
Karlsruhe Institute of Technology
Department of Informatics

Institute for Anthropomatics and Robotics

Master Thesis

Extrapolating Beyond the Imitation Game

-

Teaching Large Language Models Reasoning

in First-Order Logic

Author: Simon Döbele (2381466)

Thesis committee: Prof. Dr. Jan Niehues
Prof. Dr. Gregor Betz

A thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Information Systems.

September 28, 2023

Declaration in English: I declare that I have developed and written the enclosed thesis
completely by myself. I have not used any other than the aids that I have mentioned. I
have marked all parts of the thesis that I have included from referenced literature, either
in their original wording or paraphrasing their contents. I have followed the by-laws to
implement scientific integrity at KIT.

Erklärung auf Deutsch: Ich versichere wahrheitsgemäß, die Arbeit selbstständig ver-
fasst, alle benutzten Quellen und Hilfsmittel vollständig und genau angegeben und alles
kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderun-
gen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher
Praxis in der jeweils gültigen Fassung beachtet zu haben.

Karlsruhe, September 28, 2023

. .
Simon Döbele

Abstract

Large language models (LLMs), such as GPT-3 and more recently Llama-2,
have achieved ever more impressive results on many natural language under-
standing tasks. Benchmarks such as BIG Bench hard needed to exclude certain
tasks, because LLMs have managed to perform so well on them. Finding ever
more challenging reasoning tasks for LLMs has been of much interest. On the
other hand, LLMs still make silly reasoning mistakes or hallucinate, that is,
make false claims as if they were true. Alleviating these mistakes and halluci-
nations has equally been of much interest. That is why, in this thesis, we aim
to teach LLMs to emulate reasoning in first-order (predicate) logic.

In order to address this challenge, we design and build a first-of-its-kind syn-
thetic dataset that we call the "Synthetic Predicate Logic Corpus" (or SPLC),
which includes three tasks in reasoning using both natural language and the
artificial language of predicate logic. By making use of a model checker, we
can automatically generate the labels; and by building (or modifying) seman-
tic parsers, we can map between natural language and the language of logic.
Besides automatic labeling, the big advantage of our dataset is that we can
also adjust its difficulty. We produce a baseline that we compare our models’
performance to.

In over 150 experiments, we show the first empirical demonstration that the
Falcon, Llama, Orca, and Wizard LLMs can emulate logical reasoning in first-
order logic when using LoRA adapters. We find that they are only able to
generalize to more difficult tasks to a small extent, although scaling is not
robust.

To the person who most discussed AI with me

Acknowledgements

I would like to express my heartfelt gratitude to all those who have contributed

to the successful completion of this thesis. This journey has been rewarding

and fulfilling, and it would not have been possible without your support and

guidance.

First and foremost, I extend my deepest appreciation to my academic advisors,

Prof. Dr. Gregor Betz and Prof. Dr. Jan Niehues. Your unwavering support,

your time for regular discussions, your insightful guidance, and mentorship

have been invaluable throughout this research. A big thank you to Prof. Dr.

Gregor Betz, for preparing me for writing a thesis on language models during

his seminar, for his expertise in the area of logic and language modeling, and for

proposing to create something new for this exciting field. A big thank you to

Prof. Dr. Jan Niehues for his expertise in the area of artificial intelligence for

language technologies and thank you to him and his Phd student Sai Koneru

for providing access to their GPU cluster. Both of my advisor’s expertise and

dedication to my academic growth have positively impacted not only this thesis

but also my overall development as a researcher.

I also extend my thanks to the many professors and teachers who have shaped

my academic journey: thank you to Prof. Rainer Hegselmann for instilling

my love for logic and argumentation theory; thank you to Prof. Olivier Roy,

professor of philosophy, who let me write my first essay at university about

John Searle’s Chinese Room Argument, which kickstarted my interest in AI;

thank you to Dr. Donal Khosrowi Djen-Gheschlaghi, for teaching me how to

write clearly and precisely; thank you to John DeNero, for growing my interest

and love for coding; thank you to Prof. Johan Boye, for teaching me the basics

of language models.

To my wife, friends and family, your unwavering support, patience, and encour-

agement were my pillars of strength throughout this journey. I am profoundly

grateful for your belief in me and your understanding during the challenging
times.

Hardware (GPU) support for this research was provided both by Prof. Jan
Niehues and by BW Unicluster and I am grateful for their generous access to
use their resources, which enabled me to carry out this study.

Financial support during my thesis was provided by Max-Weber Programm
of the Free State of Bavaria, and I thank them for their generous support.
The financial assistance greatly alleviated the pressures associated with study
expenses.

In conclusion, I am thankful to each and every individual and organization
mentioned here, as well as those whose support may not be explicitly mentioned
but was nonetheless significant. Your contributions have played an integral role
in the completion of this thesis and my academic journey.

Thank you all for being part of this remarkable chapter in my life.

Simon Döbele

September 2023

Contents

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Problem Statement, Design and Research Questions 3

1.2 Thesis outline . 4

2 Theoretical Background 7

2.1 Neural Networks and Deep Learning . 8

2.1.1 Feedforward Neural Networks . 8

2.1.2 RNNs and LSTMs . 10

2.1.3 The Transformer Architecture . 11

2.1.3.1 Self-attention . 11

2.1.3.2 The transformer block . 14

2.1.3.3 Positional Encodings . 15

2.2 Language modeling . 16

2.2.1 Word embeddings . 16

2.2.2 N-gram language models . 17

2.2.3 Neural Language Models . 17

2.3 Parameter-Efficient Fine-Tuning . 19

2.4 Quantization . 22

2.5 First-order (Predicate) Logic . 23

2.5.1 Syntax . 23

2.5.2 Semantics . 26

2.6 Model Checkers & Automated Theorem Provers 27

vii

CONTENTS

3 Related Work 29

3.1 Logical Reasoning . 29

3.1.1 RuleTakers . 30

3.1.2 RuleReasoner: Solving SAT problems with LMs 31

3.1.3 Predicate Logic Inference . 32

3.2 Semantic Parsing . 34

3.3 Program Synthesis . 35

4 Methodology 37

4.1 Overview . 38

4.2 Dataset Construction . 39

4.3 Task Definitions . 44

4.4 Evaluation . 47

4.4.1 Baselines . 47

4.4.2 Zeroshot & Fewshot learning, Finetuning and Generalization 48

4.4.3 Dataset Sizes . 49

4.4.4 Parsers . 50

4.4.5 Prompts . 51

4.5 Models . 52

5 Experiments and Results 57

5.1 Baselines . 57

5.2 Dataset statistics . 61

5.3 Zeroshot learning . 62

5.4 Fewshot learning . 63

5.5 Finetuning . 72

5.5.1 Finetuning on one Task . 72

5.5.2 Generalization to other Tasks . 77

5.5.3 Finetuning on all tasks . 79

5.5.4 Generalization to a harder Task . 80

6 Conclusion 83

6.1 Answers to Research Questions . 83

6.2 Future Research . 85

References 89

viii

CONTENTS

Appendix 97

A Illustrative items of the synthetic base dataset 97
A.1 Task 1: Create Formula . 97
A.2 Task 2: Create world model . 98
A.3 Task 3: Deduce sat . 99

B Dataset statistics . 100
B.1 Fewshot and Zershot evaluation . 100
B.2 Training evaluation . 101
B.3 Hard evaluation . 103
B.4 Training on a single task . 105
B.5 Training on multiple tasks . 107

C Results for Prompt 2. 108
D Training Hyperparameters . 111

ix

CONTENTS

x

List of Figures

2.1 A neural unit (figure from (Jurafsky and Martin, 2022). 9

2.2 The sigmoid activation function (figure from (Jurafsky and Martin, 2022). . 9

2.3 A feedfoward neural network (figure from (Jurafsky and Martin, 2022). . . . 10

2.4 The transformer block as part of the transformer architecture (figure from

(Jurafsky and Martin, 2022). 11

2.5 Self-attention as part of the transformer architecture (figure from (Jurafsky

and Martin, 2022). 12

2.6 How one output token y3 is calculated given an input sequence x1, x2, x3

in one neuron of the self-attention layer (figure from (Jurafsky and Martin,

2022). 13

2.7 The transformer architecture (figure from (Vaswani et al., 2017). 15

2.8 Training in the transformer architecture (image by (Jurafsky and Martin,

2022). 18

2.9 Low-rank adapters (image by (Hu et al., 2021). 21

2.10 An example of an interpretation. 26

3.1 Example of logical reasoning task by and figure from (Clark et al., 2020). . . 31

3.2 Example of logical reasoning task by and figure from (Richardson and Sab-

harwal, 2022). 31

3.3 Logical reasoning task by and figure from Betz et al. (2020). 33

4.1 An overview of our methodology and system design. 39

4.2 How we construct our dataset. 40

4.3 Inputs for each task and expected outputs. Parsers map between the lan-

guage of logic and natural language. 45

xi

LIST OF FIGURES

5.1 An analysis of how the number of constants (in the world model) affect the
probability that a datapoint fulfills the label (assuming that we have a com-
plete but random mapping from constants to predicates). We oversample
datapoints from above the critical region. 60

5.2 Fewshot performance on task 3 (deduce sat).
Top: Left: Falcon-7b; Middle: Llama-13b; Right: Flan-Ul2.
Bottom: Left: Orca-13b; Right: Wizard-15b. 65

5.3 Fewshot performance on task 2 (create world model).
Top: Left: Falcon-7b; Middle: LLama-13b; Right: Flan-Ul2.
Bottom: Left: Orca-13b; Right: Wizard-15b. 66

5.4 Fewshot performance on task 1 (create formula).
Top: Left: Falcon-7b; Middle: LLama-13b; Right: Flan-Ul2.
Bottom: Left: Orca-13b; Right: Wizard-15b. 67

5.5 Fewshot performance of Flan-Ul2 on task 1 (create formula). Prompt com-
parison. Left: Prompt 1. Right: Prompt 2. 68

5.6 Fewshot performance of Flan-Ul2 on task 2 (create world model). Prompt
comparison. Left: Prompt 1. Right: Prompt 2. 69

5.7 Fewshot performance of Flan-Ul2 on task 3 (deduce sat). Prompt compari-
son. Left: Prompt 1. Right: Prompt 2. 69

5.8 Fewshot performance of Orca on task 1 (create formula). Prompt compari-
son. Left: Prompt 1. Right: Prompt 2. 70

5.9 Fewshot performance of Llama on task 1 (create formula). Prompt compar-
ison. Left: Prompt 1. Right: Prompt 2. 70

5.10 Fewshot performance of Wizard on task 1 (create formula). Prompt com-
parison. Left: Prompt 1. Right: Prompt 2. 71

5.11 Fewshot performance of Orca on task 2 (create world model). Prompt com-
parison. Left: Prompt 1. Right: Prompt 2. 71

5.12 Fewshot performance of Wizard on task 2 (create world model). Prompt
comparison. Left: Prompt 1. Right: Prompt 2. 72

5.13 Llama-13b (finetuned on task 1 - create formula). 77

5.14 Wizard-15b (finetuned on task 2 - create world model). 77

5.15 Orca-13b (finetuned on task 3 - deduce sat). 77

5.16 Finetuned performance: Correct and Incorrect answers on the respective
task depending on whether one or two predicates appear in the formula.
More predicates means lower accuracy across tasks and models. 77

xii

LIST OF FIGURES

6.1 Number of datapoints that have a certain number of constants. Fewshot
and Zeroshot. 100

6.2 Number of datapoints that have a certain number of keys. Fewshot and
Zeroshot. 100

6.3 Number of datapoints that have a certain number of sentences (world model
size). Fewshot and Zeroshot. 101

6.4 Number of datapoints that have a certain number of negations. Fewshot
and Zeroshot. 101

6.5 Number of datapoints that have a certain total number of operators. Few-
shot and Zeroshot. 101

6.6 Number of datapoints that have a certain number of constants. Training
evaluation. 102

6.7 Number of datapoints that have a certain number of keys. Training evaluation.102
6.8 Number of datapoints that have a certain number of sentences (world model

size). Training evaluation. 102
6.9 Number of datapoints that have a certain number of negations. Training

evaluation. 103
6.10 Number of datapoints that have a certain total number of operators. Train-

ing evaluation. 103
6.11 Number of datapoints that have a certain number of constants. Hard dataset.104
6.12 Number of datapoints that have a certain number of keys. Hard dataset. . . 104
6.13 Number of datapoints that have a certain number of sentences (world model

size). Hard dataset. 104
6.14 Number of datapoints that have a certain number of negations. Hard dataset.104
6.15 Number of datapoints that have a certain total number of operators. Hard

dataset. 105
6.16 Number of datapoints that have a certain number of constants. Finetuning. 105
6.17 Number of datapoints that have a certain number of keys. Finetuning. . . . 106
6.18 Number of datapoints that have a certain number of sentences (world model

size). Finetuning. 106
6.19 Number of datapoints that have a certain number of negations. Finetuning. 106
6.20 Number of datapoints that have a certain total number of operators. Fine-

tuning. 106
6.21 Number of datapoints that have a certain number of constants. 107
6.22 Number of datapoints that have a certain number of keys. 107

xiii

LIST OF FIGURES

6.23 Number of datapoints that have a certain number of sentences (world model
size). 108

6.24 Number of datapoints that have a certain number of negations. 108
6.25 Number of datapoints that have a certain total number of operators. 108
6.26 Fewshot performance on task 1 (create formula). Prompt 2.

Top: Left: Falcon-7b; Middle: Llama-13b; Right: Flan-Ul2.
Bottom: Left: Orca-13b; Right: Wizard-15b. 109

6.27 Fewshot performance on task 2 (create world model). Prompt 2.
Top: Left: Falcon-7b; Middle: Llama-13b; Right: Flan-Ul2.
Bottom: Left: Orca-13b; Right: Wizard-15b. 110

6.28 Fewshot performance on task 3 (deduce sat). Prompt 2.
Top: Left: Falcon-7b; Middle: Llama-13b; Right: Flan-Ul2.
Bottom: Left: Orca-13b; Right: Wizard-15b. 111

xiv

List of Tables

2.1 A list of symbols from predicate logic. 24

4.1 Illustrative example for each task derived from the base dataset. 46

4.2 Number of datapoints for training and evaluation datasets. 50

4.3 Overview of the large language models used. 52

5.1 Baselines for the three tasks of the base dataset. 57

5.2 A list of select formulas from the base dataset, their possible target labels,

and the probability that a certain number of constants (that are either

mapped to the predicate or not with probability 0.5) fulfill the target label. 59

5.3 Baselines for the three tasks of the hard dataset. 61

5.4 Zeroshot accuracies for the three tasks. 63

5.5 Zeroshot and (best) fewshot accuracies for task 1 (create formula). Prompt 1. 64

5.6 Zeroshot and (best) fewshot accuracies for task 2 (create world model).

Prompt 1. 64

5.7 Fewshot accuracies for task 3 (deduce sat). One, two or four examples.

Prompt 1. 64

5.8 Fewshot accuracies for task 1 (create formula). One, two or four examples.

Prompt 1. 66

5.9 Fewshot accuracies for task 2 (create world model). One, two or four exam-

ples. Prompt 1. 67

5.10 Finetuning accuracies for task 1 (create formula). 73

5.11 Finetuning accuracies for task 2 (create world model). 73

5.12 Finetuning accuracies for task 3 (deduce sat). 74

5.13 Generalization from language models trained on Task 1 (create formula) to

other tasks. 78

xv

LIST OF TABLES

5.14 Generalization from language models trained on Task 2 (create world model)
to other tasks. 78

5.15 Generalization from language models trained on Task 3 (deduce sat) to other
tasks. 78

5.16 Finetuning accuracies for all tasks after training on all tasks. 79
5.17 How well do the models generalize to a harder dataset w.r.t. task one (create

formula)? . 80
5.18 How well do the models generalize to a harder dataset w.r.t. task two (create

world model)? . 81
5.19 How well do the models generalize to a harder dataset w.r.t. task three

(deduce sat)? . 82

6.1 Fewshot accuracies for task 1 (create formula). One, two or four examples.
Prompt 2. 109

6.2 Fewshot accuracies for task 2 (create world model). One, two or four exam-
ples. Prompt 2. 110

6.3 Fewshot accuracies for task 3 (deduce sat). One, two or four examples.
Prompt 2. 111

6.4 Training hyperparameters for the respective models in the single task setting
(for all three individual tasks). 112

xvi

Chapter 1

Introduction

In his seminal article "Computing Machinery and Intelligence", Alan Turing proposes to

measure whether a machine can think by a test, that we can call the Turing Test or the

Imitation Game. In this test, the machine communicates in writing with a human inter-

rogator, who does not know whether he writes with a machine or a human being. The goal

of the machine is to pass as a human being, such that the interrogator cannot distinguish

between a human and the machine (Turing, 1950). By his thought experiment, Turing has

motivated researchers with the idea of making machines master linguistic intelligence.

Current research directions in AI for natural language processing have largely abandoned

this kind of measure, and turned to benchmark datasets as the norm for showing progress

(Raji et al., 2021). Leaderboards for the language models that score the highest in these

benchmarks abound (see e.g. (Beeching et al., 2023)). Current research directions also

employ much more fine-grained measures than the one proposed by Turing - not neces-

sarily to measure intelligence per se, however, but rather regarding specific tasks, such as

translation, summarization, question answering or different kinds of reasoning tasks.

Large pre-trained transformer language models, such as GPT-2 and GPT-3, have achieved

ever more impressive results on many such natural language understanding tasks (see e.g.

(Radford et al., 2019), (Brown et al., 2020)), and even attracted media attention (especially

in the form of ChatGPT). However, even these large language models (LLMs) still make

silly reasoning mistakes (Lourie et al., 2021) or hallucinate, that is, they make false claims

as if they were true (see e.g. (McKenna et al., 2023), (Mündler et al., 2023), (Kassner and

Schütze, 2020)). Some would even go so far as to argue that, while large language models

possess knowledge of linguistic rules and patterns (i.e. a formal linguistic competence),

they lack a functional linguistic competence (such as formal reasoning skills) (Mahowald

et al., 2023).

1

1. INTRODUCTION

Maybe language models are just eloquent stochastic parrots, being able to imitate enough

aspects of producing language that humans consider them intelligent (Bender et al., 2021).

Or maybe language models show at least some sparks of intelligence and we can explain

their shortcomings where they exist: Maybe the misinformation, the hallucinations and

the bad reasoning are inherent in the training data, the billions and trillions of text corpora

from the world wide web that are not preprocessed enough to make high-quality datasets.

Coherent with the latter view are the findings that humans make errors in reasoning

(Kahneman, 2011), and these mistakes form part of that data.

In any case, both views seem to agree that it would be valuable to have language models

that not only prevent hallucinations, but even show robust logical reasoning abilities to

back up their claims. Being able to reason well, is one of the most fundamental skills for

any inquirer into the nature of things. Logical reasoning is at the heart of our scientific

enterprise. Making use of available evidence to form valid arguments, or hypothesizing

one’s way to a conclusion, all help in advancing knowledge.

Automating reasoning has been one of the central goals of AI. Benchmarks that include

reasoning tasks to test language models have been developed. One such example is BIG

BENCH (a benchmark going Beyond the Imitation Game) (Srivastava et al., 2022). In

one of its reasoning tasks, a language model is presented with a description of changes in

the ordering of objects and then asked at which location an object ends up. An arguably

more advanced task asks the language model to deduce whether an argument, presented

in natural language, is valid (Betz et al., 2020). This benchmark still includes tasks that

language models can only perform with random accuracy (Wei et al., 2022). Finding such

tasks is a major endeavour of scientists that work on AI for natural language processing

(NLP) for two reasons: first, to capture the shortcomings of currently existing language

models, and second, in order to test when they manage to move past their shortcomings.

In this thesis, we also try to move beyond the imitation game, and even beyond the

existing benchmarking approaches such as BIG Bench that aim to evaluate AI reasoning

capabilities. Most of the logical reasoning tasks discussed in the literature are either

based on natural language only, converting a natural language input to natural language

output, or purely based on formal logic, converting a formal input to a formal output. We

hypothesize that our tasks, involving a mix of natural and formal input and output, help

language models learn to emulate semantic reasoning in first-order (predicate) logic. We

base our tasks on how predicate logic might be taught to students in an introductory logic

course.

