02 23.35
8k – 6 0.00 3.78 15.06
No evidence 77 11.80 23.38 1.06

Table 4.4.: Analysis of the models we tested, dev-short set, LongBench prompt [6], zero-
shot.
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4.3.2. QLoRA Fine-tuned

As especially LongChat in our opinion showed insufficient instruction following, we now
want to see how much fine-tuning can increase the performance of the tested models.

LongChat-32k Zero-shot 1 epoch 3 epochs 5 epochs
Answer 𝐹1 24.19 41.13 44.56 47.02
Answer 𝐹1 by type
extractive 26.51 41.80 45.18 48.21
abstractive 20.78 12.59 16.59 20.10
boolean 36.79 70.49 80.33 76.47
none 0.04 69.57 66.67 68.54

Table 4.5.: LongChat-32k, dev-short set, LongBench prompt [6], fine-tuned with QLoRA.

Vicuna-16k Zero-shot 1 epoch 3 epochs 5 epochs
Answer 𝐹1 24.79 40.05 43.84 45.23
Answer 𝐹1 by type
extractive 22.07 38.61 42.26 44.86
abstractive 15.98 11.38 14.57 15.49
boolean 59.66 72.36 78.86 76.67
none 19.75 79.17 78.72 80.43

Table 4.6.: Vicuna-16k, dev-short set, LongBench prompt [6], fine-tuned with QLoRA.

The impact of QLoRAfine-tuning on LongChat-32k (Table 4.5) and Vicuna-16k (Table 4.6)
is fairly similar: Extractive, boolean and unanswerable questions get a lot better after just
one epoch and except for the unanswerable questions they improve with longer training.
We assume that the 𝐹1 scores for unanswerable questions reach the highest scores possible
with this model size and pre-training and fine-tuning procedure. Here, the model has to
do a trade-off between generating answers with more information (extractive, abstractive)
or classify the question as unanswerable. For both models, the answers to abstractive
questions see an inital quality degradation and only converge back to their inital level late
in training. We think that this is a result of the training data forcing the model to fit to
the answer style for around 75% of the questions in Qasper: extracting word for word and
short answers. With more epochs of fine-tuning, the model re-learns the more complex
task of abstractive QA.
We see a similar general behavior for Vicuna-4k but with reduced overall scores: Ex-

tractive, boolean and unanswerable questions are answered better with more training.
The answer 𝐹1 score after 5 epochs of 24.34 only reaches the zero-shot performance of
the other models (24.19 and 24.79). The questions that require longer answers only reach
about half or even a third / quarter of the performance: 17.86 / 4.75 opposed to 48.21 /
20.10 and 44.86 / 15.49. But the performance on boolean (57.98) and unanswerable (65.68)
questions comes close to the other models. When analyzing the answers of Vicuna-4k
manually, we see that 385 out of 990 answers are empty strings indicating that the model
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Vicuna-4k Zero-shot 1 epoch 3 epochs 5 epochs
Answer 𝐹1 8.82 20.49 23.78 24.34
Answer 𝐹1 by type
extractive 6.55 13.34 16.29 17.86
abstractive 4.81 4.24 4.05 4.75
boolean 25.16 57.89 64.17 57.98
none 13.28 55.45 63.30 65.68

Table 4.7.: Vicuna-4k, dev-short set, LongBench prompt [6], fine-tuned with QLoRA.

struggles to generate any answer. Therefore, it should be easier for the fine-tuned model to
generate one-word answers. These results fall in line with prior work [13] that found that
naive fine-tuning of LLMs with longer context does improve long-context performance
only very slowly.

Models Bin count Vicuna-4k Vicuna-16k LongChat-32k
Answer 𝐹1 per paper length
0k – 4k 333 38.89 50.26 52.15
4k – 8k 593 18.53 43.02 44.45
8k – 64 2.48 39.55 44.09
Answer 𝐹1 per absolute evidence position
0k – 4k 794 23.99 43.54 46.28
4k – 8k 173 9.33 35.23 37.74
8k – 6 0.00 64.37 67.94
No evidence 77 52.81 75.32 64.94

Table 4.8.: Models we tested, dev-short set, LongBench prompt [6], fine-tuned with
QLoRA for 5 epochs.