2

1.1 Problem Statement, Design and Research Questions

To this end, we extrapolate BIG (both BIG Bench and beyond the imitation game) by
designing and building a synthetic dataset that we call the "Synthetic Predicate Logic
Corpus" (or SPLC). There is no need for hand-labelling the SPLC, as we make use of a
model checker that automatically generates the labels as well as semantic parsers that map
between natural language and the language of logic. While being able to automatically
infer the labels is one of its biggest advantages, another big advantage is that we can adjust
its difficulty as well.

In summary, the main contributions of this thesis are:

• Construct a first-of-its kind synthetic dataset (the "SPLC") for reasoning in predicate
logic, that is automatically labelled (instead of by hand) and whose difficulty is
adjustable.

• Present a thorough descriptive analysis of this dataset.

• Derive three tasks from the dataset that involve both natural language and the
language of predicate logic.

• Build (and modify) parsers mapping between natural language and the language of
predicate logic.

• Perform fewshot and zeroshot evaluation of current state-of-the-art (SOTA) large
language models on the three tasks.

• Finetune and evaluate to what extent current SOTA large language models can
emulate reasoning in predicate logic according to SPLC, including how well they
generalize between tasks and to even harder tasks.

• In total, we perform 165 distinct experiments on the SPLC.

Note that this thesis is written such that it should be understandable by someone who
has studied a core curriculum of computer science, but not necessarily anything related to
neural networks or language models. Nevertheless, it may also be understood by someone
from other disciplines with a rigorous mathematical background.

1.1 Problem Statement, Design and Research Questions

The general problem we aim to solve is: "How can we teach large language models reasoning
in predicate logic?"

3

1. INTRODUCTION

From this follows a Design Question: "How should a dataset look like that teaches

large language models predicate logic?"

In order to tackle this problem after having designed a suitable dataset, we formulate

the following research questions:

Research Question 1: What is a suitable baseline for the three tasks?

Research Question 2: How high do current pre-trained large language models score

in these tasks in a zeroshot evaluation?

Research Question 3: How high do current pre-trained large language models score

in these tasks in a fewshot evaluation?

Research Question 4: Does different prompting change the fewshot results?

Research Question 5: Can current SOTA large language models emulate reasoning in

first-order predicate logic?

Since we have multiple different tasks, that we can train the models on, and the possibility

to generate harder datasets, we also hope to answer the following questions:

Research Question 6: Given a finetuned model that does well on one task, does this

generalize to one of the other tasks?

Research Question 7: Does multitask learning (i.e. finetuning a large language model

on all three tasks) lead to higher accuracy in the respective tasks compared to the singletask

setting?

Research Question 8: Given a finetuned model that does well on one task, does this

generalize to a harder version of the same task?

1.2 Thesis outline

In chapter two, we explain the necessary concepts, techniques and models to help the

reader understand the remainder of this thesis. This includes, first, an introduction to

neural networks, from plain vanilla feedforward neural networks all the way to transformer

models. Second, it will describe how language (or word tokens) are represented in a machine

and then show how the task of language modeling has been tackled with simpler n-gram and

more advanced neural models, such as transformer models. Third, we introduce techniques

to finetune large language models even with computational resource constraints. Fourth,

we provide an overview over the syntax and semantics of predicate logic. Finally, we

dileneate the purpose of model checkers and automated theorem provers for this thesis.

The third chapter first gives an overview over related work on reasoning in general, before

diving into three papers on logical reasoning in particular, that influenced the creation of

4

1.2 Thesis outline

this thesis. This includes a discussion how our approach differs from these papers in terms
of methodology. Secondly, we describe what benefits our approach might have compared
to semantic parsing using neural networks. Third, we compare our approach to code
generation (aka program synthesis).

The fourth chapter gives an overview over our methodology, including how we construct
our datasets, how we define our tasks, how we evaluate our models (including the dataset
sizes and splits) and which models we use (as well as how they differ). Chapter five concerns
the experiments that we did regarding our research questions and the results we obtained.
It also includes descriptive statistics of the dataset as well as experiments for constructing
a baseline per task. Finally, in chapter six, we conclude our work and discuss opportunities
for future research.

5

1. INTRODUCTION

6

Chapter 2

Theoretical Background

The field of Artificial Intelligence (AI), a term first coined at the Dartmouth conference in

1956, has long been pursued by at least two competing paradigms: one symbolic (or logic-

and rule-based) and one sub-symbolic (or statistics- and probability-based) (Garnelo and

Shanahan, 2019). During that conference, Allen Newell and Herbert A. Simon presented

Logic Theorist, an automated theorem prover for propositional logic (Russell and Norvig,

2010). Similar such deductive programs that used logical reasoning arose and this line of

scientific enterprise had its first successes during much of the latter part of the last century.

However, disappointment followed suit in what came to be known as AI winter(s), which

led to tremendous cuts in AI research funding: on the one hand, the successes of many

early symbolic AI systems depended on the use of search trees, which suffer from combi-

natorial explosion. That is why more complex search trees could not be solved, even when

using heuristics. Besides, rule-based approaches in machine translation did not lead to the

promised results (Russell and Norvig, 2010).

On the other hand, the sub-symbolic paradigm did not fare much better, initially. The

dawn of artificial neural networks can be traced back to Walter Pitts and Warren Mc-

Culloch’s, who proposed the perceptron, which models a human neuron via propositional

logic (McCulloch and Pitts, 1943). Unfortunately for the sub-symbolic paradigm, Marvin

Minsky proved that a single perceptron, a single neural unit that does not have an non-

linear activation function (as explained below), was not able to model the XOR (either-or)

function, (that is, a function that checks whether only one of two inputs is true; which is

a function that is not linearly separable). In other words, a perceptron was not capable of

deciding whether two inputs were different from each other (Marvin and Seymour, 1969).

It was only due to the combination of three crucial developments over time, that neural

networks and deep learning as we know them today, took off once again and ended the

7

2. THEORETICAL BACKGROUND

AI winter(s). First, theoretical developments, such as backpropagation (Rumelhart et al.,

1986) helped with training deeper networks, i.e. networks with more than a single layer.

Second, there have been significant advancements in computing power with more special-

ized hardware to perform the mathematical operations required by deep neural networks.

And finally, due to the building of the world wide web the amount of data and hence,

corpora for training neural networks have grown substantially. The latter two aspects have

enabled the recent rise of ever larger neural language models, ones that use more and more

training data and require more and more parameters to be trained. LLMs in particular

benefitted from this trend, because it has been shown that they get predictably better

with increasing model size and training data (see (Hoffmann et al., 2022), (Kaplan et al.,

2020)).

In this thesis, we teach LLMs reasoning using predicate logic. For this reason, the

remainder of this chapter describes both LLMs and predicate logic, as well as all other

necessary concepts to understand this thesis. Section 2.1 introduces neural networks,

including plain vanilla feedforward neural networks all the way to transformer models.

Afterwards (see 2.2), it will describe how language is (or word tokens are) represented

in a machine and then show how the task of language modeling has been tackled with

simpler n-gram and more advanced neural models, such as transformer models. Next, in

2.3 and 2.4, we describe the techniques (of LoRA adapters and quantization) that we use

to finetune large language models under computational resource constraints. Fourth, in

2.5 we provide an overview over the syntax and semantics of predicate logic. Finally, we

delineate the purpose of model checkers and automated theorem provers for this thesis (see

2.6.

2.1 Neural Networks and Deep Learning

2.1.1 Feedforward Neural Networks

There are many different kinds of neural networks. Let us start with the simplest kind,

a vanilla, feedforward network (Jurafsky and Martin, 2022). These kinds of networks are

composed of multiple neural units that only feed outputs from one layer to the next, i.e.

there are no cycles in the data flow. In figure 2.1, one such neural unit is shown. It takes

a set of inputs x1, ..., xn, multiplies and sums them with a set of weights w1, ..., wn, adds

a bias term b and passes the result through an activation function, such as the sigmoid

activation function � (see figure 2.2).

8

2.1 Neural Networks and Deep Learning

Figure 2.1: A neural unit (figure from (Jurafsky and Martin, 2022).

Figure 2.2: The sigmoid activation function (figure from (Jurafsky and Martin, 2022).

In vector notation, with y as the output of a single neural unit:

y = �(w ⇤ x + b)

Next, we can combine these neural units to form a vanilla neural network, composed of
neural units in multiple layers: an input layer, one or more hidden layers and an output
layer, as depicted in figure 2.3.

Figure 2.3 shows how we input a vector x of scalar values, multiply these with weight
matrices, such as W and U (a different one for each layer), add a bias term and pass the
resulting term through an activation function f . So the hidden layer h is calculated by:

h = f(W ⇤ x + b)

For the output layer, a similar such calculation is performed.

Going back to the small example of the XOR function from the introduction of this
chapter, it was possible to show that a neural network with only two layers (one hidden
and one output layer) was capable of computing the XOR function (Goodfellow et al.,

9

2. THEORETICAL BACKGROUND

Figure 2.3: A feedfoward neural network (figure from (Jurafsky and Martin, 2022).

2016), an example that demonstrates the power of adding more layers and an activation

function. While this is a very small neural network, deep neural networks are simply those

that employ many hidden layers.

2.1.2 RNNs and LSTMs

Many different neural network architectures have been proposed over time; vanilla feed-

forward neural networks, as described above, are just one of them. Initially, those archi-

tectures were made specifically for the task at hand. For instance, Convolutional Neural

Networks do well with image data. Recurrent Neural Networks (RNNs) work well with

time series data, as they use a cycle such that each hidden layer activation depends not

only on the current input (e.g. a word), but also on the hidden layer activation from the

previous timestep (e.g. a word before the current word; and therefore also indirectly on

the hidden layer activations of all previous timesteps (or words)). Therefore, these types of

neural networks are suited to model the orderly nature of language as sequences of words

(Mikolov et al., 2010).

However, it is not easy to train RNNs in a way that they take into account distant

time steps (distant words). A different type of neural network, LSTMs (Long Short Term

Memory networks), fare much better on long input sequences (Hochreiter and Schmid-

huber, 1997). This is because the LSTM architecture includes gates which decide what

information from past timesteps is still relevant for the current time step and what can be

"forgotten".

10

2.1 Neural Networks and Deep Learning

2.1.3 The Transformer Architecture

The current state of the art architecture for language modeling is the transformer archi-

tecture (Vaswani et al., 2017). Just like LSTMs, the transformer architecture takes into

account long-distance dependencies, but unlike LSTMs, they are not using recurrent con-

nections (cycles), but self-attention. Because of self-attention, they are much easier to

parallelize, and hence, scale better computationally, which is another reason why we have

large language models today.

The following section explains the transformer architecture in more depth, including the

central concepts of self-attention and positional encodings, as well as the architecture’s

most important building block, the transformer block.

2.1.3.1 Self-attention

The transformer block (see 2.4) is made up of multiple different layers, one of them being

the self-attention layer. Self-attention is the key invention of the transformer architecture

that helps with long-distance dependencies. In principle, it can take any distance into

account.

Figure 2.4: The transformer block as part of the transformer architecture (figure from
(Jurafsky and Martin, 2022).

Figure 2.5 shows a self-attention layer: note how multiple inputs x1, ..., xn (which are

vectors representing e.g. word tokens) are mapped to output tokens of equal length (y1,

..., yn) by this layer: for the calculation of each yi, we only include inputs up to and

including that time step i. In other words, inputs after the current time step i are not

considered. Hence why it is also called a backward-looking (or causal) self-attention layer.

11

2. THEORETICAL BACKGROUND

Furthermore, we can parallelize the passing through of the inputs in this way, as there

are no recurrent or cyclic dependencies. Hence, we can parallelize the training of these

networks, as compared to e.g. RNNs.

Figure 2.5: Self-attention as part of the transformer architecture (figure from (Jurafsky and
Martin, 2022).

First, let us consider the purpose of self-attention before we look at the computations of a

single neuron of the self-attention layer. The purpose of self-attention and the idea behind

considering these long-distance dependencies is to compute a score of how relevant certain

inputs are to certain other inputs. In terms of language modeling, we aim to produce a

contextualized representation of words, that is, how relevant the previous words are to the

word that is currently being attended to.

The way we achieve this can be seen in figure 2.6, where we zoom into one of the neurons

of the self-attention layer. Here, we get a clearer picture of how one output vector (or word

token) is calculated given an input sequence. First, we generate key, query and value

vectors for each input token. The idea behind this approach is that an input (or a word)

xi can play three different roles when calculating a relevancy "score": as a query, it takes

the role of being currently attended to by the inputs preceding it (that is, how much of the

other words are relevant for this word); as a key, it takes the role of the preceding input

(i.e. how much is this word relevant to the other words?); and as a value, it measures its

role for the output (i.e. how relevant it is to the output).

So, for each of these three roles, there exist weight matrices WQ, WK and WV, each

of which is multiplied by each of the inputs xi so that we get the key, query and value

vectors:

ki = WKxi

qi = WQxi

12

2.1 Neural Networks and Deep Learning

vi = WVxi

Next, the so-called "key/query comparisons" from figure 2.6 refer to a multiplication of

the respective qi and ki vectors. This gives a score between the vector (or word token)

we currently focus on (which in figure 2.6 is x3) and each element preceding it. Those

key/query comparisons are then passed through a softmax activation function. A softmax

activation function is similar to the sigmoid activation function in that it extends the

sigmoid activation function to multiple classes. Finally, a weighted sum between the result

of that softmax calculation and the value vectors is created to get the output vector y3.

Figure 2.6: How one output token y3 is calculated given an input sequence x1, x2, x3 in one
neuron of the self-attention layer (figure from (Jurafsky and Martin, 2022).

As we stated before, we parallelize this process such that we calculate all outputs yi

of a sequence (of e.g. word tokens) at the same time. For this, we then have a matrix

X 2 RN⇥d, where each row is a vector representing one input token (so N is the number

of input tokens and d the dimensionality of the vector or word token). We then get the

matrices Q 2 RN⇥d, K 2 RN⇥d and V 2 RN⇥d by multiplying X by the weight matrices

WQ, WK and WV:

13

2. THEORETICAL BACKGROUND

K = XWK

Q = XWQ

V = XWV

That is how we get the computation for the whole self-attention layer, which adds a

scaling factor
p
dk that helps with numerical stability and gradient calculations:

SelfAttention (Q,K,V) = softmax

✓
QK>
p
dk

◆
V

This whole process so far is only a single self-attention "head". Usually, we use multiple

attention heads. Multi-head attention refers to performing this same process many times

in parallel. That is, using the same input tokens for each "head", but training different

query, key and value weights independently. The intuition behind the reason for doing this

(in language modeling) is that not only can a word play these different roles, but others

as well, so it may need to "pay attention" to other words for different reasons, hence the

multiple heads.

2.1.3.2 The transformer block

Other than the multi-head self-attention layer, a transformer block includes normalizing

layers, feedforward layers and residual connections (see 2.4). We have already seen the

feedforward layer in vanilla feedforward neural networks. Residual connections pass infor-

mation from one layer to another bypassing a third layer. It has been shown that this

improves learning (He et al., 2016).

Layer Normalization normalizes the sum of the vectors resulting from the residual con-

nection and the respective (self-attention or feedforward) layer (Ba et al., 2016), i.e. it

creates a vector with a mean of zero and a standard deviation of one. This also improves

learning.

Finally, we stack transformer blocks or parts of it to create the transformer architecture.

The first half of the transformer architecture, the so-called encoder is simply a stack of

these transformer blocks such that a deep network is formed (see the left part of figure

2.7. The decoder (the right side of this figure) also includes elements from the transformer

blocks. Finally, the last element needed to understand this architecture are input and

output embeddings. What they are, will be explained in 2.2.1.

14

2.1 Neural Networks and Deep Learning

Figure 2.7: The transformer architecture (figure from (Vaswani et al., 2017).

2.1.3.3 Positional Encodings

So far as we have described it, the transformer architecture only encodes how different

inputs (or words) are relevant to a word currently attended to. However, it is missing

information about word-order. But word order is important, as can be illustrated by the

following two sentences: "Bob is taller than Alice. Alice is smarter than Bob." Positional

encodings (one for each word) add such information about word order for both the encoder

and the decoder.

15

2. THEORETICAL BACKGROUND

2.2 Language modeling

The previous sections gave a very general introduction into neural networks and the trans-

former architecture, as those models can be applied in many different domains, not just

for modeling language. Nevertheless, this thesis is concerned with working with textual

data, and therefore, we continue with how we model language, first, by describing how to

represent the meanings of words, and secondly, by explaining different ways of predicting

a sequence of words given previous words.

2.2.1 Word embeddings

There have been substantial discussions in both philosophy and linguistics as to what the

meaning of a word is. In (Wittgenstein, 1953), the philosopher Ludwig Wittgenstein makes

his case that the meaning of a word is decided by how it is used by people in the language

(as opposed to being able to precisely logically define words by stating the necessary and

sufficient conditions for the application of a word).

In a similar vein, how we represent the meaning of a word in computer science builds upon

the distributional hypothesis from linguistics. This hypothesis states that words which are

used in similar contexts tend to have similar meanings (Harris, 1954). A context in terms

of machine learning is a certain number of words surrounding the word in question. By

taking into account neighbouring words, we arrive at a distribution of which words occur

in similar situations and therefore, which words have similar meanings. For example, the

sequence "She pets the..." is likely followed by the word "dog", although it could also be

followed by the word "cat". Therefore, the two words "dog" and "cat" are similar in a

certain way in this context (but possibly different in other contexts). From this, we can

represent a word by a vector, a point in high-dimensional space, where points that are

closer to each other are more similar and points that are further apart are less similar (Li

et al., 2015). Such a representation is called a word embedding.

On a high level, we distinguish static embeddings and dynamic embeddings (Jurafsky

and Martin, 2022). In static embeddings, there exists one fixed vector for each word.

Dynamic embeddings vary depending on the current context (i.e. the current neighbours)

of the word.

There are many ways for creating word embeddings (i.e. for deciding where they lie

in this high-dimensional space). For creating static embeddings, one can inspect the

Word2Vec algorithm (Mikolov et al., 2013). Another way is to train a neural network

to learn to predict next words from prior words (Collobert et al., 2011). One example of

16

2.2 Language modeling

dynamic embeddings, which are the de-facto standard today, has been introduced by the
BERT language model (Devlin et al., 2018). Referring back to the self-attention layers of
the transformer architecture, it is these layers that produce the dynamic, contextualized
embeddings.

2.2.2 N-gram language models

First, let us define what language modeling is: language modeling is predicting the next
word(s) from prior words. Generally, a probabilistic language model returns a probability
distribution for the next word wt given the previous t � 1 words, which we represent by
w1:t�1 (See et al., 2019). Hence, we are looking to calculate the following probability
distribution:

P (wt|w1:t�1)

Word embeddings can help with predicting the next words, but it is a more advanced
idea and the early forms of language modeling did not use those vector models. Rather, a
simpler n-gram language model was proposed. An n-gram is a sequence of n contiguous
words in a text. So for instance, a bigram is a sequence of two words (Jurafsky and Martin,
2022).

In order to define a probability distribution on the n-grams of a text, we start by extract-
ing all the sequences of n consecutive words present in a training corpus and we attribute
to each one a probability of occurrence based on the frequency of appearance of this very
n-gram. So for instance, in a bigram language model, we approximate all the previous
words by just the last word and the above equation becomes:

P (wt|w1:t�1) ⇡ P (wt|wt�1)

In general, we would like to make n as large as possible in order to get a better approxi-
mation. However, even then, neural language models outperform n-gram language models
by being able to use a much bigger n and to better predict the next word, since neural
networks can use word embeddings instead of relative frequency counts.

2.2.3 Neural Language Models

While previous neural network architectures, such as feedforward neural networks (Ben-
gio et al., 2003) and RNNs (Mikolov et al., 2011) can be used as language models, the
transfomer architecture is currently the state of the art. There are many variants of the

17

2. THEORETICAL BACKGROUND

transformer architecture that was described in 2.1.3. In this thesis, we work with two types

of variants, causal language models (LMs) and encoder-decoder LMs. So in the following,

we first explain the differences between them, before we give a high-level description of

how to train a language model. Finally, we end with some notable details of current large

language models.

Causal LMs (or auto-regressive LMs) only use the decoder part of the original transformer

architecture (see figure 2.7). Examples of these types of models include GPT-2 (Radford

et al., 2019) and those that are used in this thesis (refer to section 4.5 for this). Encoder-

decoder LMs (or sequence-to-sequence LMs) use both the encoder and decoder of the

original transformer architecture. Examples of these types of models include BART (Lewis

et al., 2019) and Flan-Ul2, which we use in this thesis (refer to section 4.5 for this).

When we train a causal language model, we feed input sequences into it and receive as

output an equally long sequence, aiming for the language model to output the correct next

word (see figure 2.8). Here, the softmax function outputs a probability distribution over

all words of a pre-defined vocabulary and the word with the highest probability is chosen

for the next word.

Figure 2.8: Training in the transformer architecture (image by (Jurafsky and Martin, 2022).

After feeding the inputs to the language model and receiving predicted word tokens, we

compare the actual outputs (the predictions) with the desired outputs (the target word

tokens) by computing the cross-entropy loss. Let yt be the next token in a sequence (the

target token) and ŷt the actual output by the neural network, then the cross-entropy loss

18

2.3 Parameter-Efficient Fine-Tuning

is defined as:

LCE (ŷt,yt) = � log ŷt [wt+1]

The algorithm of gradient descent then tells us how to minimize this loss function, and

the algorithm of backpropagation updates the weight and bias parameters step by step

such that we minimize the loss function (Rumelhart et al., 1986). By minimizing the loss

function, we aim to find optimal parameters (weights and biases) for our language model,

such that it produces the desired word tokens.

Fortunately, we do not even need hand-crafted labels for training neural language models

(Bengio et al., 2003). In machine learning, we differentiate between supervised and self-

supervised learning. In supervised learning, someone has to decide upon the labels (the

correct outputs) given certain inputs. In self-supervised learning, the language model

simply takes the next word as the label, so any input text is automatically labelled and

hand-labeling is not necessary. Self-supervised learning is how we can use huge text corpora

to train large language models.

After a language model is trained, it can be used for text generation. In order to

generate text, different so-called decoding strategies can be used. Greedy decoding means

to generate one (word) token ŷt at a time by choosing the word with the highest probability

from the vocabulary V of words (Jurafsky and Martin, 2022):

ŷt = argmaxw2VP (w | y1, . . . ,yt�1)

Other decoding strategies involve searching and sampling multiple sequences of predic-

tions, incorporating at each step e.g. the most probable words, and finally returning the

most probable sequence. Examples are beam search (Shao et al., 2017), top-k sampling

(Fan et al., 2018) or nucleus sampling (Holtzman et al., 2019).

2.3 Parameter-Efficient Fine-Tuning

In order to obtain better generations, language models have grown bigger and bigger in

their number of parameters, as to what we now call large language models. For example,

one of the biggest models in existence today, PaLM has 540 billion trainable parameters

(Tay et al., 2022b). Parameters are the weight matrices and the biases; they are what

changes during training.

19

2. THEORETICAL BACKGROUND

Next to having grown in size, large language models have been trained on more and
more tokens of text, ranging into multiple billions as of today. Different existing language
models have been trained on different corpora of text, with the biggest language models
in existence today using mostly data scraped from the world wide web.

The huge amounts of data combined with the enormous amounts of trainable parameters
of large language models make it computationally very resource intensive to train large
language models. That is why in this thesis, we use pre-trained models, i.e. ones that have
already been trained on large amounts of text. Those already have a representation of word
(or sentence) meaning and can already produce meaningful sentences during generation.
It has even been demonstrated that large pre-trained language models can solve tasks in a
zero-shot (Wei et al., 2021) and few-shot setting (Brown et al., 2020), i.e. without getting
any examples or just a few examples as additional input as a demonstration of a task.

Connected to pre-training is the notion of fine-tuning. A pre-trained language model
is typically fine-tuned, i.e. trained further on a different training objective than language
modeling, that is, on a downstream task, such as translation, summarization or logical
reasoning. However, fine-tuning a large language model also needs a lot of computational
resources (albeit typically less than pre-training), as we would still need to update all of the
(typically billions of) parameters. Besides, fine-tuning the full large language model means
that one also needs to store (all of the changed weights of) the model, and consequently,
storing multiple such models for comparison takes up a significant amount of space. In
other words, conventional fine-tuning is parameter inefficient, as it updates all parameters
of such a model.

That is why, in this thesis, we do not fine-tune the pre-trained models, but instead use
adapter-based parameter-efficient fine-tuning (PEFT). Generally, adapter-based PEFT,
or "using adapters" to efficiently fine-tune large language models, refers to keeping the
pre-trained model weights fixed and only training a very small number of (additional)
parameters (i.e. training an adapter) compared to training the large number of parameters
of a large language model, and then using these parameters (the adapter) together with
the (entire) pre-trained large language model, in order to perform a task. In other words,
a small "adapter" of parameters "adapts" or modulates the parameters of the pre-trained
language model to produce desired results (e.g. on a downstream task). It has been shown
that this can achieve near state-of-the-art results on a downstream task (Houlsby et al.,
2019).

The major advantage of PEFT methods lies in needing much less GPU resources to
achieve these results. Also, adapters are much smaller in size compared to large language

20

2.3 Parameter-Efficient Fine-Tuning

models, so we can easily store many adapters. Furthermore, adapters have the advantage
that they are not prone to catastrophic forgetting, which refers to a language model for-
getting how to solve the task that it was first trained one, once it is fine-tuned on another
task (Goodfellow et al., 2013).

One such class of adapters (and the one we use) is called low-rank adapters (LoRA) (Hu
et al., 2021). In order to understand LoRA, let us review fine-tuning a bit more formally.
In fine-tuning, just like in training, our aim is to update the weights (let us denote them
by W), such that we get a new set of weights W’, so:

W’ = W +�W

Here, �W represents the change in W. This formula is recomputed multiple (i) times
during gradient descent, in order to attain values for W’ that can fulfill the task that
we are interested in solving with the language model. We usually discard these i weight
matrix updates �iW.

In essence, LoRA takes the view that we do not need discard those weight matrix updates,
but rather store them separately from W and merging them with W when appropriate
(e.g. during generation). This way, we update only �W and keep W the same. One way
to depict this, is in figure 2.9, where we keep the pre-trained weights W fixed and only
train the weight updates �W, represented here by A and B.

Figure 2.9: Low-rank adapters (image by (Hu et al., 2021).

The crucial add-on to this is that we can reduce the dimensionality of �W (which has
dimension d ⇥ k, just like W) by decomposing it into two matrices A (with dimension

21

2. THEORETICAL BACKGROUND

r⇥ k) and B (with dimension d⇥ r). We call this low-rank approximation, because A and
B approximate �W by a parameter r.

�W ⇡ B ⇤A

We call r the rank of the matrix �W, and r is a hyperparameter, i.e. a parameter that
we as experimenters change to see which value works best. The smaller r, the smaller the
matrices A and B that we need to store, and in general r << min(d, k). We can think of r
analogously to a reduced number of singular values in a singular value decomposition, those
that are considered sufficient to approximate the matrix represented by the singular value
decomposition. Compare the matrices A and B to a truncated singular value decomposition
(SVD) of �W: by truncating the smallest singular values, we shrink the respective matrices
from SVD and get an approximation. Importantly, using small values of r means that LoRA
adapters are much smaller in size than the pre-trained model weights. Note that we need
to train the matrices A and B from scratch, so we initialize A from a normal distribution
and B as a zero-matrix.

One reason why LoRA works is that it LoRA builds upon the finding that many pre-
trained large language models have low intrinsic dimension (Aghajanyan et al., 2020).
That means that the same language model could be described by a lot less weights than
they have, i.e. there is a lot of redundancy in these LLMs. The LoRA article extends
this by hypothesizing that the weights have low intrinsic rank and that it is therefore
possible to use the above approximation (Hu et al., 2021). It concludes, that we can
usually perform adapter-based fine-tuning instead of conventional, full fine-tuning and get
comparable results.

So far, we have not specified, yet, what we mean by W with regards to the specific
transformer architecture. In principle, we could apply LoRA to any of the weight matrices
in the architecture of our large language model in question. That is why, to answer this
question, we refer the reader to section 6.2 as to the design decisions we made with regards
to LoRA, including the hyperparameter decisions. As a side note, next to r another
hyperparameter of LoRA adapters is the lora ↵, which scales how much of the update
�W we want to incorporate into our pre-trained model.

2.4 Quantization

We can further speed up the calculations when training a neural network, and further
reduce GPU use, and that is by quantization. Conventionally, i.e. without using quanti-

22

2.5 First-order (Predicate) Logic

zation, we use 32-bit-precision when encoding our matrix elements for training (or 16-bit

precision when using LoRA). By quantizing the parameters of a neural network, we approx-

imate them by reducing their precision to e.g. four or eight bit. Therefore, quantization

compresses an LLM. However, we need to be aware that quantization can negatively affect

the accuracy of the language model, since we reduce the precision of the parameters.

Finally, we can combine LoRA and quantization into quantized LoRA, or QLoRA (Dettmers

et al., 2023). This means that we quantize the parameters of the LLM and then train using

the LoRA adapter method. The disadvantage of only using an adapter like LoRA is that we

would still need a large GPU to load the pre-trained model weights plus the LoRA adapter.

With QLoRA, on the other hand, we have much smaller memory requirements and can

therefore load even bigger models. In more detail, the QLoRA introduces a new data type

(4-bit Normal Float) to achieve this, and also proposes to perform double quantization,

that is quantizing the quantization itself. What is more, while QLoRA reduces the memory

usage when finetuning a LLM, it does so, according to a variety of experiments, without

trading off performance compared to finetuning models with 16-bit precision (Dettmers

et al., 2023).

2.5 First-order (Predicate) Logic

Logic, in essence, is the theory of reasoning (Gamut, 1991). As such, it includes a theory of

formally valid conclusions. That is, in a logically valid argument, the truth of the premises

guarantees the truth of the conclusion. In this thesis, we concern ourselves with a certain

class of logic: first-order (predicate) logic, as initially developed by Gottlob Frege (Frege,

1879) and Charles Sanders Peirce (Hammer, 1998).

When describing any kind of logic, we need to define both a syntax and semantics. The

syntax gives definitions of symbols and rules about what kinds of combinations of symbols

into expressions constitute well-formed expressions, i.e. expressions that we allow to be

formed. The semantics describes what the expressions mean, that is, it concerns itself with

the interpretation of this language.

2.5.1 Syntax

The syntax of predicate logic is made up of an alphabet, i.e. a set of symbols that make up

this formal, artificial language, as well as formation rules, i.e. rules that allow us to form

well-formed expressions. As a consequence, using symbols that are not in the alphabet to

23

2. THEORETICAL BACKGROUND

form expressions, or not abiding by the formation rules leads to expressions that are not

well-formed.

The alphabet with which we concern ourselves in this thesis includes: quantifier sym-

bols (quantifiers), logical connectives (operators), variables, predicate symbols (predicates),

constant symbols (constants) and parentheses and punctuation symbols. Different nota-

tions exist for these symbols, so let us establish one notation in table 2.1, which also states

all the symbols of our alphabet and closely follows the syntax used in the nltk represen-

tation of predicate logic (i.e. the python library that we use in this thesis) (Bird et al.,

2009).

Table 2.1: A list of symbols from predicate logic.

Symbol class Symbol name Symbol notation

Quantifiers
Universal quantifier all

Existential quantifier exists

Operators

Negation �
Conjunction &

Disjunction |
Implication !

Biconditional $
Variables Variable x, y, z

Predicates Predicate F,G,H, ...

Constants Constant a, b, c, ..., w

Parentheses Parentheses ()

Punctuation
Dot .

Comma ,

For the variables, we use lowercase letters towards the end of the alphabet. In our case,

only a few such variables suffice (x,y,z). As regards the predicates, we use uppercase letters

from the alphabet (although we will not need the whole alphabet for our purposes). For

the constants, we use lowercase letters from the beginning of the alphabet. With regards to

punctuation and parentheses, we use a dot "." and a comma "," as well as round brackets

"(" and ")".

Predicates have an arity n, that is, they take a number n >= 0 of variables as arguments.

We exclude the case of n = 0 here. For n = 1, one example could be F (x), that is the

predicate F applies to the constant x. For n = 2, one example could be G(x, y), that is x

stands in the G-relation to y. While this remains an abstract explanation, in section 2.5.2

24

2.5 First-order (Predicate) Logic

some examples are provided, what this could mean.

We can now inductively define the set of well-formed formulas (wffs) using this alphabet.

The rules for forming this set are as follows:

1. Every P that is an n-ary predicate, followed by either n variables or n constants

within parentheses, where n > 0, is a wff.

2. If � is a wff, then �� is also a wff.

3. If � and are both wffs, then �& , � | , �! , �$ are also wffs.

4. If � is a wff and x is a variable, then all x.� and exists x.� are wffs.

Therefore, applying these rules finitely many times gives us the set of well-formed for-

mulas.

Examples of such formulas are included in the following list. Note the use of parenthe-

ses to tell us which variables belong to which predicates, as well as the use of dots and

parentheses to tell us which variables belong to which quantifiers:

• P (x)

• all x.A(x)

• exists y.Q(y)

• all x.exists y.(B(y)& �A(x))

• all x.exists y.(B(y)& (�A(x)! B(x)))

• ...

Besides, parentheses are also important to denote operator precedence, as can be seen

in the last example, although conventions for operator precedence have been developed

so that we can exclude certain parentheses just like we do with brackets in multiplication

and addition. The convention for the order of precedence is as follows: negation is eval-

uated first, then conjunction and disjunction, quantifiers are next, and implication and

biconditionals are last.

25

2. THEORETICAL BACKGROUND

2.5.2 Semantics

The semantics of predicate logic concerns itself with the interpretation the syntactic ele-

ments. An interpretation is a function which maps constants to objects in some universe

of discourse, predicates to properties of objects and well-formed formulas to truth values.

Here, the domain of discourse can be seen as a set of objects that we make statements

about. For example, in figure 2.10, we make statements about the set of humans and the

set of dogs, and in particular about one specific dog represented by the constant q and one

specific human represented by the constant b. We assign truth values (T for true and F for

false) depending on whether q or b belong to the set of humans or dogs. In our example, q

is a dog (the predicate D applies to q) but not a human, and b is a human (the predicate

H applies to b). Predicates of higher arity refer to relations between objects. For instance,

the predicate T could refer to "being taller than", such that T (b, q) means that "b is taller

than q".

Figure 2.10: An example of an interpretation.

Another example could be the formula exists y.H(y), which would state that there

exists at least one object in our domain of discourse (in figure 2.10) which is a human.

This formula could either be true or false, and in our small domain of discourse, it is true.

We see this by finding at least one object in our domain of discourse that is human - in

our case, that is b.

26

2.6 Model Checkers & Automated Theorem Provers

More generally, let us define when certain formulas evaluate to true or false:

• An n-ary predicate F evaluates to true, if for all n constants in the domain of
discourse the relation F holds true.

• �� is only true, if � is false.

• � & is only true, if � and are true.

• � | is only false, if both � and are false.

• �! is only false, if phi is true and psi is false.

• �$ is only true, if both and phi evaluate to the same truth value (i.e. if either
both are true or both are false).

• exists x.� is true if and only if there is at least one constant ↵ which makes � evaluate
to true.

• all x.� is true if and only if every possible constant ↵ makes � evaluate to true.

Note that we do not include the XOR operator from the introduction to this chapter,
but this logical operator is true, if either one of or phi is true, but not both at the same
time, i.e. only when they have different truth values. Finally, one note as to how we speak
about predicate logic: we say that a well-formed formula � is satisfiable, if there exists
some interpretation under which it evaluates to true.

2.6 Model Checkers & Automated Theorem Provers

In order to reach the conclusion, whether a well-formed formula is satisfiable, rules of
inference have been invented, that we can mechanically apply by hand, one after another to
decide that question (Gamut, 1991). However, in this thesis, we do not ourselves determine
whether a formula is satisfiable, but rather make use of a model checker.

Model checkers (are computer programs that) take as input a well-formed formula and
a model, where a model is set of statements about our universe of discourse plus an
interpretation function that maps predicates and constants as well as truth values (deciding
which statements are true and which are false). Below, we refer to the set of statements
as the "world model" and the mapping as the key mapping.

Model checkers return whether a formula is satisfied given a model. Remember Logic
Theorist, one of the earliest automated theorem provers, from the introduction of this

27

2. THEORETICAL BACKGROUND

chapter. Contrary to model checkers, automated theorem provers check the validity of
a formula for all possible models (Loveland, 1986). We also make use of an automated
theorem prover in our experiments, in order to detect tautologies and contradictions. Tau-
tologies are formulas that are valid given any model. Contradictions are formulas that are
invalid given any model.

28

Chapter 3

Related Work

There is an ever-increasing literature on probing language models and teaching them rea-

soning, as this area can still be seen as an unsolved problem (Helwe et al., 2021), where

ever-harder tasks have been developed. We follow this tradition of developing such tasks.

Many different kinds of reasoning tasks and benchmarks have been developed, including

but not limited to mathematical reasoning, commonsense reasoning and logical reasoning.

In mathematical reasoning, for instance, tasks range from performing function calculations

involving multiplication and addition (Saxton et al., 2019), to providing mathematical

proofs (Li et al., 2020). Commonsense reasoning refers to a certain background knowledge

that humans commonly have about typical circumstances they find themselves in, such as

"rain makes the road wet" (see e.g. (Liu et al., 2021)). The most related to what we do

in this thesis is the overarching area of teaching LLMs logical reasoning. In the following

sections, we first give a brief overview of related articles, how they are similar in terms of

methodology and goals, and crucially, also where they differ.

3.1 Logical Reasoning

There already exists a wide array of logical reasoning tasks for neural (language) models,

such as deductive reasoning (Clark et al., 2020), detecting logical fallacies (Jin et al., 2022),

abductive reasoning (Young et al., 2022), answering analytical questions of admissions

tests, such as the law school admissions test from the United States (Zhong et al., 2021),

asking a language model to provide logical proofs similar to an automated theorem prover

(see e.g. (Saha et al., 2020) and (Tafjord et al., 2020)), or even mapping neurons directly to

elements of a logic formula (Riegel et al., 2020); (see also (Helwe et al., 2022) for additional

research directions into this subfield).

29

3. RELATED WORK

In the following, we focus on three papers in particular, that are closest to what we

do: the first one is about RuleTakers, experimenting whether language models can make

deductive inferences based on rules and premises (Clark et al., 2020). The second paper is

about RuleReasoner, testing whether language models can perform boolean satisfiability

problems (Richardson and Sabharwal, 2022). And the third paper is by Betz, Voigt and

Richardson (Betz et al., 2020), who ask language models to perform inference in natural

language based on predicate logic.

3.1.1 RuleTakers

Clark et. al (Clark et al., 2020) train language models to become "soft theorem provers"

and call them RuleTakers, as they are fed rules (that is, generalized conditionals of the

form: "condition (& condition) ! condition") and facts (both in natural language) and

then respond to binary true-false questions regarding these inputs (see figure 3.1). This is

quite comparable to our "deductive sat task" (task three) (see chapter 4), as in this task,

we also ask the language models to provide a binary answer (whether a formula is satisfied

or unsatisfied given a formula and a world model). Here, a formula in predicate logic from

our task can be seen as a rule from the RuleTakers paper, and a world model from our

task can be seen as the facts from the RuleTakers paper.