While we only train with sequences of up to 8k tokens, we see an improvement across
all analyzed paper lengths and the performance loss after 8k tokens reduces for Vicuna-16k
slightly from 4.46 to 3.47 (difference in 𝐹1 score) and for LongChat-32k it almost disappears
going from 5.57 to 0.36 (compare Table 4.4 to Table 4.8). However, we still see consistently
reduced performance for papers that exceed LLaMA 2’s original context window length of
4k and especially for questions where the evidence is further out than 4k. Vicuna-4k does
show improvements during training yet still falls way short of the models with longer
context windows (Table 4.8).
Deeper analysis (Table 4.8) shows that while training does increase Vicuna-4k’s per-

formance on longer papers it still significantly underperforms the other models’ ability
to handle long context. LongChat’s 𝐹1 scores are slightly better than Vicuna-16k’s for
every bin per length and per evidence position. Yet it still struggles with questions where
the dataset annotators found no evidence which we also saw for zero-shot prompting.
Fine-tuning also improves the answers for questions with an evidence position beyond
8k tokens from 3.78 and 15.06 𝐹1 (Table 4.4) to 64.37 and 67.94 (Table 4.8). Only one of
these six questions is a boolean question. We are not sure what causes this increased
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performance but as this bin only contains six questions, we assume that this does not
reflect the general performance of the models on this bin as papers with more than 8k
tokens see a continued loss in answer quality.

4.3.3. Evidence only

Our previous experiments showed that even the models whose context window was
extended with a technique similar to Positonal Interpolation (paragraph 2.3.1) struggle
with papers that exceed the original context length of LLaMA 2 of 4k tokens – especially
if the evidence lies outside of that range. The question now is if these questions or at
least some of them are per se harder to answer. As the Qasper dataset also provides the
extracted evidence for each question we evaluate if the performance varies in our analysis
if the context given to the model is the evidence only instead of the full paper.

On this task, the performance of themodels is quite similar to each other (Table 4.9). Even
Vicuna 4k is able to produce comparable results. LongChat’s problem with short answers
is also reduced with this setup which is probably a result of unanswerable questions being
trivial as the provided context is empty. However, LongChat still shows problems with
short answers. During qualitative analysis, we saw the same picture: It answers with more
than a single word when it should be, ignoring the prompt.

Models Vicuna-4k Vicuna-16k LongChat-32k
Answer 𝐹1 37.33 38.99 36.16
Answer 𝐹1 by type
extractive 34.57 42.91 37.58
abstractive 18.01 20.46 21.80
boolean 57.26 51.86 47.96
none 78.89 48.72 53.48

Table 4.9.: All models we tested, evidence only dev-short set, zero-shot.

Further analysis shows no significant performance variations or at least no clear trends
across different paper lengths (Table 4.10). We see lower 𝐹1 scores on evidence positions
above 8k tokens. But again, as this bin only contains 6 papers and the previous bin showed
only minor performance decrease, we assume that no safe conclusions can be drawn from
this result, and this may be an outlier.
When fine-tuning LongChat with QLoRA on the evidence only, we see much quicker

better results that exceed those before (Table 4.11). Also, we see a performance improve-
ment immediately for all question types. Only the two shorter types suffer a little the
longer the training gets. This could be the same case as we saw before for unanswerable
questions that the performance is hitting an upper limit leading to trade-offs. Also, there is
no initial quality loss for abstractive answers. We think that this effect disappears because
the learning of the mapping between evidence and correct answer is quicker than between
full paper and answer. As the performance saturated faster, we only trained for 3 epochs.
After training LongChat on the evidence only, we compare its performance directly

against the model that we trained on full papers (Table 4.12). The performance of the
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Models Bin count Vicuna-4k Vicuna-16k LongChat-32k
Answer 𝐹1 per paper length
0k – 4k 333 36.49 41.26 36.30
4k – 8k 593 36.10 37.58 35.79
8k – 64 36.49 40.23 38.86
Answer 𝐹1 per absolute evidence position
0k – 4k 794 34.81 37.97 34.95
4k – 8k 173 34.04 36.27 33.65
8k – 6 6.98 26.35 17.71
No evidence 77 66.23 47.01 52.10

Table 4.10.: All models we tested, analysis, evidence only dev-short set, zero-shot.

LongChat-32k Zero-shot 1 epoch 2 epochs 3 epochs
Answer 𝐹1 36.16 55.65 56.97 57.22
Answer 𝐹1 by type
extractive 37.58 61.04 61.41 62.19
abstractive 21.80 25.20 25.60 27.01
boolean 47.96 72.27 80.99 79.83
none 53.48 84.00 83.33 80.56

Table 4.11.: LongChat-32k, evidence only dev-short set, fine-tuned with QLoRA.

context-length-specific model is better on all sub scores. When evaluating the evidence
only model on full papers we made an interesting observation: This model has equal or
better 𝐹1 scores on all question types except for unanswerable questions. The score for
this type of question is probably so low as the model only learned to map the absence of
evidence or the presence of a placeholder to the question being unanswerable. We think
that the extractive score is about the same as the full paper model because it learned to
follow the instruction to answer by copying short excerpts from the text. The abstractive
answers could be better because the previously mentioned “re-training” of this type
happens quicker. The good performance on boolean questions is probably again a case
of increased instruction following. We assume that this result together with less than 8k
tokens long training data improving performance on more than 8k tokens long evaluation
data means that training the model mostly improves instruction following and does not
promote better long-context understanding. But we also note that in order for the model
to learn if a question is unanswerable it has to explicitly learn the mapping of no evidence
in the whole paper to the question being unanswerable.
During fine-grained analysis (Table 4.13), we see that the model that we trained on

evidence only shows no performance decrease with increased paper length but also its
performance for shorter papers is worse than those models that were trained on full papers.
When binning the results per evidence position, the evidence only model shows only
worse performance at questions whose relevant paragraphs are at token positions above
8k and with no relevant paragraphs. Even though the bin for far out evidence is very small,
it seems like an indication that the evidence only model struggles with these cases because
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LongChat-32k 3 epochs 3 epochs 3 epochs 5 epochs
Train split evidence only full paper
Evaluation split evidence only full paper
Answer 𝐹1 57.22 41.66 44.56 47.02
Answer 𝐹1 by type
extractive 62.19 47.01 45.18 48.21
abstractive 27.01 24.15 16.59 20.10
boolean 79.83 76.67 80.33 76.47
none 80.56 2.70 66.67 68.54

Table 4.12.: Compare LongChat-32k, fine-tuned with QLoRA on evidence only or full
paper.

the models that we trained on full papers have similar 𝐹1 scores on this bin. This also
shows that training on the full papers is useful as it dramatically improves performance
for questions where no evidence is contained in the paper text. It is important to note
that we did these experiments on the model with the longest context window: To answer
questions on long context, we need a model that is capable of effectively processing long
context and also has good instruction following.

LongChat-32k Bin count 3 epochs 3 epochs 3 epochs 5 epochs
Train split evidence only full paper
Evaluation split evidence only full paper
Answer 𝐹1 per paper length
0k – 4k 333 57.93 42.68 50.22 52.15
4k – 8k 593 56.86 40.46 41.91 44.45
8k – 64 56.94 42.68 39.75 44.09
Answer 𝐹1 per absolute evidence position
0k – 4k 794 54.27 44.48 43.94 46.28
4k – 8k 173 50.86 37.46 34.80 37.74
8k – 6 63.61 43.71 64.76 67.94
No evidence 77 93.51 16.88 61.04 64.94

Table 4.13.: Analysis, compare LongChat-32k, fine-tuned with QLoRA on evidence only
or full paper.

4.3.4. Two-step Prompts

Inspired by the results of using only the evidence as context to answer the questions,
we argue that a chain-of-thought prompt could increase performance: The model has to
extract the relevant paragraphs first and then answer the questions based on the found
evidence. We still expect some performance drop for longer context as the paragraphs’
extraction should also become harder with increased paper length.
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We only proceeded with LongChat to reduce the number of experiments (especially
training) we have to run. We chose LongChat as it showed the highest gains during
training, better scores on the question types with high amounts of information (extractive,
abstractive) and better performance on longer papers.

LongChat-32k Zero-shot 1 epoch 3 epochs 5 epochs
Answer 𝐹1 24.94 19.93 34.52 39.08
Answer 𝐹1 by type
extractive 23.19 8.27 29.98 37.50
abstractive 17.35 1.52 10.28 14.92
boolean 57.96 23.76 52.34 49.51
none 11.84 98.45 89.57 89.09
Evidence 𝐹1 12.73 25.74 34.32 38.45

Table 4.14.: LongChat, dev-short set, two-step prompt, fine-tuned with QLoRA.

During training, we see an initial drop in performance for all question types that can be
answered with the paper as context (Table 4.14). When looking at the evidence score and
during qualitative analysis, we see that the model does not extract the correct paragraphs
leading to an inability to answer most of the questions. After the first epoch, the model
outputs “No relevant paragraphs found” in 900 of 990 cases. This improves with each epoch
as the paragraphs’ extraction improves. After five epochs, for 535 out of 990 questions the
model finds evidence. Still after the same number of epochs as the one-step prompt model,
this model still performs worse.

Even for longer papers and more difficult to reach evidence, the two-step prompt does
not improve performance as the evidence extraction also suffers on longer context and
also does not help even inside the original context window (Table 4.15). Out of 990
questions, the fine-tuned model still finds no evidence for 455 questions. When analyzing
the performance based on the extracted evidence (Table 4.15), we see that the model’s
performance also does not improve when finding at least some evidence: When evidence
is found, the 𝐹1 score of 46.45 is still worse than the best one-step model with 47.02 on
dev-short. While we see better performance on questions with no evidence (81.82 vs.
64.94), the problem is that this is not known a priori like paper length meaning we can
not reliably fuse the answers for these questions of the two-step prompt model with the
others from the one-step prompt model.
We also did one training run with the LoRA rank 𝑟 increased to 16 which doubles the

number of parameters affected by training. As the model has to handle two-tasks for the
two-step prompt, changing more parameters may improve performance. But like it was
noted in the publication of QLoRA [22], as long as LoRA is applied to all layers and building
blocks of the model, which is the case for QLoRA, 𝑟 is not very important for fine-tuning
performance. Therefore, the results were very similar to the two-step prompt with 𝑟 = 8
(compare Table 4.14 to Table A.1). We exhibit the detailed results in subsection A.3.1.