While we also aim for a language model to emulate a reasoning algorithm, our approach

and theirs differ in that we do not bypass a formal logical representation. While their

input to the language model is completely in natural language, our input includes both

natural language and the symbols of the artifical language of predicate logic. Therefore,

our task makes for a much harder task, as the model needs to not only understand natural

language and make inferences based on it, but it is also asked to understand the syntax

and semantics of predicate logic.

Moreover, instead of only teaching language models to deduce novel facts from rules and

facts (i.e. to merely apply rules of logic), in our "create world model task" (task two), we

ask the model to come up with a world model that either satisfies or dissatisfies a formula.

In other words, we expect it to produce an intermediate step, before verifying that a given

formula is satisfied given the language model’s generation. Finally, we also consider the

reverse case (an inductive case) in our "create formula task" (task one), where the language

model has to come up with a formula given a world model (i.e. to create abstractions).

30

3.1 Logical Reasoning

Figure 3.1: Example of logical reasoning task by and figure from (Clark et al., 2020).

3.1.2 RuleReasoner: Solving SAT problems with LMs

In (Richardson and Sabharwal, 2022), the authors test whether neural language models can
perform boolean satisfiability (SAT) problems in natural language. A boolean satisfiability
problem asks, given a boolean formula, whether there is an interpretation that satisfies this
formula. That is, for a formula of boolean logic, it asks whether we can replace the variables
with either true or false values, such that the formula is satisfied. If so, then the formula
is satisfiable.

They construct natural language theories based on these formulas (which, if we use the
RuleTaker terminology, include both rules and facts) and ask the language model whether
such natural language theories are satisfiable (or not), plus whether they are satisfiable if
we add a conjecture (which can be seen as a hypothesis) (see figure 3.2). This depends on
whether the conjecture is entailed by the natural language theory or whether it contradicts
it. For this, they use a SAT solver, i.e. a program that can automatically label their
datasets.

Figure 3.2: Example of logical reasoning task by and figure from (Richardson and Sabharwal,
2022).

31

3. RELATED WORK

They create a dataset that pays particular attention to creating hard training instances,

that is not creating datapoints with a certain very high or very low clause-variable ratio (a

clause is a disjunction of literals and a literal is a variable or negated variable) (Vizel et al.,

2015). They empirically show that very high or very low values of this ratio correlate with

a very high or very low SAT probabilities, which could be used implicitly by the language

model to infer the satisfiability without learning to emulate logical reasoning. Thereby,

they can not only distinguish between easy and hard problems, but also systematically

increase the complexity of their task and show that training on hard problems is beneficial

for language model outputs.

Similar to RuleReasoner, we also make use of automatical labeling of our dataset as well

as developing a methodology for systematically increasing the difficulty of our datasets.

Contrary to their paper, ours differs in three ways: First, the expected outputs of our

models differ. While RuleReasoner asks the language models whether there is some way

to satisfy the given input (by changing its truth values), the closest that one of our task

comes to this, is task two (create world model), where we ask the language to generate

in natural language one specific set of (true) "conjectures" (to stay in the RuleReasoner

terminology) that makes a given input (the formula) true. Our task three ("deduce sat")

also differs in that there, we expect the output to be whether a formula is satisfied (instead

of satisfiable) given the inputs.

Second, in contrast to them, we do not just give the language model natural language

sequences as input, but instead natural language combined with the artificial language of

predicate logic.

Third, and most importantly, Richardson and Sabharwal make language models perform

a task in propositional logic (Richardson and Sabharwal, 2022), and given that our dataset

contains formulas in predicate logic, we arguably provide a more difficult task, since propo-

sitional logic is contained within predicate logic and predicate logic is more expressive than

propositional logic (using existential and universal quantifiers).

3.1.3 Predicate Logic Inference

In the article by Betz et al. (2020), the authors create a synthetic corpus of eight different

types of argument schemes in predicate logic, mapping them to natural language and

training and evaluating GPT-2 with it. The argument schemes are depicted in figure 3.3,

and an example mapping to natural language for the negation variant of the generalized

modus ponens is:

32

3.1 Logical Reasoning

"Here comes a perfectly valid argument: To begin with, Susan is a friend of Chloe.

Moreover, no sister of Lisa is a friend of Chloe. In consequence, it is false that Susan

is a sister of Lisa." (see p. 6 of Betz et al. (2020)).

This is what the language model receives as input and it is asked a binary question of

whether the argument is deductively valid or not. Note that this is one of the datasets

that are part of the benchmark BIG Bench (Srivastava et al., 2022).

Figure 3.3: Logical reasoning task by and figure from Betz et al. (2020).

While we also make use of predicate logic, we extend their approach of modeling eight

different types of argument schemes (and their variants, leading to 32 argument types),

to a possibly infinite number of argument types. Plus, we build these arguments fully

automatically and have both built and modified existing parsers to automatically label our

datasets - while in their paper, they vary the argument schemes manually. Nevertheless,

some of their argument schemes are not present in our dataset: those that deduce formulas

from formulas (in natural language).

Besides, all of our tasks, once again, make use of both natural language and the language

of predicate logic (as input to the language models) - something which they did not do in

33

3. RELATED WORK

their paper, as their inputs were in natural language only.

Plus, only one of our tasks concerns a binary question (satisfiable or not). The other tasks

include asking the model to produce statements (task two) or formulas (task one) itself.

So, we do not only ask our model to make deductions, but also to produce statements that

are then checked whether they satisfy a formula. Finally, we train a multitude of SOTA

large language models, that are much larger than GPT-2.

In summary, what all of the previous works on fine-tuning language models to reason

logically did was to create a synthetic dataset, just as we do. However, our work distin-

guishes itself through the following aspects: first, since we are able to model any predicate

logic formula with finite length, in principle, we can make our dataset harder and harder.

Second, we do not only consider deductive abilities of the LM, but also the inductive (or

abstractive) abilities. Third, we ask the language models to reason not just in natural

language, but also in the language of predicate logic.

Next to these related papers on logical reasoning, there are two more (albeit rather

tangentially related) topics to our thesis: semantic parsing and program synthesis.

3.2 Semantic Parsing

Semantic parsing takes natural language input and translates it into a logical form, such

that a formal reasoning system (such as a model checker or automated theorem prover)

can be applied afterwards (Kamath and Das, 2018). One can distinguish rule-based from

neural approaches for accomplishing this task, both of which are prone to errors (Saha

et al., 2020).

In this thesis, we perform the overarching goal to have the machine reason formally

given natural language input in an end-to-end fashion: we let the language model directly

generate the desired formal reasoning. By doing this, we can show that language models

are capable of working with both the natural language and the artificial language of logic

at the same time. In this sense, although our main goal is to have language models reason

(in both natural language and predicate logic), one useful byproduct of this research could

be a functioning neural semantic parser for predicate logic.

Besides, in this thesis, we do not fully bypass semantic parsers, but build and modify (a

rule-based version of) them, that we use in order to map the (postprocessed) LLMs’ gener-

ations to their respective required representation (of the nltk model checker or automated

theorem prover). Postprocessing (in the form of extracting the desired part of the output)

34

3.3 Program Synthesis

in our case is usually necessary, as LLMs tend to "overshoot", that is, they produce more
output than what is desired: for instance, they explain their answers after giving them.

3.3 Program Synthesis

Finally, our task is related to some degree to the task of program synthesis. Program
synthesis is the task that takes as input a problem description (in natural language) for
a program (something that one would like to have solved in code) and outputs a coded
program, i.e. a solution in the (artificial) coding language (Le et al., 2022). In this task,
similar to our task, a language model that generates code also needs to translate between
a sequence in natural language and a sequence in a formal language, the programming
language. Programming languages are at their core logic languages, so there might be a
link to predicate logic. Besides, when translating from natural language to a programming
language, the neural language model also needs to produce a correct mapping, and that it
can only do by having some higher level abstraction of the rules that make the program
(and analogously, the logical argument) "work". Plus, it needs to keep track of variables
that reoccur, which is akin to keeping track of variables in logic.

35

3. RELATED WORK

36

Chapter 4

Methodology

Hand-labeling a dataset for supervised learning is a time-consuming and/or expensive pro-

cess. This has meant that hand-labeled data sets have remained relatively small compared

to the number of data points that large language models like PaLM have been pre-trained

on (Tay et al., 2022b) using self-supervised learning. This increase in the size of data sets,

however, has been one reason behind the success of large language models. This again has

been due to the finding that self-supervised learning works for language modeling (Bengio

et al., 2003).

Nevertheless, the way this has been done for pre-trained models currently, also has its

drawbacks. Generally, although the exact data sets are usually not open-sourced by the

creators of the currently available large language models, it consists in its majority of

preprocessed data from the world wide web (e.g. from CommonCrawl (Touvron et al.,

2023)), plus some additional curated corpora. While that way of training has lead to

the remarkable achievement of large language models being very good at predicting next

words into fluent, coherent and meaningful sentences, it seems to have reached a qualitative

ceiling: It is suggested that this way of "dumping" data into large language models leads

to all sorts of biases (see e.g. (Liang et al., 2021) and (Ouyang et al., 2022)) as well as

hallucination (see e.g. (McKenna et al., 2023) and (Mündler et al., 2023)), which refers to

giving incorrect information as if it were a fact.

One way to account for these shortcomings of large language models is to use reinforce-

ment learning from human feedback (RLHF) (Ziegler et al., 2019). RLHF can be used

to finetune language models by teaching it which of two generated sentences a human

being prefers. Once again, as in hand-labeling, however, human labelers are needed. Fur-

thermore, it has been shown that aligning language models to human preferences, using

processes such as RLHF, can be reversed (Wolf et al., 2023). This suggests that these

37

4. METHODOLOGY

alignment processes only weaken the probability of undesired behavior, but cannot remove

them altogether.

If we could instead develop synthetic datasets (in an automatic fashion), that are auto-

matically labelled and that are examined to be free from biases, then we could not only

generate datasets of any desirable size (and save the expense and time of human labeling).

It would also be possible to expand this approach to "RLMF" or reinforcement learning

from machine feedback, where an automatic theorem prover or model checker tells the

language model when it is correct and when not. Instead of a (fallible) human being

who also might introduce his/her own biases by judging what he/she prefers, we could

use RLMF together with such synthetic datasets, as our SPLC (synthetic predicate logic

corpus). This, we hypothesize, could lead to the language model acquiring the skill of

logical argumentation (a core skill in critical thinking), rather than learning to constrain

its outputs to what a human being wants it to state. It could elaborate on the premises

it believes to be true and construct valid arguments based on them. Instead of submitting

to human judgement, it could form its own judgements.

The dataset that we propose provides a crucial part that could be further developed to

RLMF: we create a synthetic dataset for predicate logic that can be automatically labelled,

and it can even automatically evaluate whether the language model output is correct using

a model checker. In this thesis, we train via supervised finetuning, but an extension to

RLMF is conceivable and will be further discussed in chapter 6.

In the first part of this chapter, we give an overview of how we designed our system.

Next, we algorithmically describe how our dataset is constructed. Third, we precisely define

each of the tasks that we ask the language models to perform. After that, we investigate

how we evaluate our language models on the tasks we propose. Finally, we introduce the

pre-trained language models that we use.

4.1 Overview

In figure 4.1, we depict the design of our system and the methodology used. In order to

investigate a language model’s ability to emulate reasoning in predicate logic, we generate

a synthetic dataset from which we derive three different tasks requiring different kinds of

(inductive and deductive) inference. We can automatically label the data using the nltk

model checker. Furthermore, we define a grammar to constrain our natural language, so

that we can easily map between it and the language of logic.

38

4.2 Dataset Construction

Figure 4.1: An overview of our methodology and system design.

The synthetic dataset is used as input to the large language models (LLMs) in the form
of three different tasks. Each LLM generates predictions given the tasks (either during
fewshot or zeroshot evaluation or after supervised finetuning). For supervised finetuning,
each LLM is quantized and trained using a LoRA adapter. In order to evaluate the
predictions (the generated sequences by the LLMs), we built and modified different parsers,
one for each task, that parse the predictions into a form that can be understood by the
nltk model checker. By entering the parsed predictions together with parts of the synthetic
dataset into the NLTK model checker (Bird et al., 2009), we can judge whether the model
made the correct predictions.

4.2 Dataset Construction

Our synthetic dataset starts as one dataset that will subsequently be converted into three
tasks. Figure 4.2 shows that there are four (core) elements to our synthetic dataset: a

39

4. METHODOLOGY

Figure 4.2: How we construct our dataset.

world model, a label, a key mapping and a logic formula. The world model, in terms of
predicate logic, is our universe of discourse; i.e. a set of statements that we consider to be
true about a small hypothetical world, but written in natural language. These statements
are each constrained by some grammar that we define and the difficulty of the dataset that
we want to create (which in turn depends on the number of constants that we want to
include in our universe of discourse).

The grammar defines what can be possible predicates in natural language, and in our
case, we chose a list of adjectives (so we only constrain our dataset to the case of unary
predicates). It further defines what can be possible constants, and in our case, we chose a
list of names. So an example statement for the world model could be:

Melvin is charming.

Negations are also possible and are decided randomly. So a full world model with three
different constants and one predicate could be:

World Model: Houston is charming. Melvin is charming. Gwendolyn is not charm-
ing.

The grammar could look quite different, but is already quite expressive as it is. In order
to make the dataset harder, it is, for instance, conceivable to expand it to n-ary predicates,

40

4.2 Dataset Construction

with n > 1. In that way, much of what can be stated using natural language, can also be
stated in predicate logic.

The second core element is a key mapping, that is a mapping from the predicates and
constants in natural language (that appear in the world model) to a representation in the
language of logic that the NLTK model checker understands. Continuing with the above
example, this could be:

Key mapping: ’G’: ’charming’, ’b’: ’Houston’, ’d’: ’Melvin’, ’e’: ’Gwendolyn’

Here, ’G’: ’charming’ is the predicate mapping and ’b’: ’Houston’, ’d’: ’Melvin’, ’e’:
’Gwendolyn’ is the constant mapping (we decided that the world model contains statements
about one to ten constants).

All formulas are written in the syntax of the nltk library of python. Note that this is also
the syntax that the language models have to work with. One example of such a formula
could be:

Formula: -exists x.G(x)

The formulas are created by defining what kinds of operators and quantifiers we allow, as
well as the number of variables and predicates we allow, plus how deep the recursion depth
should be. The recursion depth refers to the number of replacements of atomic formulas
�(x) we allow by predicates. For example, given a recursion depth of one, we could replace
�(x) once in the formula:

all x.�(x)

by some predicate F (x), such that we have:

all x.F (x)

.
A recursion depth of two would allow a second replacement, introducing a binary operator

(and possible brackets): if we introduced the & operator, the first replacement could be

all x.F (x) & (x)

or

all x. (x) & F (x)

41

4. METHODOLOGY

and the second replacement would use a different predicate for replacing , so as to get,

e.g.

all x.G(x) & F (x)

Finally, all of these three core elements (formula, world model and key mapping) are

passed to the NLTK model checker which generates the label, i.e. whether the formula

is satisfied given the world model and key mapping. One key aspect to keep in mind

regarding the NLTK model checker is that it makes a closed world assumption, that is

whatever is not known to be true (i.e. stated as true in the world model), is considered

false.

Regarding our example from above

World Model: Houston is charming. Melvin is charming. Gwendolyn is not charm-

ing.

Key mapping: ’G’: ’charming’, ’b’: ’Houston’, ’d’: ’Melvin’, ’e’: ’Gwendolyn’

Formula: -exists x.G(x)

Satisfied?: unsatisfied

it would deduce that the formula is unsatisfied given the world model, as for instance,

Houston is in fact charming, which is a counterexample to that formula, so the formula is

not satisfied.

To summarize, consider algorithm 1: we first generate all formulas depending on the set

of variables, predicates, quantifiers, operators and the recursion depth. Next, we sample a

world model: depending on the maximum world model size, a random number of objects

(constants) in this world is created as well as the world model itself (statements about those

objects). From this, we can create a key mapping. Finally, the model checker determines

the label (satisfied or unsatisfied) given the formula, world model and key mapping. The

tuple of (formula, world model, key mapping, label) is then added to the data set, if the

ADD condition is fulfilled. The ADD condition checks that we have a balanced dataset of

half satisfied and half unsatisfied formulas. This whole process is repeated until the STOP

condition is fulfilled. The STOP condition depends on the number of datapoints we want

to create.

42

4.2 Dataset Construction

Algorithm 1 Dataset construction
Input: Variables set V , predicates set P , quantifiers set Q, operators set O, recursion
depth r, model checker MC, max world model size w, STOP condition, ADD condition.
Output: PredLogic dataset D.

1: F generateFormulas(V, P, Q, O, r);
2: D {};
3: while not STOP condition do
4: for f in F : do;
5: m, c sampleWorldModel(w, P); . world model m and set of constants c

6: k generateKeyMapping(m, c, P);
7: sat MC(f, m, k);
8: if ADD condition then
9: d (f,m, k, sat);

10: D D [d;
11: end if
12: end for
13: end while
14: return D;

As can be seen from this algorithm, not only can we create a potentially infinite amount

of training data, we can also modify the difficulty of the tasks by adding more variables,

predicates, quantifiers and operators as well as increasing the recursion depth.

For our experiments, we generate both a base dataset and a hard dataset. For the base

dataset, we allow one variable x, both existential and universal quantifiers, the conjunction

(the operator "&"), the implication (the operator!) and the negation operator (�), up to

two predicates F and/or G and we create formulas for a recursion depth of two. That is, we

exclude the equivalence and the disjunction operators. While keeping formula complexity

low, we still express quite a big fragment of predicate logic this way, as by the DeMorgan’s

laws, there are some equivalences between certain formulas with conjunction and formulas

with disjunction. For the hard dataset, we augment the difficulty by introducing the

following into the logic formulas (and consequently also into the world model, and key

mapping): one more variable than above (so x as well as y), two quantifiers per formula

(instead of just one) as well as more predicates (up to three in total, i.e. F , G and H).

The purpose of the harder dataset is to find out how well the LLMs generalize after having

been finetuned on the base dataset described above. An example of this dataset could look

like so:

43

4. METHODOLOGY

World Model: Andrea is not witty. Juniper is witty. Belle is witty. Andrea is not

distressed. Juniper is distressed. Belle is distressed.

Key mapping: ’H’: ’witty’, ’G’: ’distressed’, ’o’: ’Andrea’, ’k’: ’Juniper’, ’n’: ’Belle’

Formula: exists y.all x.(G(y) & (G(x) ! H(x)))

Satisfied?: satisfied

Besides the four core elements (formula, world model, key mapping, label) of both the

base and the hard dataset, we also keep track of certain metadata that can be derived from

these elements, such as the number of variables, the number of predicates, the number and

the types of operators, the types of quantifiers, which adjectives and names are used as

well as an nltk representation of the keys and the world model (i.e. one that the nltk

parser understands). This will help us in the quantitative analyses of the language model

outputs.

4.3 Task Definitions

From the above synthetic dataset, let us call it the "synthetic predicate logic corpus" (or

SPLC), we derive three tasks: a task to create a formula (task one - the "create formula

task"), a task to create a world model (task two - the "create world model task") and a

task to infer whether the formula is satisfied or not (task three - "deduce sat"). In figure

4.3, we show which parts of the synthetic datasets form the inputs of each respective task

and which outputs are expected from the language model.

For task one, the "create formula" task, we give the language model a world model, a

key mapping and a label and ask it to generate a formula that is either satisfied or not

(depending on the label). For task two, the "create world model" task, we ask it to infer

a world model and a key mapping from a formula, such that the formula is satisfied (or

unsatisfied). Note that here, we ensure that we do not give it a task that it cannot fulfill;

we would, for instance, never ask it to generate something such that a tautology (a formula

that is always true) is unsatisfied, or such that a contradiction (a formula that is always

false) is satisfied. For task three (deduce sat), the goal is to correctly predict the label,

i.e. to indicate whether a formula is satisfied or not, given a formula, a world model and

a key mapping. How the illustrative example from earlier in this chapter is used to derive

the three tasks is depicted in table 4.1.