We also tested if changing the temperature increases performance (Table 4.16): Our
rationale is that the most probable evidence is none as the placeholder string for this is
always the same and occurs more often during training than any other evidence string.
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LongChat-32k Bin count Zero-shot 5 QLoRA
epochs Zero-shot 5 QLoRA

epochs

Variation Two-step Two-step Advanced
two-step

Advanced
two-step

Answer 𝐹1 per paper length
0k – 4k 333 25.68 41.57 19.26 44.78
4k – 8k 593 24.85 37.77 17.50 39.66
8k – 64 21.97 38.23 13.83 36.44
Evidence 𝐹1 per paper length
0k – 4k 333 12.91 38.09 0.00 12.01
4k – 8k 593 12.31 39.05 0.00 10.62
8k – 64 15.62 34.64 0.00 20.31
Answer 𝐹1 per absolute evidence position
0k – 4k 794 26.84 36.00 18.89 40.54
4k – 8k 173 23.40 30.31 16.64 34.97
8k – 6 28.96 56.19 2.75 39.78
No evidence 77 6.69 81.82 9.61 57.14
Evidence 𝐹1 per absolute evidence position
0k – 4k 794 9.07 35.17 0.00 7.81
4k – 8k 173 5.78 28.75 0.00 5.78
8k – 6 0.00 16.67 0.00 16.67
No evidence 77 61.04 87.01 0.00 61.04
Answer 𝐹1 per extracted evidence
none (varies) 24.03 30.40 0.00 47.93
some (varies) 25.52 46.45 17.85 39.28
Evidence 𝐹1 per extracted evidence
none (varies) 32.90 40.44 0.00 53.46
some (varies) 0.00 36.75 0.00 0.00

Table 4.15.: LongChat, dev-short set, two-step prompts, compare initial and advanced
prompt, zero-shot vs. fine-tuned with QLoRA.
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Also, it is not that important if the found paragraphs are perfectly correct (e.g., not too
long): It just has to be useful to answer the question. Yet, increasing the temperature
monotonously decreases both the evidence and answer 𝐹1 scores. On top of reduced
quality, the percentage of empty evidence rises from ∼46% (0.0) to ∼66% (1.0).

LongChat-32k 0.0 0.2 0.4 0.6 0.8 1.0
Answer 𝐹1 39.08 37.61 35.05 33.15 30.57 29.60
Evidence 𝐹1 38.45 37.20 35.31 33.54 31.85 29.16

Table 4.16.: LongChat, dev-short set, two-step prompt, fine-tuned 5 epochs with QLoRA,
varying temperatures.

We now employ all small techniques we presented in the section before to improve the
two-step prompt: Prefix for evidence extraction, question repetition and changing the ratio
of the examples in the training data that feature no found evidence. In the training data
(<8k tokens), only around 16% of the questions are annotated with no evidence. However,
the model that we fine-tuned on the “standard” two-step prompt generates no extracted
evidence for around 40% of the questions which is 2.5 times as often. We assume a linear
dependency between percentage of training answers without evidence and the percentage
of generated answers without evidence. We lower the ratio of questions with no evidence
in the training data to around 6% to arrive at 16% of generated empty evidence.

LongChat-32k Zero-shot 1 epoch 3 epochs 5 epochs
Answer 𝐹1 17.85 27.59 41.54 41.18
Answer 𝐹1 by type
extractive 16.37 22.27 45.00 41.82
abstractive 16.03 10.64 21.06 19.41
boolean 36.75 59.66 68.14 58.10
none 5.33 59.79 40.23 69.23
Evidence 𝐹1 0.00 26.37 31.12 35.13

Table 4.17.: LongChat, dev-short set, two-step prompt, improved, fine-tuned with
QLoRA.

While the answer 𝐹1 score does improve with this adapted prompt for the fine-tuned
model (Table 4.17) when compared to the simpler two-step prompt (Table 4.14), the
evidence 𝐹1 is lower even though the percentage of empty evidence drops from around
46% to around 22%. Also, for the zero-shot prompt all question types show worse results
and the evidence score even drops to 0.0. Manual investigation shows that the model
generated very long paragraphs as evidence in the zero-shot setup which led to this score.
In further analysis (Table 4.15), the advanced two-step prompt shows slightly better

results for papers with under 8k tokens and evidence below the same threshold. But the
𝐹1 scores are still below those of the one-step prompt (Table 4.8). Even the answers where
the model found evidence are not better than those of the previous two-step prompt. We
therefore can only use the evidence extracted by the two-step prompt as an addition to the
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answers generated with the LongBench prompt (fine-tuned) but can not use it to generate
answers.

4.3.5. Split Prompt

To determine how to split the papers, we first have to find out what the optimal split
length is. It is possible that the evidence extraction on less than 4k tokens (e.g., 2k) is
better. Our investigation (Table 4.18) shows that the two-step prompt is better than no
evidence extraction in every case. The difference is even greater when binned per evidence
position. We also conclude that the difference between none and extracted evidence for
shorter papers does not justify splitting the text further than into parts of 4k tokens or
less. When splitting the papers into parts, we try to add a buffer for the prompt meaning
that paper text and prompt together should still be shorter than 4k tokens. This leads to
216 papers that are not split even though 333 paper have a length of 4k tokens or less. We
try to split them on section borders.

Method Bin count No evidence Two-step prompt
Evidence 𝐹1 per paper length
0k – 4k 333 28.83 38.09
0k – 2k 18 55.56 59.26
2k – 4k 315 27.30 36.88
Evidence 𝐹1 per absolute evidence position
0k – 4k 794 18.77 35.17
0k – 2k 531 22.41 34.08
2k – 4k 376 13.83 33.92

Table 4.18.: Comparison of evidence extract on <4k tokens, dev-short set, no evidence vs.
evidence extraction via two-step prompt.

We utilize the models we already trained for this use case: We use the model trained
on the two-step prompt for evidence extraction and the evidence only model to answer
the questions based on the extracted evidence. However, we saw no performance gains
compared to the two-step prompt (Table 4.19) as the evidence extraction experienced a
quality degradation.

Model 2-step prompt Split prompt
Answer 𝐹1 39.08 33.32
Answer 𝐹1 by type
extractive 37.50 31.77
abstractive 14.92 10.62
boolean 49.51 37.86
none 89.09 85.84
Evidence 𝐹1 38.45 23.04

Table 4.19.: LongChat, dev-short set, split prompt compared to previous results.
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4.3.6. Modify Attention Algorithm

Our modified attention algorithm masks the 𝑘 lowest attention weights along the sequence
length before the softmax function (see Equation 2.2) to focus more attention on the more
important tokens. We start our experiments with a “window” size of 4k to see if masking
all tokens that exceed the original context window by their number enables the model to
perform better.

Our naive implementation requires creating an index matrix with size of the attention
matrix minus 𝑘 on each dimension. This leads to out-of-memory errors even with four
GPUs during inference for papers with a length of over 8k tokens. We therefore exclude
the affected bins of our results. As the performance for our earlier approaches already
drops after the original context window size of 4k, the truncated results should still show
if the modified attention improves 𝐹1 scores on longer context.

The modified attention seems to have no positive impact as the performance stays about
the same or decreases slightly (Table 4.20).

Models Bin count Vicuna-4k Vicuna-4k LongChat-32k LongChat-32k
Attention unmodified 4k window unmodified 4k window
Answer 𝐹1 per paper length
0k – 4k 333 38.89 38.89 52.15 52.05
4k – 8k 593 18.53 17.86 44.45 43.60
Answer 𝐹1 per absolute evidence position
0k – 4k 794 23.99 23.52 46.28 44.03
4k – 8k 173 9.33 9.85 37.74 36.73

Table 4.20.:Modified attention, dev-short set, LongBench prompt [6], fine-tuned with
QLoRA for 5 epochs (before modification).

4.3.7. Final Comparison against Baselines

Finally, we want to compare the results of our experiments against task-specific models
and strong LLMs.

Qasper Baseline First, we compare our best approach against the baseline model from the
original publication of the Qasper dataset [21]. Their model is the Longformer-Encoder-
Decoder (LED) [7] in two sizes: base and large. It contains more fine-grained results
than the comparison on the ZeroSCROLLS [64] subset of Qasper. The authors of Qasper
provide the detailed results per question type for the answer 𝐹1 of the LED-base model
and evidence 𝐹1 of both model sizes. Also, they estimate a lower bound for the human
performance on the test set by calculating the agreement between different annotator
answers for each question. Their best model for question answering is LED-base that
receives the full paper as input. One variant includes evidence extraction during training.
We chose LongChat-32k trained with the LongBench prompt as our best approach as it
had the best results on the dev-short set and showed the best scaling behavior for papers
and evidence exceeding LLaMA’s original context window length.
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Models

LongChat-32k
LongBench
prompt
zero-shot

LongChat-32k
LongBench
prompt
5 epochs

LED-base
without
evidence
extraction

LED-base
with

evidence
extraction

Human
(lower
bound)

Dev answer 𝐹1 23.83 46.87 29.05 28.01 –
Dev answer 𝐹1 by type
extractive 26.21 48.00 26.07 24.62 –
abstractive 20.39 20.34 16.59 13.86 –
boolean 35.87 76.23 67.48 63.64 –
none 0.04 67.78 28.57 38.89 –
Test answer 𝐹1 28.81 55.20 32.80 33.63 60.92
Test answer 𝐹1 by type
extractive 28.39 54.89 30.96 29.97 58.92
abstractive 20.82 18.79 15.76 15.02 39.71
boolean 56.11 84.68 70.33 68.90 78.98
none 2.14 86.42 26.21 44.97 69.44

Table 4.21.: Comparison of our approaches against baselines from the Qasper paper, full
dev and test set.