44

4.3 Task Definitions

F
ig

ur
e

4.
3:

In
pu

ts
fo

r
ea

ch
ta

sk
an

d
ex

pe
ct

ed
ou

tp
ut

s.
Pa

rs
er

s
m

ap
be

tw
ee

n
th

e
la

ng
ua

ge
of

lo
gi

c
an

d
na

tu
ra

ll
an

gu
ag

e.

45

4. METHODOLOGY

With regards to all of the three tasks, we aim to erradicate any imbalances in our dataset

during creation - imbalances that could help the model learn the wrong features. For

instance, we create an exact 50/50 balance for the labels. However, more such imbalances

might be present in the dataset, something which we investigate further in chapter 5.

Table 4.1: Illustrative example for each task derived from the base dataset.
Task Input Expected Output

Task 1
(create formula)

World Model:
Houston is charming.
Melvin is charming.

Gwendolyn is not charming.
Key mapping:
’G’: ’charming’,
’b’: ’Houston’,
’d’: ’Melvin’,

’e’: ’Gwendolyn’
Satisfied?:
unsatisfied

Formula:
-exists x.G(x)

Task 2
(create world model)

Formula:
-exists x.G(x)
Satisfied?:
unsatisfied

World Model:
Houston is charming.
Melvin is charming.

Gwendolyn is not charming.
Key mapping:
’G’: ’charming’,
’b’: ’Houston’,
’d’: ’Melvin’,

’e’: ’Gwendolyn’

Task 3
(deduce sat)

Key mapping:
’G’: ’charming’,
’b’: ’Houston’,
’d’: ’Melvin’,

’e’: ’Gwendolyn’
Key mapping:
’G’: ’charming’,
’b’: ’Houston’,
’d’: ’Melvin’,

’e’: ’Gwendolyn’
Formula:

-exists x.G(x)

Satisfied?:
satisfied

46

4.4 Evaluation

4.4 Evaluation

4.4.1 Baselines

For any new dataset we need to establish baselines. Baselines are references that we

compare our models’ performances to. In chapter 5, we perform experiments to generate

such random baselines. In the following, we explain how we establish them.

We build random but syntactically correct baselines for each of the tasks. Such a baseline

supposes that the model is capable of forming syntactically correct outputs (including the

correct amount of predicates for task one (create formula) and task two (create world

model)), but all other variation in the generation is random. That is, for instance, in task

one (create formula), the model produces a syntactically correct formula, but randomly

chooses e.g. which operators and how many to use, which quantifiers to use, etc.

In order to achieve this, the following sampling algorithms are proposed: for task one

(create formula), we sample two datapoints from our dataset, such that both datapoints

make use of the same predicates in their formulas. This ensures that we have a syntactically

correct comparison. Besides, since our dataset contains all possible formulas given our

constraints on the number of variables, quantifiers, predicates, etc., we explore the full

variety of different logical formulas that are syntactically correct. Then we use the model

checker with the formula from the first datapoint, and the world model and key mapping

as well as whether the formula should be satisfied from the second datapoint. Finally, we

check if the formula is actually satisfied given the world model and key mapping (using a

model checker). We repeat this sampling procedure one million times.

For task two (create world model), we perform this procedure analogous to task one

(create formula). That is, we sample two datapoints from our dataset, such that both

datapoints make use of the same predicates in their formulas. This ensures that we have

a syntactically correct comparison. Then we use the model checker with the formula and

whether it should be satisfied from the second datapoint, and the world model and key

mapping from the second datapoint. Finally, we check if the formula is actually satisfied

given the world model and key mapping (using a model checker). We repeat this sampling

procedure one million times.

Task three (deduce sat) has a 50% chance, if we assume that the output is syntactically

correct, as for this task, we only expect a binary output (satisfied or unsatisfied). Therefore,

for task three (deduce sat), no algorithm for creating a random but syntactically correct

baseline is needed.

47

4. METHODOLOGY

4.4.2 Zeroshot & Fewshot learning, Finetuning and Generalization

We evaluate how well our models perform at the proposed tasks via zeroshot learning,

fewshot learning, finetuning (on a single task and on multiple tasks) and via two different

kinds of generalization tasks. Zeroshot learning refers to evaluating (language) models on

a task without them having seen a single example of the task before (e.g. during pre-

training). Fewshot learning, on the other hand, adds to the prompt a certain number of

examples (in our case, between one and four), including the correct answer. This means

that we do not perform any weight updates of the model, which is what happens during

finetuning (or further training). It has been shown, that certain large pre-trained language

models can already solve certain tasks in a zero-shot (Wei et al., 2021) and few-shot setting

(Brown et al., 2020). We inquire whether this applies to our tasks as well.

We already defined finetuning in chapter 2, and the way we finetune is two-fold: first, we

finetune the language models on every task individually (single task), then we finetune the

language models on all the tasks (multi task). With regards to single task finetuning, we

aim to find out how much this can improve the performance over the zeroshot and fewshot

setting, on the one hand, and whether it helps to generalize to the other two tasks on the

other hand. As per multi task finetuning, we would hypothesize that an emulation of an

algorithm for logical reasoning would transfer between tasks, and therefore, training on all

tasks should lead to better results overall.

For instance, if a human being performed task two (create world model), typically after

coming up with a world model and key mapping, he/she would need to check whether

the generation actually leads to a satisfied or unsatisfied formula. Similarly for task one

(create formula), when a formula is to be created. That is, a human being who performs

well on task one (create formula) and/or task two (create world model) would typically

also perform well on task three (deduce sat), which is about deducing whether a formula

is satisfied or not given a world model and key mapping.

Besides, we also evaluate our models on the task of generalizing to a harder dataset, as

we defined it and gave an example in section 4.2. That is, in general, we expect it to be

a harder dataset, the more variables, quantifiers and predicates we include, as well as how

big the world model is. We expect this for two reasons: first, from cognitive psychology, we

know that human beings can only keep track of a certain number (seven plus/minus two)

of items in their mind at one time (Miller, 1956). Second, in their article (Richardson and

Sabharwal, 2022), they also show that in logical reasoning in propositional logic, adding

48

4.4 Evaluation

more variables to the task decreases the performance of language models - suggesting that
this makes it harder for them. We also test this in our quantitative analyses.

All of our models are finetuned using supervised finetuning on the next token predic-
tion task. However, they are evaluated on accuracy, that is, the correct percentage after
postprocessing and parsing their outputs and then passing them through the nltk model
checker.

4.4.3 Dataset Sizes

Our synthetic (base) dataset has 100000 datapoints, an arbitrary number that we can
increase or decrease. However, since we decided to train some very large language models,
and only had restricted time and computational resources, the subsets used for evaluation
and training were much smaller. Our evaluation datasets (for zeroshot, fewshot, finetuning
and generalization) are of size 1000 datapoints (both for evaluating on the task with the
same difficulty and with a harder difficulty). The fewshot evaluation datapoints differ in
their token length, as they include a certain number of fewshot examples (one, two or four)
with the input and the expected answer as part of the prompt.

For example, an evaluation datapoint for the zeroshot setting in task one (create for-
mula) is an input-target pair, where we plug-in world model, key mapping, label (satisfied
or unsatisfied) and formula from above in the respective places in the following prompt
template:

Input:

Here is a world model:

{{ world model }}

Let us interpret predicates and names as follows::

{{ key mapping }}

Provide a logical formula in predicate logic that is {{ satisfied }} given

the above situation and interpretation (keys)!

Target:

{{ formula }}

49

4. METHODOLOGY

So, the model is expected to produce the target (in this task, the formula).

Compared to this, an evaluation datapoint for the fewshot setting adds a certain number

of randomly chosen such examples, plus the target (in order to teach the model via those

examples), plus the last example input that does not appear together with the target,

which the model is supposed to produce.

The training dataset for training on a single task first takes a subset of 10000 datapoints

from the base dataset, performs a train-eval-test split of 60/20/20 %, such that we end up

with 6000 training datapoints for each model and each task. When we train on all tasks

simultaneously, however, we train on 2400 examples per task (or 7200 examples in total).

We analyze and present descriptive statistics of these different training and evaluation

datasets in section 5.2. In table 4.2, we summarize the number of datapoints used in

finetuning and evaluation.

Table 4.2: Number of datapoints for training and evaluation datasets.
Dataset Number of datapoints

Zeroshot Evaluation 1000
Fewshot evaluation 1000
Training single task 6000
Training Evaluation 1000
Training multi task 2400 (per task)

Hard dataset evaluation 1000

4.4.4 Parsers

In order to evaluate our models, for each of the three tasks, we built or modified a separate

parser. The parsers convert the natural language outputs of the language models into a

logical form (that can subsequently be used be the nltk model checker) (see figure 4.1).

For task one (create formula), we modified the nltk parser to search the first and longest

substring it can parse into a syntactically correct formula (see figure 4.3). This is because,

as we stated before, a language model may often output more than the desired output,

and not necessarily in the desired order either. For the task two (create world model),

our custom parser searches for a world model and key mappings in the answer. Finally,

all parsers map this natural language output to logical form. For task three (deduce sat),

we implemented a parser that simply searches for the respective keywords (satisfied or

unsatisfied) in the outputs.

50

4.4 Evaluation

4.4.5 Prompts

With regards to fewshot learning, we evaluate the models using two different prompts. A

prompt describes the task to the language model. In section 4.4.3, we already showed the

first kind of prompt. This prompt optimizes for the number of tokens. In other words, in

this prompt, we try to describe the task as shortly as possible to the language model.

An example of the second prompt for task one (create formula) is as follows:

Input:

Context:

You will receive a problem in first-order predicate logic to solve. This

problem contains a set of statements about the world (let us call it a ’world

model’) and a mapping from things in this world to variables representing

these things (we call that mapping the ’keys’). You are then asked to provide

a formula in first-order predicate logic that is either satisfied or unsatisfied

given the world model and keys. Please return only the formula, written

in the format of the python library nltk.

Question:

Here is a world model:

{{ world model }}

Here are the keys:

{{ key mapping }}

Please write down only one formula in first-order predicate logic that is

{{ satisfied }} given the above world model and keys.

Answer:

Target:

{{ formula }}

51

4. METHODOLOGY

While the prompts have been designed by trial and error, the rationale behind the second

prompt is that it optimizes for explaining the task well, including specifying the exact

output it expects (potentially helping the language model what it should generate, and

thereby potentially helping with parsing the outputs). Both prompts could be beneficial

for generation: optimizing for the number of tokens could make it easier for the language

model to attend to the relevant parts of the prompt, while explaining the task well could

help the model to better understand what is required of it. Please refer to section 6.2) for

the prompts for task two (create world model) and task three (deduce sat). Nevertheless,

it remains unclear what an optimal choice of prompt would be in order to elicit correct

outputs.

4.5 Models

Our investigation involves four pre-trained causal language models, that is Llama-2 (the

13 billion parameter variant) (Touvron et al., 2023), Falcon (the 7 billion parameter vari-

ant) (Penedo et al., 2023), an Orca model (with 13 billion parameters) (Mathur, 2023)

and WizardCoder (in the 15 billion parameter variant) (Luo et al., 2023), as well as one

sequence-to-sequence language model: Flan-Ul2 (which has 20 billion parameters) (Tay

et al., 2022a). All the models are based on the original transformer architecture. Further-

more, all of them have been instruction finetuned after pre-training. Instruction finetuning

is a kind of supervised finetuning that trains a pretrained model on an instruction-following

task. In other words, while pre-training has as its goal to teach a language model a general

understanding of building coherent and well-formed sentences, instruction finetuning aims

to achieve that a language model can follow instructions and thereby complete tasks that

we present to it. Hence why we also experiment with different prompts that explain our

tasks. In the following, we discuss the five language models used and in table 4.3, we

present a short overview of their most important aspects.

Table 4.3: Overview of the large language models used.

Language Model Number of
parameters

Architecture Notable Aspect

Flan-UL2 (20B) 20 billion seq-to-seq Largest of the compared models.
Falcon-7B 7 billion causal Refined Dataset for Pre-training.

Llama-13B-Chat-hf 13 billion causal High score on BIG Bench hard.
Orca 13 billion causal High score on ARC.

WizardCoder 15 billion causal High score on coding benchmark HumanEval.

52

4.5 Models

Flan-Ul2 (Tay et al., 2022a) is our only sequence-to-sequence model, i.e. the only model
that uses both an encoder and a decoder from the transformer architecture. It is based on
the T5 architecture (Raffel et al., 2020). We use the 20 billion parameter version, which
is also the model with the most parameters that we compare. Its pre-training objective
differs from the other models used in this thesis in that, instead of predicting next words, it
is trained on multiple different pre-training paradigms (called denoising tasks). Denoising
tasks, in essence, mask different words in different places of an input sequence, which the
language model shall predict. After that, it was instruction finetuned using the FLAN
collection of datasets (a wide variety of over 1800 instruction finetuning tasks) (Chung
et al., 2022).

Falcon-7b-instruct is the smallest causal language model we employ (Penedo et al., 2023),
with only seven billion parameters. It only uses a decoder from the transformer architecture
and was pre-trained on the causal language modeling task (i.e. to predict next words).
Other than this, its architecture is similar to GPT-3 (Brown et al., 2020) and uses multi-
query attention (MQA) (Shazeer, 2019), compared to multi-head attention as described in
chapter 2. Multi-query attention adapts multi-head attention by letting different attention
heads share the same values and keys, so as to get faster decoding (i.e. generation) speed.
Plus, it uses FlashAttention (Dao et al., 2022), which makes the self-attention calculations
faster. Importantly, Falcon is still trained on a dataset that is primarily based on web data
from CommonCrawl. However, contrary to the other models we compare, the creators of
Falcon paid particular attention to filter out as much low-quality sequences and documents
as possible, making the result, the Refined Web dataset, high quality for pre-training.
After this step, it was instruction finetuned on instruction and conversational tasks. On
benchmarks, this model does relatively badly on code generation tasks, but quite well on
BIG Bench hard (which is a narrowed down subset of hard tasks from the BIG Bench
dataset).

A little less is known about the LLama-2 model that we use in the 13 billion param-
eter variant. Their paper (Touvron et al., 2023) does not mention any data sources for
pre-training or finetuning, but we note that it has been pre-trained from publicly available
resources on 2 trillion tokens, as well as (instruction) fine-tuned also on publicly avail-
able data. We employ Llama in the chat variant, that is, it has been finetuned for a
conversational setting. Importantly, the Llama-2 model is further trained using RLHF (re-
inforcement learning from human feedback) so to conform to human preferences. Besides,
it uses a modified transformer (decoder-only) architecture. Notably, it does better than
Falcon on the BIG Bench hard datasets, and much better than Falcon on coding tasks.

53

4. METHODOLOGY

Our Orca model is the Llama-2-13b base model which was further finetuned (not on chat

data but) on datasets that were built in the style of the original Orca model (Mukherjee

et al., 2023). These datasets are used for imitation learning, where a smaller model is

supervised by a larger model and learns from its demonstrations. In this case, it refers to

datasets that are constructed by passing inputs to a larger language model (in this case 1

million datapoints from GPT-4 and 5 million datapoints from ChatGPT) and gathering

their generations. These input-output sequences are then used as training data for the

Orca model that is supposed to imitate the bigger model. In their paper (Mukherjee

et al., 2023), the authors have shown that their Orca model scores as high on reasoning

capabilities on BBH (BIG Bench hard) as ChatGPT, which is roughly 13 times the size

of the orca model. In other words, the Orca model manages to imitate not only the style

but also the reasoning capabilities of the larger model. Particular emphasis in these kinds

of datasets has been on asking the teachers (GPT-4 and ChatGPT) to e.g. "explain like

I’m five", or "step by step" to get much longer reasoning outputs, which suggests that

step-by-step explanations can help models improve their learning outcomes. Notably, not

only has Orca been trained on logical reasoning tasks (in natural language), but, at the

time of writing, this model is one of the highest scoring large language models of its size

on the hugginface leaderboard (Beeching et al., 2023) and it scores particularly well on

reasoning benchmarks, such as the AI2 Reasoning Challenge (Clark et al., 2018).

WizardCoder (Luo et al., 2023), while being only a 13 billion parameter model, is one

of the leading open-source models on the HumanEval benchmark, a benchmark for code

generation (Chen et al., 2021). It’s an instruction-finetuned Starcoder (Li et al., 2023).

The Starcoder model is not instruction-finetuned itself, but uses the same architecture as

GPT-2 (Radford et al., 2019), adding to it multi-query attention (MQA) (Shazeer, 2019),

FlashAttention (Dao et al., 2022) and the Fill-in-the-Middle objective (FIM) (Bavarian

et al., 2022). FIM asks language models to fill in what is missing between two sequences, as

opposed to predicting next words (common left-to-right generation). It has been instruction

finetuned similarly to Orca, i.e. via imitation learning using ChatGPT as the teacher, but

with fewer datapoints, and a form of finetuning they call evol-instruct adapted to the task

of code synthesis. Evol-instruct is a form of instruction finetuning, where an LLM creates

more diverse and more difficult instructions from a set of instructions.

For each of our models, we make use of the implementation from the huggingface trans-

formers library (Wolf et al., 2020). We use standard supervised finetuning, optimizing the

cross-entropy loss. In chapter 5, we detail the kinds of experiments performed, and in

54

4.5 Models

section 6.2, we specify the hyperparameters used for generation as well as for fine-tuning
using QLoRA.

55

4. METHODOLOGY

56

Chapter 5

Experiments and Results

In this chapter, we introduce the results of our more than 150 experiments and present

qualitative and quantitative analyses to contextualize the results. The first section of this

chapter establishes baselines for the respective tasks. In the second section, we describe

the zeroshot learning results, and after that, the fewshot learning experiments performed

and the results pertaining to it. Next, we analyze and discuss the finetuning experiments,

including how well our models can generalize to the other proposed tasks as well as to a

harder dataset. For the qualitative analyses, we inspect 30 random examples for each case.

The authors acknowledge support by the state of Baden-Württemberg through bwHPC.

All of our experiments were performed on NVidia A100 80GB GPUs.

5.1 Baselines

We establish baselines for both the base and the hard dataset. Our first experiments

are to establish random but syntactically correct baselines for each of the tasks as per the

algorithms described in section 4.4. The random, but syntactically correct baseline for task

one (create formula) turns out as 0.500493, or roughly 0.5. The random, but syntactically

correct baseline for task two (create world model) turns out as 0.827161, or roughly 0.827.

A summary of this is depicted in 5.1.

Table 5.1: Baselines for the three tasks of the base dataset.

Task Baseline
Task 1 (create formula) 0.5

Task 2 (create world model) 0.827
Task 3 (deduce sat) 0.5

57

5. EXPERIMENTS AND RESULTS

In principle, one would also expect a baseline of 0.5 for task two (create world model).

So why is this not the case here? The reason for the high baseline for task two (create

world model) lies in a bias in the dataset (that we only found out about after performing

the following experiments). The bias is that we created certain formula-world model com-

binations, but not others, overlooking the fact that the size of the world models (i.e. the

number of constants) correlates with the probability of either satisfying or dissatisfying a

formula.

An inspection of some example formulas from table 5.2 makes this clearer. For instance,

in the first row of this table, if we aim to build a world model that satisfies the formula:

exists x.F (x)

the higher the number of constants, the higher the probability that the world model

satisfies the formula (the assumption (or design decision) being that every constant is

mapped to every predicate randomly, either fulfilling or not fulfilling that predicate; in

other words, our world models do not contain any distractors, or constants or predicates

that are irrelevant to the respective formula). With one constant, we therefore have a 50%

chance to satisfy that formula, with two constants, it’s a 75% chance and so on, converging

to 100% with more constants. And the symmetric case is true for not satisfying that

formula, where the probability distribution converges to 0% as the number of constants

increases (see row two in 5.2). However, since we add a datapoint only when it fulfills the

label, we oversample large world models (with e.g. two or more constants) for satisfying

that formula and we oversample small world models (with e.g. just one constant) for

unsatisfying it.

This is not just the case for this one formula, but for others as well, as is shown in

the table 5.2. In general, we oversample the formulas in the green color. This is because

in our dataset construction algorithm (see algorithm 1), we choose the world model size

randomly between one constant and the parameter "max world model size" (which refers

to the maximum number of constants that we allow to appear in our world models).

Therefore, we tend to have world models with sizes bigger than two.

58

5.1 Baselines

Table 5.2: A list of select formulas from the base dataset, their possible target labels, and
the probability that a certain number of constants (that are either mapped to the predicate
or not with probability 0.5) fulfill the target label.

Formula Target label Number of constants Probability that correct
1 0.5
2 0.75exists x. F(x) Satisfied
... ...

exists x. F(x) Unsatisfied
1 0.5
2 0.25
... ...

-exists x.
F(x)

Satisfied
1 0.5
2 0.25
... ...
1 0.5
2 0.75

-exists x.
F(x)

Unsatisfied
... ...

all x. F(x) Satisfied
1 0.5
2 0.25
... ...
1 0.5
2 0.75all x. F(x) Unsatisfied
... ...
1 0.5
2 0.75-all x. F(x) Satisfied
... ...

-all x. F(x) Unsatisfied
1 0.5
2 0.25
... ...

all x. (F(x)
! G(x))

Satisfied
1 0.75
2 0.56
3 0.42
... ...
10 0.056
1 0.25
2 0.44
3 0.58
... ...

all x. (F(x)
! G(x))

Unsatisfied
10 0.944

59

5. EXPERIMENTS AND RESULTS

Note also, that this probability distribution changes (gets more complex) for more com-

plex formulas, such as

all x.(F (x)! G(x)).

This is because when using one constant c in this case and map it with probability 0.5

to the predicates, we have four possible world model combinations: (Fc, Gc), (-Fc, -Gc),

(-Fc, Gc) and (Fc, -Gc). Only the last of these combinations makes the above formula

false, i.e. there is a 75% chance of satisfying the formula. The probability also converges

to 0 the bigger the world model (the more number of constants) we use. So, we oversample

the case where we do not satisfy this formula, as we tend to use world model sizes bigger

than three (the optimal threshhold (or critical region) is between two or three constants,

as can be seen from the table 5.2).

This is once more depicted in figure 5.1, where we inspect how the probability that a

datapoint fulfills the target label changes depending on the world model size (i.e. the

number of constants). For this, we assume that we have a complete but random mapping

from constants to predicates. As a result, we oversample datapoints from above the critical

region.

Figure 5.1: An analysis of how the number of constants (in the world model) affect the
probability that a datapoint fulfills the label (assuming that we have a complete but random
mapping from constants to predicates). We oversample datapoints from above the critical
region.

So, in general, we have a bias in our dataset, where certain formula-target combinations

appear much more often (the ones from above the critical region), and at the same time,

60

5.2 Dataset statistics

for these combinations, we tend to oversample large world models (to some extent as well).

It turns out that because of this, most datapoints have large world models, which are

once again very likely to lead to the expected label for another datapoint (which is how

we construct the experiments for our random baseline). Hence, why we have such a high

baseline for task two (create world model). A remedy is discussed in the section 6.2 on

future work, but we can see from figure 5.1 that in order to avoid a "shortcut" for solving

this task, one should sample from (close to) the "critical region", i.e. build world models

close to probability of 0.5. But one should be aware that where this critical region lies

changes depending on the formula (see 5.1).

Another baseline is established regarding the hard dataset. A summary is depicted in

5.3. For task one (create formula), it is 0.500888 or roughly 0.5. For task two (create world

model), it is 0.953444. This is much higher than 0.5, which is due to the same reason

explained for the baseline for task two above (see 5.1). Task three (deduce sat) remains at

0.5 as before.

Table 5.3: Baselines for the three tasks of the hard dataset.

Task Baseline
Task 1 (create formula) 0.5

Task 2 (create world model) 0.953
Task 3 (deduce sat) 0.5

5.2 Dataset statistics

In this section, we present a summary of the descriptive statistics of the different training
and evaluation datasets. Since the following is a summary, the full results can be found in
the appendix (section 6.2). This includes the distribution of quantifiers, keys, predicates,
constants, sentences in the world model, operators and labels in the respective datasets.

In all the evaluation and training datasets, we find that we have a balanced dataset
regarding the labels, quantifiers, which of two binary operators is used and whether there
is a negation operator in front. In other words, we usually have about 50/50% satis-
fied/unsatisfied labels, exists/all quantifiers, an and or an implication operator and whether
a negation operator is placed in front. The only exception is the hard dataset, where we
always use both quantifiers. About half of the formulas use a single predicate (either F
or G), and about the other half uses two predicates. A balanced dataset ensures that our
models do not learn to create only certain kinds of formulas, world models or key mappings.

61

5. EXPERIMENTS AND RESULTS

Furthermore, we tested whether there are tautologies and contradictions in the datasets.
There is about a 12.5% chance that a formula is a tautology and another 12.5% chance
that a formula is a contradiction, across all of the datasets. This can be helpful in our
analyses further down in order to determine, when a model fails or succeeds.

In summary, all of these statistics do not differ significantly across the sampled different
and differently sized datasets for each of the evaluation and training settings. The only
exception is the hard evaluation dataset, which was constructed differently on purpose.

The hard evaluation dataset is harder than the training dataset, as we use more pred-
icates, more quantifiers and more operators. That is, we have both one "exists" and one
"all" quantifier in each formula. We have less formulas with only one predicate, more
formulas with two predicates and we introduce formulas with three predicates (F, G and
H). There are less formulas that have no implication, a similar amount of formulas with
one implication and we introduce formulas with two implications. Similarly, there are less
formulas that have no "and" operator, a similar amount of formulas with one "and" oper-
ator and we introduce formulas with two "and" operators. The consequence of this is that
we also have no formulas with just unary operators (negations), a negligible amount of
formulas with only binary operators (implications or "and" operators, but no negations),
but almost all formulas have both unary and binary operators. As a consequence, there
appear more negations and a higher number of operators in total per datapoint. As a
consequence of using more predicates, world models are typically longer as compared to
the training dataset. It also means that the number of keys rises slightly whenever we use
more operators, otherwise it stays comparable to the base dataset. At the same time, we
keep the number of constants similar to the training dataset.

5.3 Zeroshot learning

We first perform a zeroshot evaluation of our five models on 1000 datapoints on each of
the three tasks. We use the first (of the two different proposed) prompts (see section 6.2
for the exact wording of the prompts). None of the models surpasses the baselines in any
of the tasks (see table 5.4). In task three (deduce sat), they perform according to the
baseline, but in task two (create world model) and task one (create formula), they do not
get a single example correct.

Qualitative Analysis: When we analyze a subset of the outputs of the language models,
all of them struggle to provide formulas (in task one - create formula) that even produce
correct syntax. The Llama and Orca models come the closest to a correct syntax, but
they fail to include quantifiers or operators. One plausible reason for them doing at least
somewhat better is that they have been trained on logical reasoning tasks and already do

62

5.4 Fewshot learning

Table 5.4: Zeroshot accuracies for the three tasks.

Model
Task 1

(create formula)
Task 2

(create world model)
Task 3

(deduce sat)

Flan-UL2 (20B) 0.0 0.0 0.513
Falcon-7B 0.0 0.0 0.027

Llama-13B-Chat-hf 0.0 0.0 0.401
Wizard (15B) 0.0 0.0 0.490
Orca (13B) 0.0 0.0 0.474

quite well on them (as we described in section 4.5). With regards to task two (create world
model), the models do not seem to understand what is required of them, so no syntactically
correct output is produced.

In summary, the general difficulty in the zeroshot setting seems to lie in understanding
what is required of the language models for task two (create world model), and generally,
in being able to produce outputs in the new language of logic. Although we do not have
access to the underlying pretraining dataset, this is probably due to not being pretrained
on logical languages generally, and particularly on the nltk representation of first-order
logic (which has its own specific syntax and semantics). Furthermore, this is probably due
to another problem which is inherent in such a logical language, in general, and that is,
that is uses a lot of characters as tokens, but most large language models (probably) do not
receive much training data containing characters as tokens. This seems to make handling
the language of predicate logic particularly difficult.

5.4 Fewshot learning

Next, we aim to find out whether the models reach better results when performing fewshot
learning. The fewshot task was performed with two different prompts (see section 6.2),
as motivated in section 4.4.5. However, before we compare the results with respect to the
two prompts, let us first investigate the results regarding prompt one and compare it to
the zeroshot learning setting.

Our first result concerns comparing task one (create formula) in the zeroshot and the
fewshot setting (using prompt one in both settings). Here, all models but the Flan-Ul2
model significantly improve their results (see table 5.5), yet they remain below the random
but syntactically correct baselines.

The same happens for task two (create world model): also here, all models but the Flan-
Ul2 model significantly improve their results (see table 5.6), yet again, they remain below
the random but syntactically correct baselines.

63

5. EXPERIMENTS AND RESULTS

Table 5.5: Zeroshot and (best) fewshot accuracies for task 1 (create formula). Prompt 1.

Model Zeroshot (Best) Fewshot
Flan-UL2 (20B) 0.0 0.002

Falcon-7B 0.0 0.372
Llama-13B-Chat-hf 0.0 0.397

Orca (13B) 0.0 0.357
Wizard (15B) 0.0 0.468

Table 5.6: Zeroshot and (best) fewshot accuracies for task 2 (create world model). Prompt
1.

Model Zeroshot (Best) Fewshot
Flan-UL2 (20B) 0.0 0.000

Falcon-7B 0.0 0.243
Llama-13B-Chat-hf 0.0 0.205

Orca (13B) 0.0 0.696
Wizard (15B) 0.0 0.591

At the same time, for task three (deduce sat), all models stay at a random baseline (see
table 5.7).

Table 5.7: Fewshot accuracies for task 3 (deduce sat). One, two or four examples. Prompt
1.

Model 1 example 2 examples 4 examples
Flan-UL2 (20B) 0.488 (0.488) 0.481 (0.481) 0.478 (0.478)

Falcon-7B 0.493 (0.493) 0.493 (0.493) 0.493 (0.493)
Llama-13B-Chat-hf 0.510 (0.510) 0.504 (0.504) 0.503 (0.503)

Orca (13B) 0.501 (0.501) 0.494 (0.494) 0.497 (0.497)
Wizard (15B) 0.486 (0.486) 0.511 (0.511) 0.506 (0.506)

Note, how in table 5.7, we start to include two types of accuracies: the accuracy as
we know it (percentage of syntactically and logically correctly produced outputs), plus a
corrected accuracy: one that discards all the generations, where the respective parser does
not parse anything that is seen as syntactically meaningful. This could be the case, if the
language model produces some output that does not contain a parseable formula for task
one (create formula), a world model and a key mapping for task two (create world model),
or satisfied / unsatisfied for task three (deduce sat). The second kind of accuracy (we call
it "corrected accuracy") is therefore at least as high as the usual accuracy. In table 5.7,

64

5.4 Fewshot learning

(and often throughout our tasks), these two kinds of accuracy do not differ, which means
that our parsers do detect syntactically correct (but not necessarily logically correct), and
therefore relevant answers. Besides, it also shows how the models, in the fewshot setting,
produce a lot of syntactically incorrect outputs (due to a big difference between the two
accuracies).

Next, we are interested in finding out whether more fewshot examples lead to higher
accuracies. In task three (deduce sat), this is not the case, as we can see from the following
figures in 5.2. The accuracies tend to stay the same.

Figure 5.2: Fewshot performance on task 3 (deduce sat).
Top: Left: Falcon-7b; Middle: Llama-13b; Right: Flan-Ul2.

Bottom: Left: Orca-13b; Right: Wizard-15b.

Qualitative Analysis: In task three (deduce sat), all models perform close to random
chance in all the tested fewshot settings. The typical outputs of all models is either
satisfied or unsatisfied (possibly followed by some stop token, or more explanations behind
their decision), so they are considered syntactically correct, but logically, they represent a
random guess.

Regarding task two (create world model), receiving more fewshot examples seems to help
for the Llama model, but not for the other models (see figure 5.3):

65

5. EXPERIMENTS AND RESULTS

Figure 5.3: Fewshot performance on task 2 (create world model).
Top: Left: Falcon-7b; Middle: LLama-13b; Right: Flan-Ul2.

Bottom: Left: Orca-13b; Right: Wizard-15b.

For task one (create formula), it seems to help the Llama model, the Orca model and the
Wizard model to some extent to receive more fewshot examples, but not the other models
(see figure 5.4).

However, we note that some language models perform significantly better than others:
Flan-Ul2 performs much worse than the other models on task one (create formula) and
task two (create world model) - no matter the amount of examples we give it - as we can
see in the two tables 5.8 and 5.9).

Table 5.8: Fewshot accuracies for task 1 (create formula). One, two or four examples.
Prompt 1.

Model 1 example 2 examples 4 examples
Flan-UL2 (20B) 0.0 (0.0) 0.0 (0.0) 0.002 (0.057)

Falcon-7B 0.300 (0.380) 0.372 (0.419) 0.345 (0.362)
Llama-13B-Chat-hf 0.151 (0.344) 0.256 (0.360) 0.397 (0.428)

Orca-13B 0.057 (0.313) 0.190 (0.424) 0.357 (0.496)
Wizard-15B 0.409 (0.433) 0.432 (0.442) 0.468 (0.477)

66

5.4 Fewshot learning

Figure 5.4: Fewshot performance on task 1 (create formula).
Top: Left: Falcon-7b; Middle: LLama-13b; Right: Flan-Ul2.

Bottom: Left: Orca-13b; Right: Wizard-15b.

Table 5.9: Fewshot accuracies for task 2 (create world model). One, two or four examples.
Prompt 1.

Model 1 example 2 examples 4 examples
Flan-UL2 (20B) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

Falcon-7B 0.164 (0.457) 0.243 (0.507) 0.144 (0.563)
Llama-13B-Chat-hf 0.007 (0.013) 0.088 (0.226) 0.205 (0.596)

Orca-13B 0.597 (0.601) 0.696 (0.708) 0.626 (0.655)
Wizard-15B 0.591 (0.606) 0.468 (0.560) 0.511 (0.577)

Qualitative Analysis: Regarding task one (create formula), Flan-Ul2 only got a few
answers correct in total (over all fewshot settings and all of them were in the task with
the most fewshot examples). Typical correct example outputs are "-exists x.F(x)", but the
vast majority of the time, it does not produce syntactically correct formulas.

Falcon produces syntactically correct outputs many times, but in this group of syntac-
tically fine formulas, such as "exists x.-(F(x) & G(x))" or "exists x.(G(x) -> -F(x))", it
tends to include unnecessarily long formulas, such as "all x.((G(x) & F(x)) & (G(x) &
F(x))). In general, it also still produces some syntactically incorrect outputs.

Similarly, the Llama model produces syntactically incorrect outputs still, but a few times,

67

5. EXPERIMENTS AND RESULTS

they end up to be not just syntactically but also logically correct. This is especially the
case, if we look at the corrected accuracy (green bar in the figures), where we exclude
syntactically incorrect generations. In that case, it compares to the falcon model.

Above, we argued that the general difficulty in generating syntactically correct output
seems to lie in understanding what is the required output of the language models (e.g. for
task two (create world model)), and generally, in understanding how to produce the new
language of logic (e.g. for task one (create formula)). If understanding the new language of
logic and being able to produce results in it would be a problem, none of the models would
get an accuracy much higher than 0.0. This, however is not the case in the fewshot setting
anymore for most of the models, only for Flan-Ul2. This suggests that Flan-Ul2 might
not tokenize individual "characters" very well, compared to the other models, that now
certainly understand how to form syntactically correct formulas in predicate logic. Another
possible explanation is that the Flan-Ul2 model might have weak character embeddings as
compared to the other models. Due to this issue with this model, we do not attempt to
finetune the Flan-Ul2 model going further.

In order to get another datapoint, that could indicate an answer towards these two lines
of arguments, we proposed a second prompt in section 4.4.5 (an example of which is shown
for each task in section 6.2). The second prompt aims to be as precise as possible in telling
the model what is required of it by stating to write the formula in the "format of the
python library nltk" (regarding task one (create formula)), and by explaining what a key
mapping and a world model is, as well as in what format those should be returned in for
task two (create world model).

We find that Flan-Ul2 neither improves nor gets worse when using prompt two, indepe-
dent of the task, as we can see from the following figures 5.5, 5.6 and 5.7:

Figure 5.5: Fewshot performance of Flan-Ul2 on task 1 (create formula). Prompt
comparison. Left: Prompt 1. Right: Prompt 2.

68

5.4 Fewshot learning

Figure 5.6: Fewshot performance of Flan-Ul2 on task 2 (create world model). Prompt
comparison. Left: Prompt 1. Right: Prompt 2.

Figure 5.7: Fewshot performance of Flan-Ul2 on task 3 (deduce sat). Prompt comparison.
Left: Prompt 1. Right: Prompt 2.

The results of the other models regarding task three (deduce sat) also do not change
substantially given prompt two, as compared to prompt one (please refer to section 6.2
and the beginning of this section for comparison of the exact accuracies). They still produce
results with roughly 50% accuracy.

What is noteworthy is that the Llama model improves its accuracy somewhat for task
one (create formula), when using prompt two instead of prompt one, while the orca and
wizard models tend to produce similar results (see the following figures 5.8, 5.9 and 5.10).
Prompt two tells the language model more precisely how the output should look like, and
this could be helpful for generating at least a syntactically correct output.

69

5. EXPERIMENTS AND RESULTS

Figure 5.8: Fewshot performance of Orca on task 1 (create formula). Prompt comparison.
Left: Prompt 1. Right: Prompt 2.

Figure 5.9: Fewshot performance of Llama on task 1 (create formula). Prompt comparison.
Left: Prompt 1. Right: Prompt 2.

The differences seem to even out when comparing the corrected accuracies (green bars).
So, in general, more syntactically incorrect outputs are produced using prompt one, which
seems plausible. Therefore, in order to avoid this when finetuning, we continue using
prompt two for that. We also observe here, that the fewshot setting gave examples that
led to an understanding of how to generate outputs in the language of predicate logic, but
a precise explanation of the inputs and the expected outputs seems to further improve the
results.

70

5.4 Fewshot learning

Figure 5.10: Fewshot performance of Wizard on task 1 (create formula). Prompt
comparison. Left: Prompt 1. Right: Prompt 2.

However, this does not hold true for the Orca and Wizard models regarding task two
(create world model), where both perform better (throughout all tasks) given prompt one
than prompt 2 see the following two figures 5.11 and 5.12).

Figure 5.11: Fewshot performance of Orca on task 2 (create world model). Prompt
comparison. Left: Prompt 1. Right: Prompt 2.

One possible explanation why prompt two leads to much worse results for task two (create
world model) is that the models get much longer input sequences when using prompt two.
This might make it more difficult to correctly attend to the relevant relationships between
all of the different variables, predicates and constants in the key mapping (and over to the
formula and world model).

At the same time, since (most of) the green bars of both models using prompt two get
close to (or even surpass) their respective green bars using prompt one, this suggests, that
when they receive prompt two, they produce many syntactically incorrect outputs, but
also that those outputs that are syntactically correct, are fairly often also logically correct.

71

5. EXPERIMENTS AND RESULTS

Figure 5.12: Fewshot performance of Wizard on task 2 (create world model). Prompt
comparison. Left: Prompt 1. Right: Prompt 2.

In other words, they are in principle capable of producing both syntactically and logically
correct outputs just as when using prompt one. Therefore, for all three tasks, we keep
prompt two when performing finetuning.

Qualitative Analysis: For both prompts, both the Llama and Falcon models produce
the same mistakes in their results regarding task two (create world model) in the fewshot
setting. For instance, when Llama is wrong, it might miss predicates in the key mapping.
It tends to provide an exhaustive world model (just like we give it to it via the one, two and
four examples), that is: it maps every predicate to every constant, either with or without
a negation. The Falcon model, on the other hand, produces a lot of repetitions, such as
"World model: G: Safe F: Safe a: Safe b: Safe c: Safe..." etc., where "..." refers to further
repetitions of the key mapping (from any lowercase letter of the alphabet to "Safe"). So
qualitative inspection does not give us any further hints as to why these models differ here.