Our comparison (Table 4.21) shows that LED has a similar distribution of the 𝐹1 scores
per type. The extractive score is higher than the abstractive score and the boolean score
is the highest or close to it. We can also see a similar behavior of the LED model to
the two-step prompt when integrating evidence extraction into the answer generation
process: The extractive and abstractive scores suffer while the model detects unanswerable
questions better. Also, our best approach performs better on questions with very short
answers (yes/no, unanswerable) than the lower bound for human performance. This could
be an explanation of our observation that longer training does not improve these scores
after they reach a certain level (trade-off: short vs. long answers). However, the quality of
the abstractive answers is considerably worse (39.71 vs. 18.79).
For the evidence extraction, our best model is LongChat-32k fine-tuned with the two-

step prompt. While the evidence extraction did not improve the answer quality in our case,
it can be a useful addition for the user of a QA system to contextualize the answer. Here,
the difference between our approach and the Qasper baseline LED-large (Table 4.22) is not
as high as for the answer 𝐹1 score but we still see a clear improvement over the baseline.

ZeroSCROLLS Baselines Our second comparison is on the ZeroSCROLLS subset of the
Qasper test set whichwe think is representative enough for the full test set (subsection 4.1.1)
to use it for comparison to strong LLMs. We compare our approach to three of the
models that the authors of ZeroSCROLLS evaluated: Flan-UL2 which is the strongest
open-source and encoder-decoder model on ZeroSCROLLS and particularly on the Qasper
subet, GPT-4 which is the strongest overall model on ZeroSCROLLS and one of the highest
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Models

LongChat-32k
two-step
prompt
5 epochs

LED-base LED-large
Human
(lower
bound)

Dev evidence 𝐹1 38.27 23.94 31.25 –
Test evidence 𝐹1 42.57 29.85 39.37 71.62

Table 4.22.: Comparison of our approaches against baselines from the Qasper paper, full
dev and test set, evidence extraction.

performing current LLMs, and CoLT5 which is a model that the authors fine-tuned per
task in ZeroSCROLLS.

The ZeroSCROLLS subset uses a slightly different prompt (subsection A.1.1) for Qasper
and does not include the title and abstract in the input. We compare our approaches with
both prompts: ZeroSCROLLS (ZC) and LongBench (LB). We included both title and abstract
during our experiments because we wanted the model to have as much information from
the paper as possible. For the comparison with the other models that the authors of
ZeroSCROLLS evaluated we do not include title or abstract.

Models Flan-UL2 GPT-4 CoLT5 LC-32k
0-shot

LC-32k
0-shot

LC-32k
5e

LC-32k
5e

Training prompt – – ZC – – LB LB
Inference prompt ZC ZC ZC ZC LB ZC LB
Answer 𝐹1 56.90 50.70 53.10 25.80 31.07 46.90 52.73

Table 4.23.: Baseline results from ZeroSCROLLS benchmark [64] compared to our results
(LongChat-32k (LC-32k), 5 epochs (5e)), ZeroSCROLLS subset of Qasper test
set.

With the LongBench prompt used during inference, our best approach exceeds GPT-4’s
𝐹1 score on the ZeroSCROLLS subset, comes close to the strongest model, and represents
a great improvement over the zero-shot setup (Table 4.23). It is important to note that the
ZeroSCROLLS authors mentioned that GPT-4 sometimes struggled more than other models
to follow the prompt on Qasper. When we use the same prompt as the other models, both
our zero-shot and the fine-tuned model lose more than 5 𝐹1 points showing how important
prompting can be. As the performance drop is almost the same, we assume that for the
fine-tuned model this is not a result of the mismatch between the training prompt and the
inference prompt. The fine-tuned LongChat-32k model with the LongBench prompt is
only able to almost match the task-specific model. We assume that this observation and
the fact that Flan-UL2 is the best performing model are a result of these models being full
transformers with an encoder and a decoder. The bidirectional encoder that processes the
context together with the question and the prompt before generating the answer could
help here.
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After presenting and discussing our results, we want to give answers to our research
questions (section 1.1) and discuss how future work could further research LLM-based QA
systems for scientific papers.

5.1. Answers to Research Questions

Our experiments resulted in the following answers to the research questions we formulated
in the beginning.