In summary, fewshot shows that most models get syntactically better and even produce
logically correct outputs, but unfortunately, still not above the respective baselines (so still
not logically correct more than random chance). Therefore, pre-trained models cannot
immediately emulate reasoning in predicate logic when receiving some fewshot examples
and therefore, finetuning is suggested to improve this.

5.5 Finetuning

5.5.1 Finetuning on one Task

We finetuned four of our previously inspected models: Falcon-7B, Llama-13B (in the fine-
tuned variant for chat), Orca-13B and Wizard-15B. Please find the hyperparameters in the

72

5.5 Finetuning

appendix section D. We can show that LLMs are capable of emulating logical reasoning
in predicate logic in all three tasks: three models, Falcon, Llama and Orca perform above
baseline on the inductive task (task 1 - create formula), and most models perform above
baseline on task 2 (create world model) and task 3 (deduce sat).

On task 1 (create formula) (see table 5.10), all models besides Wizard surpass the base-
line. A possible explanation why the wizard model does not perform above baseline may
be due to the hyperparameter choice, as it differs from that of the multitask setting, where
it achieves an accuracy above the baseline for this task (see table 5.16).

Task 1 (create formula):

Table 5.10: Finetuning accuracies for task 1 (create formula).

Model Accuracy
Falcon-7B 0.909 (0.909)

Llama-13B-Chat-hf 0.985 (0.985)
Orca-13B 0.699 (0.699)

Wizard-15B 0.017 (0.017)

Task 2 (create world model): All four models beat the baseline for this task. The
best models, Llama and Wizard, achieve 89.6% accuracy in task two (create world model)
compared to a baseline of 82.7%.

Table 5.11: Finetuning accuracies for task 2 (create world model).

Model Accuracy
Falcon-7B 0.889 (0.889)

Llama-13B-Chat-hf 0.896 (0.896)
Orca-13B 0.848 (0.877)

Wizard-15B 0.881 (0.881)

Task 3 (deduce sat): All models also beat the baseline for task three (deduce sat),
which is 50%. However, the Falcon model only surpasses the baseline slightly. The best
model (Orca-13B) in task 3 (deduce sat) achieves 90.1% accuracy.

73

5. EXPERIMENTS AND RESULTS

Table 5.12: Finetuning accuracies for task 3 (deduce sat).

Model Accuracy
Falcon-7B 0.561 (0.561)

Llama-13B-Chat-hf 0.867 (0.867)
Orca-13B 0.901 (0.901)

Wizard-15B 0.783 (0.783)

It should be noted that the models improve over the fewshot setting in producing syn-
tactically correct outputs for all three tasks, and surpassing the baselines on all three tasks
as well, meaning they learned some logical reasoning in addition to producing syntactically
correct outputs. This is especially noteworthy regarding task one (create formula) as the
artificial language of predicate logic was a new language to the models (as far as we know
from the pre-training process).

Besides these successes, two things are striking, however: first, the wizard model performs
badly on task one (create formula). Second, the Falcon model performs much worse than
the other models on task three (deduce sat). In the following qualitative and quantitative
analyses, we aim to inquire why this is the case. From these analyses, we find that both
Wizard and Falcon seem to only understand syntax of predicate logic but not the semantics,
in these two cases.

The Falcon model was trained on significantly fewer epochs for task three (deduce sat)
than the other models (see D). This might explain its worse performance. However, it was
also trained on somewhat fewer epochs regarding the other tasks and there it does fine.
Similarly, llama was also trained on somewhat fewer epochs regarding task three (deduce
sat) and does quite well here (, refer to D for the exact number of training epochs).

Qualitative Analysis: One thing that seems problematic, regarding task one (create
formula), is that Llama and Orca give multiple different formulas within one answer. For
evaluation, we always choose the first of these formulas.

While the Falcon model does overwhelmingly good and beats the baseline, it seems that
it gets an overwhelming amount of implications (using the implication operator) wrong.
This can be investigated further during quantitative analysis.

The Wizard model generally produces syntactically correct formulas, but they tend to
be relatively long, often repeating predicates such as "G(x)" multiple times, which would
not be necessary. This suggests, that Wizard has not understood how to form formulas
that are logically correct.

With regards to task two (create world model), all four models produce very similar
outputs. They are typically mostly syntactically correct, but they often add a lot of extras
to the key mapping.

74

5.5 Finetuning

As a side note, Falcon may produce the (syntactically and logically) correct formula (for
task one (create formula)), but give a wrong explanation for it. This can certainly only be
an anecdote, as we did not train it on providing explanations nor did we ask it to provide
them. Similarly, regarding task three (deduce sat), as an anecdote, Llama, Wizard and
Orca often give a correct solution, but when adding an explanation, it may be correct or
incorrect.

Quantitative Analysis: In this quantitative analysis, we look at select models regarding
certain tasks and inquire what kinds of variables correlate with their performance. With
respect to models that perform well, we look at Falcon and Llama for task one (create
formula), Wizard for task two (create world model) and Orca for task three (deduce sat).
With respect to models that do not perform well, we look at Falcon for task three (deduce
sat). For this, we use the descriptive statistics introduced in section 5.2, that is whether
it is harder for a model to get a good accuracy, if there are e.g. more predicates in the
formula.

One aspect that we also analyze here, that was part of the descriptive statistics, is
whether the models can work with tautologies / contradictions (when given to them), and
whether they produce tautologies / contradictions for task one (create formula). Producing
tautologies or contradictions for task one (create formula) would be the trivial solution,
as tautologies are formulas that are always satisfied and contradictions are formulas that
are never satisfied. Even though, we show that this is not the case, this still means that
task one (create formula) should be changed to ask to create not just any formula, but one
that is neither a contradiction nor a tautology in a further iteration of working with these
tasks.

Llama and Falcon score the highest on task one (create formula). It does not seem
that the kind of quantifier, the number of keys, the number of constants, the number of
sentences in the world model (i.e. the world model size), nor the number of operators or
negations, nor whether there is a negation in front of the formula correlate with either true
or false answers for Llama. Besides, Llama does not manage to produce a single correct
contradiction and it produces tautologies, but not consistently so that they are are always
correct. This last point means that the Llama model does not find the trivial solution
to task one (create formula). Only the following aspects are striking: first, one predicate
is slightly easier than two predicates; second, when it produces an implication it tends
to be correct more often than when it does not and third, analogously so for the "and"
operator. So in summary, we can distinguish what the model has difficulty with (when it
generates something), and what creates a difficulty for the model (which inputs make the
task harder): the model has a slight difficulty when creating formulas that have neither an
"and" operator nor an implication operator. But more predicates make task one (create

75

5. EXPERIMENTS AND RESULTS

formula) more difficult for Llama (see figure 5.13).

For Falcon, just as with Llama, it does not seem that the kind of quantifier, the number
of keys, the number of constants, the number of sentences in the world model (i.e. the world
model size), nor the number of operators or negations, nor whether there is a negation in
front of the formula correlate with either true or false answers. Besides, Falcon produces
both contradictions and tautologies, but not consistently correctly, i.e. Falcon also does
not use the trivial solution to task one (create formula). Only the following aspects are
striking: first, one predicate is slightly easier than two predicates; second, and contrary
to Llama, when it produces an implication it tends to be correct slightly less often than
when it does not and third, analogously so for the "and" operator. So in summary, we
can distinguish what the model has difficulty with (when it generates something), and
what creates a difficulty for the model (which inputs make the task harder): the model
has a slight difficulty when creating formulas that have either an "and" operator or an
implication operator as opposed to no binary operator. But more predicates make task
one (create formula) more difficult for Falcon.

For the Wizard model trained on task two (create world model) and evaluated on it,
it does not seem that the kind of quantifier, nor the number of operators or negations,
nor whether there is a negation in front of the formula correlate with either true or false
answers. Only the following aspects are striking: First, wizard makes no errors when only
2 or 3 keys are produced in the key mapping. The more keys it produces, the less correct
it is. Similarly, for the number of constants and the world model size (although these
correlate with the number of keys, so this is not surprising). Second, Wizard does not
make any errors, when there is only one predicate in the formula, but only when there are
two predicates, so the more predicates that appear in the formula, the less accurate the
model is (see figure 5.14). Third, a negation in front of the formula leads to a little bit less
accuracy compared to the case when there is no negation in front.

With respect to Orca finetuned on task three (deduce sat), it does not seem that the
kind of quantifier, the number of constants, nor the number of operators or negations,
nor whether there is a negation in front of the formula correlate with either true or false
answers. Rather, this models produces better outcomes, the less keys there are (e.g. it
makes no errors with only two keys), the less predicates there are (it makes almost no
error with one predicate, see figure 5.15), the smaller the world model is. Besides, it makes
slightly more errors if there is an "and" operator and slightly less, if there is an implication,
interestingly. Also, it fares much better with contradictions and tautologies, as compared
to formulas that are neither!

76

5.5 Finetuning

Figure 5.13: Llama-
13b (finetuned on task 1
- create formula).

Figure 5.14: Wizard-
15b (finetuned on task 2
- create world model).

Figure 5.15: Orca-13b
(finetuned on task 3 - de-
duce sat).

Figure 5.16: Finetuned performance: Correct and Incorrect answers on the respective task
depending on whether one or two predicates appear in the formula. More predicates means
lower accuracy across tasks and models.

Finally, Falcon performs worse than the other models on task three (deduce sat), but still
above the baseline. For this model, it does not seem that more predicates or a bigger world
model, nor the kind of binary operator (implication or and operator), nor whether there is a
negation in front, affect this. It gets most tautologies wrong, but most contradictions right.
And it gets somewhat better results with more keys, constants, operators and negations,
something which seems counterintuitive. So we speculate that it might just have learned
an incorrect way to solve the task, as it does not produce an accuracy that is much over
the baseline.

In summary, with regards to task one (create formula), two (create world model) and
three (deduce sat), quantitative analysis suggests that it gets harder the more predicates
are used. For task three (deduce sat), adding not only to the predicates, but also to the
world model and keys seems to make it a harder task. Nevertheless, we can finetune models
such that they perform reasonably above baselines on all three tasks.

5.5.2 Generalization to other Tasks

We tested how well these models generalize to the respective other tasks. If a large language
model were to emulate reasoning in first order predicate logic, one would expect that a
model that does well on one of the tasks, would also do reasonably well on the other tasks.
On the one hand, this is because during supervised finetuning, they learn the syntax of
the respective other tasks. On the other hand, generalization would typically be the case
for humans learning to solve these tasks, as for task one (create formula) and two (create
world model), we would need to check if a generation actually satisfies the formula or not,
so, we would need to perform well on task three (deduce sat) as well. However, we do not
observe generalization to the other tasks, as can be seen in tables 5.13, 5.14 and 5.15.

77

5. EXPERIMENTS AND RESULTS

Table 5.13: Generalization from language models trained on Task 1 (create formula) to other
tasks.

Model Task 2
(create world model)

Task 3
(deduce sat)

Falcon-7B 0.0 (0.0) 0.302 (0.489)
Llama-13B-Chat-hf 0.004 (0.023) 0.455 (0.482)

Orca-13B 0.0 (0.0) 0.495 (0.495)
Wizard-15B 0.232 (0.244) 0.499 (0.499)

Table 5.14: Generalization from language models trained on Task 2 (create world model) to
other tasks.

Model Task 1
(create formula)

Task 3
(deduce sat)

Falcon-7B 0.0 (0.0) 0.006 (0.222)
Llama-13B-Chat-hf 0.0 (0.0) 0.289 (0.426)

Orca-13B 0.0 (0.0) 0.665 (0.665)
Wizard-15B 0.001 (1.0) 0.007 (0.412)

Table 5.15: Generalization from language models trained on Task 3 (deduce sat) to other
tasks.

Model Task 1
(create formula)

Task 2
(create world model)

Falcon-7B 0.0 (0.0) 0.0 (0.0)
Llama-13B-Chat-hf 0.0 (0.0) 0.099 (0.274)

Orca-13B 0.0 (0.0) 0.021 (0.072)
Wizard-15B 0.281 (0.281) 0.881 (0.881)

What surprises is that Orca that was trained on task 2 (create world model) gets a higher
accuracy than baseline on task 3 (deduce sat) (from the models that were not specifically
trained on task 3 (deduce sat)), namely 66.5%. This may have been due to Orca being
explicitly finetuned on logical reasoning tasks (before our finetuning process on our tasks).

Qualitative Analysis: Qualitative analysis suggests that the models do not necessarily
produce the correct syntax for the respective other tasks, and even if they do, are logically
incorrect.

78

5.5 Finetuning

5.5.3 Finetuning on all tasks

As a next step, and since many models tend to perform much better when finetuning
them, but do not generalize well, we finetune the base models on all three tasks at the
same time. Finetuning on all tasks (after shuffling the respective datapoints) tends to lead
to a medium-high accuracy across tasks for most models (see table 5.16). That is, for
task one, all of the models perform higher than baseline, but not as high as in single task
finetuning. For task two (create world model) only the orca model performs above baseline.
and for task three (deduce sat), the accuracies are only slightly above the baseline.

Table 5.16: Finetuning accuracies for all tasks after training on all tasks.

Model Task 1
(create formula)

Task 2
(create world model)

Task 3
(deduce sat)

Falcon-7B 0.754 (0.754) 0.728 (0.747) 0.565 (0.565)
Llama-13B-Chat-hf 0.736 (0.736) 0.548 (0.873) 0.631 (0.631)

Orca-13B 0.720 (0.720) 0.896 (0.896) 0.562 (0.562)
Wizard-15B 0.691 (0.691) 0.692 (0.743) 0.584 (0.584)

One possible reason for this, is that training on multiple tasks involved 7200 datapoints
over all tasks, but only 2400 datapoints for each single task, as compared to 6000 datapoints
when training on just a single task. So, one could continue to train these models on the
same amount of data for each task in the future and compare them. What is more, for the
multitask finetuning setting, we only train for three instead of ten epochs (which we do
for single task finetuning) (see section D). Since more training and more datapoints tend
to help with the performance, this might explain it.

For the Llama model, regarding task two (create world model), there is a big difference
between the accuracy and the corrected accuracy. That is, the Llama model does not seem
to generate syntactically correct (parseable) output most of the time, only that when it
does, it is doing quite well.

Qualitative Analysis: In general, regarding task one (create formula), when Falcon
makes errors, it makes quite a few syntactic errors in the formulas, for instance: "all
x.-(F(x) -> F(x))exists x.F(x)". The Llama, Wizard and Orca models typically produce
syntactically correct formulas in task one (create formula), but are often logically wrong.
Regarding task two (create world model), once again, the models add unnecessary parts
to the key mappings. All four models perform only somewhat above the baseline on task
three (deduce sat), but produce syntactically correct "satisfied" or "unsatisfied" answers.

79

5. EXPERIMENTS AND RESULTS

Quantitative Analysis: It is noteworthy that the Wizard model is better on task one
(create formula), after training it on all three tasks as compared to only being trained on
task one (create formula). Quantitative analysis shows that when it is trained on all tasks,
its accuracy tends to be worse, the more predicates are in the formula. Also, it seems like
it can handle contradictions quite well (not perfectly, though), but not tautologies. So,
it seems that here, the model simply may have started down the "correct gradient" that
makes it learn what it needs to for task one (create formula).

In summary, both qualitative and quantitative analyses did not indicate anything other
than the following: training on all tasks at the same time mimics the individual finetuning
outcomes closely, albeit with a typically worse accuracy (with the exception of one case),
which is probably due to training on less datapoints and for fewer epochs.

5.5.4 Generalization to a harder Task

In order to test generalization further, we also defined a harder dataset. We have already
described that dataset and given an example in section 4.2. As a reminder, we augment
the difficulty of the "SPLC", by introducing the following into the logic formulas (and
consequently also into the world model, and key mapping): one more variable (that sums
up to two variables in total), two quantifiers in one formula (instead of one), three predicates
(instead of two). We call the resulting dataset the "hard SPLC" (or the hard dataset).
Consequently, the hard dataset is a disjunct dataset to the base dataset from before. This is
the advantage of our method: we can, in principle, create infinitely complex logic formulas.

With regards to task one (create formula), we took the three best models and in table
5.17, we observe that they generalize exceptionally well.

Table 5.17: How well do the models generalize to a harder dataset w.r.t. task one (create
formula)?

Finetuned Model Finedtuned on ... Accuracy on
finetuned task

Evaluation on
hard task

Accuracy on
hard task

Falcon-7B Task 1
(create formula)

0.909 (0.909) Task 1
(create formula)

0.869 (0.869)

Falcon-7B All tasks 0.754 (0.754) Task 1
(create formula)

0.770 (0.770)

Llama-2-13B Task 1
(create formula)

0.985 (0.985) Task 1
(create formula)

0.939 (0.939)

Qualitative analysis: Qualitative analysis shows that they produce syntactically correct
formulas, however, they do not make use of all the predicates. Both Falcon and Llama,
for instance, manage to make use of a new predicate token (correctly abstracting its use),

80

5.5 Finetuning

but they use only a subset of the predicates to build the formula (i.e. e.g. only using
predicate F and G and one operator, not three predicates and two operators). An even
harder generalization could ask to use all predicates in a future iteration of this work.

Quantitative analysis: Quantitative analysis shows that part of the formulas are tau-
tologies and contradictions, but e.g. Llama still makes mistakes in this regard, and the
percentage of tautologies and contradictions closely matches those of the training dataset.

With regards to task two (create world model), we took several of the best models and
in table 5.18, we observe that they generalize less well than the models for task one (create
formula). That is, they do not match the baseline. The baseline is quite high in this case,
and this is because the baseline assumes that the models produce not just syntactically
correct outputs, but also outputs that use all of the predicates. This is something that
could reasonably be asked of the LLMs, however.

Table 5.18: How well do the models generalize to a harder dataset w.r.t. task two (create
world model)?

Finetuned
Model

Finedtuned on ... Accuracy on
finetuned task

Evaluation on
hard task

Accuracy on
hard task

Falcon-7B All tasks 0.728 (0.747) Task 2 (create world model) 0.544 (0.554)
Falcon-7B Task 2 (create world model) 0.889 (0.889) Task 2 (create world model) 0.668 (0.671)

Llama-2-13B Task 2 (create world model) 0.896 (0.896) Task 2 (create world model) 0.602 (0.626)
Orca-13B All tasks 0.896 (0.896) Task 2 (create world model) 0.788 (0.792)
Orca-13B Task 2 (create world model) 0.848 (0.877) Task 2 (create world model) 0.478 (0.527)

Wizard-15B Task 2 (create world model) 0.896 (0.896) Task 2 (create world model) 0.674 (0.674)
Wizard-15B Task 3 (deduce sat) 0.881 (0.881) Task 2 (create world model) 0.789 (0.828)

Qualitative analysis: Qualitative analysis of a subset of the models that were evaluated
on task two (create world model) (i.e. Falcon trained on task two (create world model),
Orca trained on all tasks and Wizard trained on task three (deduce sat)) shows that, the
Wizard model sometimes does not map some of the predicates, thereby producing a smaller
world model. The falcon model, on the other hand, produces an overly long key mapping,
ensuring to map everything but at the expense of accuracy. Orca does not suffer from
this problem and it even maps all of the predicates neatly. For this model, we not only
see a high generalization accuracy, but also qualitatively the best generalization (even if
not beating the baseline). It is, after all, a harder task to produce mappings for more
predicates, so a drop in performance is expected.

With regards to task three (deduce sat), we took several of the best models and in table
5.19, we observe that they do not generalize, as they merely produce an accuracy close
to the baseline. This stark drop in performance seems to indicate that we have created a
hard task for language models.

81

5. EXPERIMENTS AND RESULTS

Table 5.19: How well do the models generalize to a harder dataset w.r.t. task three (deduce
sat)?