Research Question 1: How well do LLMs process scientific papers – especially consid-
ering their length?
We observe that the (unmodified) small open-source long-context LLMs we tested are

able to process scientific papers with up to about 16k tokens from the Qasper dataset but
fall short of commercial LLMs. The performance also drops after the context exceeds the
original context window – especially if the relevant information to answer to question lies
in that region of the paper. Yet it is important to note that we saw that techniques like
Positional Interpolation can increase the long-context understanding of LLMs.
Research Question 2: How much does fine-tuning a small LLM on only a single

datacenter GPU increase performance on one specific task compared to bigger and better
LLMs?

Whenwe employ the current techniques for efficient trainingQLoRA and FlashAttention,
we can fine-tune the models on papers with a length of up to 8k tokens on a single
datacenter GPU that is available to a university student for research. While Qasper
(including the training split) also contains a lot of papers with more than 8k tokens, the
performance of our fine-tuned model still increases for these longer papers without being
trained on these lengths. Experiments with models that we only trained on extracted
paragraphs without providing the model the full paper suggest that our training primarily
improves instruction following but also improves the models’ ability to determine if a
question is unanswerable as it has to learn the connection between the absence of relevant
information and the unanswerability of the question. When comparing our results against
baselines, we saw that our best approach reaches or surpasses the result of GPT-4 which
is or was until recently the SOTA for many NLP tasks.
Research Question 3: How much can prompting / fine-tuning improve the truthful-

ness of the answers of the LLM? How much can prompting / fine-tuning improve the
truthfulness of the answers of the LLM? How high is the human performance?
Especially LongChat-32k benefits a lot from fine-tuning as it enables it to follow our

instructions and give concise answers to yes/no questions or questions that are not answer-
able with the given context. For these question types, our modified model even slightly
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exceeds the lower bound of human performance while there is still a large gap for free
form answers. As models like GPT-4 that are in general better in almost every NLP task
than the models we tested also achieve better results, we assume that even if the 𝐹1 score
can not determine semantic meaning, it indicates that our approaches help the models to
generate better answers.

5.2. Future Work

We think there are two main starting points to continue the presented work: Besides
from making our naively modified attention algorithm more efficient in the spirit of
FlashAttention or similar techniques, the masking could be replaced by a cropping of the
sequence. After passing the sequence into the model and generating the hidden states,
these states could again be used to determine the importance of the tokens in the sequence
from the attention weights. This information could be brought back to the input where
the tokens with a low attention weight are deleted. This shortened sequence is then again
fed into the model and used to generate an answer.

This idea resembles retrieval-augmented generation where one model determines which
small parts of the large context are important and passes them to a second model that uses
only these as its context. As this reduces the length of the sequence processed by the second
model, this could make it possible to use a bigger model if we assume a fixed compute and
memory budget. For example, a retrieval model selects the important paragraphs from the
paper and Vicuna-13B or an even bigger model generates the answer.
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A. Appendix

A.1. Prompts

We used the following prompts during our experiments. <CONTEXT> stands for the paper
text or a shortened version of it while <QUESTION> is the placeholder for the specific
question on the provided context.

A.1.1. ZeroSCROLLS

You are given a scientific article and a question. Answer the question as concisely as you
can, using a single phrase or sentence if possible. If the question cannot be answered
based on the information in the article, write "unanswerable". If the question is a yes/no
question, answer "yes", "no", or "unanswerable". Do not provide any explanation.

Article: <CONTEXT>

Question: <QUESTION>

A.1.2. LongBench (our version)

You are given a scientific article and a question. Answer the question as concisely as you
can, using a single phrase or sentence if possible. If the question cannot be answered based
on the information in the article, write ’unanswerable’. If the question is a yes/no question,
answer ’yes’, ’no’, or ’unanswerable’. Do not provide any explanation.
Article: <CONTEXT>
Answer the question based on the above article as concisely as you can, using a single
phrase or sentence if possible. If the question cannot be answered based on the information
in the article, write ’unanswerable’. If the question is a yes/no question, answer ’yes’, ’no’,
or ’unanswerable’. Do not provide any explanation.
Question: <QUESTION>

A.1.3. Evidence only

You are given excerpts from a scientific article and a question. Answer the question as
concisely as you can, using a single phrase or sentence if possible. If the question cannot
be answered based on the information in the excerpts from an article, write ’unanswerable’.
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If the question is a yes/no question, answer ’yes’, ’no’, or ’unanswerable’. Do not provide
any explanation.
Excerpts from Article: <CONTEXT>
Answer the question based on the above excerpts from an article as concisely as you can,
using a single phrase or sentence if possible. If the question cannot be answered based on
the information in the excerpts from an article, write ’unanswerable’. If the question is a
yes/no question, answer ’yes’, ’no’, or ’unanswerable’. Do not provide any explanation.
Question: <QUESTION>

A.1.4. Two-turn

Turn 0:
You are given a scientific article and a question. Extract all paragraphs that are relevant to
answer the question. Copy them word by word from the article. If there are no relevant
paragraphs answer ’No relevant paragraphs found’. Do not provide any explanation.
Article: <CONTEXT>
Extract all paragraphs that are relevant to answer the question. Copy them word by word
from the article. If there are no relevant paragraphs answer ’No relevant paragraphs
found’.
Question: <QUESTION>

Turn 1:
Answer the question based on your extracted relevant paragraphs from the above article
and answer as concisely as you can, using a single phrase or sentence if possible. If the
question cannot be answered based on the information in the article (your last answer
was possibly ’No relevant paragraphs found’), write ’unanswerable’. If the question is a
yes/no question, answer ’yes’, ’no’, or ’unanswerable’. Do not provide any explanation.
Question: <QUESTION>

A.1.5. Two-turn, Advanced (Prefix for Evidence, Question Repeated)

Turn 0:
You are given a scientific article and a question. Extract all paragraphs that are relevant to
answer the question. Copy them word by word from the article and start with ’Found these
relevant paragraphs:’. If there are no relevant paragraphs answer ’No relevant paragraphs
found’. Do not provide any explanation.
Question: <QUESTION>
Article: <CONTEXT>
Extract all paragraphs that are relevant to answer the question. Copy them word by word
from the article. If there are no relevant paragraphs answer ’No relevant paragraphs
found’.
Question: <QUESTION>
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Turn 1:
Answer the question based on your extracted relevant paragraphs from the above article
and answer as concisely as you can, using a single phrase or sentence if possible. If the
question cannot be answered based on the information in the article (your last answer
was possibly ’No relevant paragraphs found’), write ’unanswerable’. If the question is a
yes/no question, answer ’yes’, ’no’, or ’unanswerable’. Do not provide any explanation.
Question: <QUESTION>

A.1.6. Split

Evidence extraction:
You are given a few sections from a scientific article and a question. Extract all paragraphs
that are relevant to answer the question. Copy them word by word from the provided sec-
tions from the article. If there are no relevant paragraphs answer ’No relevant paragraphs
found’. Do not provide any explanation.
Sections from an article: <CONTEXT>
Extract all paragraphs that are relevant to answer the question. Copy them word by word
from the provided sections from the article. If there are no relevant paragraphs answer
’No relevant paragraphs found’.
Question: <QUESTION>

Generated evidence only: You are given extracted relevant paragraphs from a scientific
article and a question. Answer the question as concisely as you can, using a single phrase
or sentence if possible. If the question cannot be answered based on the information in
the relevant paragraphs from an article, write ’unanswerable’. If the question is a yes/no
question, answer ’yes’, ’no’, or ’unanswerable’. Do not provide any explanation.
Relevant paragraphs from Article: <CONTEXT>
Answer the question based on the above relevant paragraphs from an article as concisely as
you can, using a single phrase or sentence if possible. If the question cannot be answered
based on the information in the relevant paragraphs from an article, write ’unanswerable’.
If the question is a yes/no question, answer ’yes’, ’no’, or ’unanswerable’. Do not provide
any explanation.
Question: <QUESTION>

A.2. Answers from Models

Here, we show full answers from models to highlight certain aspects of their answering
style.

A.2.1. LongChat, Unanswerable

We highlight the part of the answer that determines the question as unanswerable.
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• Examples 1
– Question: “How do their results compare to state-of-the-art?”
– Answer: “The results of the current study, which focuses on detecting offensive

language in English tweets, are compared to state-of-the-art methods. The au-
thors explore various approaches, including Google universal sentence encoder,
Fasttext-based embedding, Dynamic Mode Decomposition (DMD) based fea-
tures, and Random Kitchen Sink (RKS) explicit mapping. The study finds that
the RKS approach improves the evaluation scores, achieving competitive results.
However, the article does not provide specific comparisons to state-of-the-art
methods, leaving the answer to the question ’unanswerable’”.

• Example 2
– Question: “How large are the textual descriptions of entities?”
– Answer: “The textual descriptions of entities in the article range from a few
words to several sentences, depending on the context and the specific entity
being described. The article does not provide specific length constraints
for these descriptions, but it is mentioned that the text encoders used in the
study can handle variable-length sentences.”

A.3. Results

Some experiments we ran provided not enough new information to show them in the
main text, but we list them here.

A.3.1. Two-step Prompt, r = 16

LongChat-32k Zero-shot 1 epoch 3 epochs 5 epochs
Answer 𝐹1 24.94 20.44 32.31 38.50
Answer 𝐹1 by type
extractive 23.19 8.95 26.27 36.28
abstractive 17.35 1.66 8.12 13.74
boolean 57.96 24.75 53.27 50.49
none 11.84 98.45 89.74 90.18
Evidence 𝐹1 12.73 26.19 32.99 36.73

Table A.1.: LongChat, dev-short set, two-step prompt, fine-tuned with QLoRA, rank r
set to 16 (instead of 8).
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