Finetuned
Model

Finedtuned on ... Accuracy on
finetuned task

Evaluation on
hard task

Accuracy on
hard task

Wizard-15B Task 3 (deduce sat) 0.783 (0.783) Task 3 (deduce sat) 0.497 (0.497)
Orca-13B Task 3 (deduce sat) 0.901 (0.901) Task 3 (deduce sat) 0.554 (0.554)

Llama-2-13B Task 3 (deduce sat) 0.867 (0.867) Task 3 (deduce sat) 0.501 (0.501)
Falcon-7B All tasks 0.565 (0.565) Task 3 (deduce sat) 0.495 (0.496)

In summary, and in general, our results indicate that while models being finetuned on a
task can produce outcomes above the respective baselines and thereby emulate reasoning
in predicate logic to some extent, they also fail to generalize to similar tasks and to harder
tasks (of the same type of problem). This seems to indicate that we have created a hard
task for language models.

82

Chapter 6

Conclusion

This section concludes by first answering the design and research questions from chapter
1, and second discussing possibilities for future work.

6.1 Answers to Research Questions

In the following, we give answers to the design and research questions from the introduction.
While carrying out more than 165 experiments, we found out the following:

Design Question: "How should a dataset look like that teaches large language models
predicate logic?"

We designed a dataset that has several advantages: first, it is automatically labelled
and can automatically deduce, by use of a model checker and several parsers, whether
the produced outputs by the language models are correct. Second, it combines both the
natural language humans use everyday as well as the artificial language of predicate logic,
that we require the language models to learn and map to natural language. Third, it
includes multiple tasks that each depend on each other in that they stem from the same
base dataset. This way, we can test generalization, which we can use as an indication to
whether the language models learn the same abstract rules behind manipulating natural
language and the language of predicate logic. Fourth, the difficulty of the dataset can be
adjusted along several dimensions (e.g. number of predicates, quantifiers, operators, world
model size, etc.) in order to test generalization and track progress of future language
models that might be even better in handling predicate logic.

Research Question 1: What is a suitable baseline for the three tasks?
Our experiments form a random and syntactically correct baseline that also asks the

models to use the correct number of predicates. This is a high bar, but a minimum bar,
and one that does not require to also produce logically correct formulas.

Research Question 2: How high do current pre-trained large language models score

83

6. CONCLUSION

in these tasks in a zeroshot evaluation?
They score the baseline for task three (deduce sat), but obtain an accuracy of 0.0 for

the other two tasks (create formula; create world model). This is probably due to not
being pretrained on logical languages generally, and particularly on the nltk representation
of first-order logic (which has its own specific syntax and semantics), plus to not fully
understanding what outputs are required of them.

Research Question 3: How high do current pre-trained large language models score
in these tasks in a fewshot evaluation?

They improve their syntax with respect to what is required of them as pertains to task
one (create formula) and two (create world model), while no improvements are observed
for task three (deduce sat). Again, this is probably due to not being pretrained on logical
languages generally, and particularly on the nltk representation of first-order logic (which
has its own specific syntax and semantics), but now they start to understand what outputs
are required of them and so they produce (close to) randomly correct answers.

Research Question 4: Does different prompting change the fewshot results?
Different prompting does not produce any significant differences in the results.
Research Question 5: Can current SOTA large language models emulate reasoning in

first-order predicate logic?
We can show that they can, as they perform reasonably above the baselines on all three

tasks. However, other than in one instance, they do not come close to 100% accuracy,
indicating some scope for future work on these tasks.

Research Question 6: Given a finetuned model that does well on one task, does this
generalize to one of the other tasks?

We observe at most weak generalization to the other tasks, indicating some scope for
future work.

Research Question 7: Does multitask learning (i.e. finetuning a large language model
on all three tasks) lead to higher accuracy in the respective tasks compared to the singletask
setting?

Unfortunately, it does not. However, in this setting, we finetuned the models on less
datapoints than in the single task setting, and the accuracies are close to that setting and
tend to be above the respective baselines, suggesting that a similar amount of datapoints
and training could lead to similar levels of performance.

Research Question 8: Given a finetuned model that does well on one task, does this
generalize to a harder version of the same task?

We do observe generalization to a harder dataset on task one (create formula), however,
the models use various techniques to perform well in this setting that the authors did not
foresee, such as using less predicates in the formulas than expected (which is a shortcut
solution to this task and this indicates that task one should be adapted to avoid this).

84

6.2 Future Research

For task two (create world model), a drop in performance is observed, and for task three
(deduce sat), the drop is so stark that the models only perform according to the random
baseline. This indicates much scope for future work.

6.2 Future Research

Our work and the obtained results suggest different directions for future work in order to
further improve the logical reasoning skills of large language models. We can adapt aspects
of the dataset / tasks, create another baseline, change aspects of finetuning, inquire further
into generalization, or even use new training methods such as RLMF. In more detail:

First, some changes to our approach are recommended. Two changes to the tasks are
necessary: on the one hand, since we learned that there exists a trivial solution to task one
(create formula), it is advised to adapt task one (create formula) to ask for formulas that
are neither tautologies nor contradictions. Furthermore, task one (create formula) should
be reformulated to include that the model needs to use all predicates from the world model
(else an easy solution is possible on this task). On the other hand, the training dataset
should exclude tautologies and contradictions as well, so that we do not ask any trivial
questions for task two (create world model), and so that we do not train on tautologies
and contradictions for task one (create formula).

Also, the bias with regards to the creation of label-formula pairs, that we discussed
in section 5.1, should be eliminated so to avoid that language models learn a potential
shortcut. A solution would be to create hard instances, analogous to (Richardson and
Sabharwal, 2022). Their paper (Richardson and Sabharwal, 2022) bases their selection of
formulas in propositional logic on findings by Selman et. al (Selman et al., 1996), who
find that the probability for satisfying such a formula is either very high or very low given
a certain number of variables per clause. This is how they eliminate easy instances and
only include hard instances in their dataset. For our task, this means to only include
certain formula-world-model-size-combinations, where the probability that the target label
is satisfied is close to (the critical region of) 0.5 (compare to 5.1). So for example, in table
5.2, the world model size would change according to the type of formula (smaller for less
complex formulas, and larger for more complex formulas). For example, for the formula

allx.(F (x)! G(x)).

this would mean to create a world model with either two or three constants (but not
more or less). Note that hard instances could not include world models larger (or smaller
than that, as those would be cues that the models could use for prediction (possibly not
learning to emulate logic). However, we should be aware that for task two (create world
model), there will always be a shortcut of creating a random world model with a certain

85

6. CONCLUSION

size that will lead to a high accuracy (but not necessarily demonstrate an ability to emulate
logical reasoning)! Therefore, we could also adapt task two by asking for a certain world
model size (or number of constants) in the output.

Other tasks are also conceivable using our approach and could be investigated: for
example, we could ask the model to create one formula that is correct and another formula
that is incorrect for a given world model (an adaptation to task one - create formula), or
to create a world model that satisfies the formula and another one such that the formula
is not satisfied (an adaptation to task two - create world model). We are proposing here
to create more tasks that are very closely related as they all probe logical reasoning skills
in predicate logic. This could be called task-coherent datasets.

Besides, we could even add datapoints to our dataset that have multiple targets for one
input or multiple inputs for one target: this is because the order of sentences in the world
model and the key mapping is irrelevant for the respective tasks, and this is something, the
large language models would need to learn also, as for them, order is generally relevant.

Second, it would also be interesting to compare the language models against the human
performance on these tasks, thereby creating another baseline.

Third, further finetuning could help in many ways. One way is to perform a hyperparam-
eter search for the LoRA adapters and see how good our individual models can eventually
get during training (as there is still room for improvement on our proposed tasks). Other
ways would be to finetune without LoRA, or to finetune for more training epochs. More-
over, we opted for doing many experiments with fewer datapoints over fewer experiments
with more datapoints. But the language models could be finetuned on a much bigger
dataset, that can be automatically created. Besides, another way is to finetune our models
on all three tasks (multitask setting) but with as many datapoints as in the singletask
setting, and see whether the performance compares; or, the other way around, i.e. training
for the singletask setting but with as few datapoints as for the multitask setting.

Fourth, there are more avenues to be explored regarding generalization. First, in order to
attain an even better generalization to a harder dataset, we could try curriculum learning
(Bengio et al., 2009). In curriculum learning, a model is trained on an easy task first
and then a harder task afterwards, and as a result, it generalizes much better. Another
avenue for further testing generalization would be to systematically construct harder and
harder datasets in a principled manner. We only created one such harder dataset, but
many such datasets can be created along many different dimensions (e.g. more predicates,
more quantifiers, more operators, larger world models, etc.). What is more, we could
change the grammar of our tasks to see how well the models generalize to a new grammar
setting. And probably a most interesting test would be to inquire whether training on our
synthetic dataset transfers to higher performance on real world data (or other reasoning
tasks, generally).

86

6.2 Future Research

Fifth, as we already devised in chapter 4, our dataset is suitable for finetuning using
reinforcement learning from machine feedback (RLMF; instead of from human feedback),
so we could use it with this methodology in the future. For instance, it has been shown in
training code generating language models, that RLMF works (Le et al., 2022).

In summary, there remains significant scope for future research regarding teaching large
language models logical reasoning in predicate logic. While we have shown that language
models are capable of emulating reasoning in predicate logic above random baselines, robust
scaling to harder tasks remains to be solved. That is why we may have possibly designed
some hard logical reasoning tasks here.

87

6. CONCLUSION

88

References

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the effectiveness
of language model fine-tuning. CoRR, abs/2012.13255, 2020. URL https://arxiv.org/abs/2012.

13255. 22

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. 14

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry Tworek, and
Mark Chen. Efficient training of language models to fill in the middle. arXiv preprint arXiv:2207.14255,
2022. 54

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani,
Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https://huggingface.

co/spaces/HuggingFaceH4/open_llm_leaderboard [Accessed: (08th September 2023)], 2023. 1, 54

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the dangers
of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM conference on
fairness, accountability, and transparency, pages 610–623, 2021. 2

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic language
model. J. Mach. Learn. Res., 3(null):1137–1155, mar 2003. ISSN 1532-4435. 17, 19, 37

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceed-
ings of the 26th annual international conference on machine learning, pages 41–48, 2009. 86

Gregor Betz, Christian Voigt, and Kyle Richardson. Critical thinking for language models. arXiv preprint
arXiv:2009.07185, 2020. xi, 2, 30, 32, 33

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python: analyzing text
with the natural language toolkit. O’Reilly Media, Inc., 2009. 24, 39

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learn-
ers. Advances in neural information processing systems, 33:1877–1901, 2020. 1, 20, 48, 53

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared Ka-
plan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,

89

https://arxiv.org/abs/2012.13255
https://arxiv.org/abs/2012.13255
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

REFERENCES

Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code. CoRR,
abs/2107.03374, 2021. URL https://arxiv.org/abs/2107.03374. 54

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models. arXiv
preprint arXiv:2210.11416, 2022. 53

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457, 2018. URL http://arxiv.org/abs/1803.05457. 54

Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners over language. arXiv
preprint arXiv:2002.05867, 2020. xi, 29, 30, 31

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12(76):
2493–2537, 2011. URL http://jmlr.org/papers/v12/collobert11a.html. 16

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems, 35:
16344–16359, 2022. 53, 54

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. arXiv preprint arXiv:2305.14314, 2023. 23, 112

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 17

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. arXiv preprint
arXiv:1805.04833, 2018. 19

Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens.
Nebert, Halle, 1879. 23

L.T.F. Gamut. Logic, Language, and Meaning, Volume 1: Introduction to Logic. Logic, Language, and
Meaning. University of Chicago Press, 1991. ISBN 9780226280851. 23, 27

Marta Garnelo and Murray Shanahan. Reconciling deep learning with symbolic artificial intelligence:
representing objects and relations. Current Opinion in Behavioral Sciences, 29:17–23, 2019. ISSN
2352-1546. doi: https://doi.org/10.1016/j.cobeha.2018.12.010. URL https://www.sciencedirect.com/

science/article/pii/S2352154618301943. Artificial Intelligence. 7

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016. 9

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211, 2013. 21

90

https://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1803.05457
http://jmlr.org/papers/v12/collobert11a.html
https://www.sciencedirect.com/science/article/pii/S2352154618301943
https://www.sciencedirect.com/science/article/pii/S2352154618301943

REFERENCES

Eric M Hammer. Semantics for existential graphs. Journal of Philosophical Logic, 27:489–503, 1998. 23

Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954. 16

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
14

Chadi Helwe, Chloé Clavel, and Fabian Suchanek. Reasoning with transformer-based models: Deep learn-
ing, but shallow reasoning. In International Conference on Automated Knowledge Base Construction
(AKBC), 2021. 29

Chadi Helwe, Chloé Clavel, and Fabian Suchanek. Logitorch: A pytorch-based library for logical reasoning
on natural language. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 250–257, 2022. 29

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997. 10

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal
large language models. arXiv preprint arXiv:2203.15556, 2022. 8

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degen-
eration. arXiv preprint arXiv:1904.09751, 2019. 19

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp. In Inter-
national Conference on Machine Learning, pages 2790–2799. PMLR, 2019. 20

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. CoRR, abs/2106.09685, 2021. URL
https://arxiv.org/abs/2106.09685. xi, 21, 22, 112

Zhijing Jin, Abhinav Lalwani, Tejas Vaidhya, Xiaoyu Shen, Yiwen Ding, Zhiheng Lyu, Mrinmaya Sachan,
Rada Mihalcea, and Bernhard Schölkopf. Logical fallacy detection. arXiv preprint arXiv:2202.13758,
2022. 29

Dan Jurafsky and James H Martin. Speech and language processing (3rd (draft) ed.), 2022. xi, 8, 9, 10,
11, 12, 13, 16, 17, 18, 19

Daniel Kahneman. Thinking, Fast and Slow. Farrar, Straus and Giroux, New York, 2011. ISBN 978-0-
374-27563-1. 2

Aishwarya Kamath and Rajarshi Das. A survey on semantic parsing. arXiv preprint arXiv:1812.00978,
2018. 34

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361, 2020. 8

91

https://arxiv.org/abs/2106.09685

REFERENCES

Nora Kassner and Hinrich Schütze. Negated and misprimed probes for pretrained language models: Birds
can talk, but cannot fly. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 7811–7818, Online, July 2020. Association for Computational Linguistics. doi: 10.
18653/v1/2020.acl-main.698. URL https://aclanthology.org/2020.acl-main.698. 1

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances in
Neural Information Processing Systems, 35:21314–21328, 2022. 35, 87

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. CoRR, abs/1910.13461, 2019. URL http://

arxiv.org/abs/1910.13461. 18

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. Visualizing and understanding neural models in
nlp. arXiv preprint arXiv:1506.01066, 2015. 16

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161, 2023. 54

Wenda Li, Lei Yu, Yuhuai Wu, and Lawrence C Paulson. Isarstep: a benchmark for high-level mathematical
reasoning. arXiv preprint arXiv:2006.09265, 2020. 29

Paul Pu Liang, Chiyu Wu, Louis-Philippe Morency, and Ruslan Salakhutdinov. Towards understanding
and mitigating social biases in language models. In International Conference on Machine Learning,
pages 6565–6576. PMLR, 2021. 37

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Peter West, Ronan Le Bras, Yejin Choi, and
Hannaneh Hajishirzi. Generated knowledge prompting for commonsense reasoning. arXiv preprint
arXiv:2110.08387, 2021. 29

Nicholas Lourie, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Unicorn on rainbow: A universal
commonsense reasoning model on a new multitask benchmark. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 13480–13488, 2021. 1

Donald W Loveland. Automated theorem proving: mapping logic into ai. In Proceedings of the ACM
SIGART international symposium on Methodologies for intelligent systems, pages 214–229, 1986. 28

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568, 2023. 52, 54

Kyle Mahowald, Anna A Ivanova, Idan A Blank, Nancy Kanwisher, Joshua B Tenenbaum, and Evelina
Fedorenko. Dissociating language and thought in large language models: a cognitive perspective. arXiv
preprint arXiv:2301.06627, 2023. 1

Minsky Marvin and A Papert Seymour. Perceptrons. Cambridge, MA: MIT Press, 6:318–362, 1969. 7

Pankaj Mathur. Orca mini v3 13b: An orca style llama2-70b model, 2023. URL https://https://

huggingface.co/psmathur/orca_mini_v3_13b. 52

92

https://aclanthology.org/2020.acl-main.698
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
https://https://huggingface.co/psmathur/orca_mini_v3_13b
https://https://huggingface.co/psmathur/orca_mini_v3_13b

REFERENCES

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5:115–133, 1943. 7

Nick McKenna, Tianyi Li, Liang Cheng, Mohammad Javad Hosseini, Mark Johnson, and Mark Steedman.
Sources of hallucination by large language models on inference tasks. arXiv preprint arXiv:2305.14552,
2023. 1, 37

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent neural
network based language model. In Interspeech, volume 2, pages 1045–1048. Makuhari, 2010. 10

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Extensions of
recurrent neural network language model. In 2011 IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5528–5531. IEEE, 2011. 17

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. Advances in neural information processing systems, 26,
2013. 16

George A Miller. The magical number seven, plus or minus two: Some limits on our capacity for processing
information. Psychological review, 63(2):81, 1956. 48

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707, 2023. 54

Niels Mündler, Jingxuan He, Slobodan Jenko, and Martin Vechev. Self-contradictory hallucinations of
large language models: Evaluation, detection and mitigation. arXiv preprint arXiv:2305.15852, 2023.
1, 37

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions
with human feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022. 37

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb dataset for falcon
llm: outperforming curated corpora with web data, and web data only. arXiv preprint arXiv:2306.01116,
2023. 52, 53

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 1, 18, 54

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
The Journal of Machine Learning Research, 21(1):5485–5551, 2020. 53

Inioluwa Deborah Raji, Emily M. Bender, Amandalynne Paullada, Emily Denton, and Alex Hanna. AI
and the everything in the whole wide world benchmark. CoRR, abs/2111.15366, 2021. URL https:

//arxiv.org/abs/2111.15366. 1

Kyle Richardson and Ashish Sabharwal. Pushing the limits of rule reasoning in transformers through nat-
ural language satisfiability. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pages 11209–11219, 2022. xi, 30, 31, 32, 48, 85

93

https://arxiv.org/abs/2111.15366
https://arxiv.org/abs/2111.15366

REFERENCES

Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus Akhalwaya,
Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, et al. Logical neural networks. arXiv
preprint arXiv:2006.13155, 2020. 29

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, 1986. 8, 19

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3rd edition,
2010. 7

Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava, and Mohit Bansal. Prover: Proof generation for
interpretable reasoning over rules. arXiv preprint arXiv:2010.02830, 2020. 29, 34

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical reasoning
abilities of neural models. arXiv preprint arXiv:1904.01557, 2019. 29

Abigail See, Stephen Roller, Douwe Kiela, and Jason Weston. What makes a good conversation? how
controllable attributes affect human judgments. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1702–1723, 2019. 17

Bart Selman, David G. Mitchell, and Hector J. Levesque. Generating hard satisfiability problems. Artificial
Intelligence, 81(1):17–29, 1996. ISSN 0004-3702. doi: https://doi.org/10.1016/0004-3702(95)00045-3.
URL https://www.sciencedirect.com/science/article/pii/0004370295000453. Frontiers in Prob-
lem Solving: Phase Transitions and Complexity. 85

Louis Shao, Stephan Gouws, Denny Britz, Anna Goldie, Brian Strope, and Ray Kurzweil. Generating
high-quality and informative conversation responses with sequence-to-sequence models. arXiv preprint
arXiv:1701.03185, 2017. 19

Noam Shazeer. Fast transformer decoding: One write-head is all you need. CoRR, abs/1911.02150, 2019.
URL http://arxiv.org/abs/1911.02150. 53, 54

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615,
2022. 2, 33

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. Proofwriter: Generating implications, proofs,
and abductive statements over natural language. arXiv preprint arXiv:2012.13048, 2020. 29

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Jason Wei, Xuezhi Wang, Hyung Won Chung,
Dara Bahri, Tal Schuster, Steven Zheng, et al. Ul2: Unifying language learning paradigms. In The
Eleventh International Conference on Learning Representations, 2022a. 52, 53

Yi Tay, Jason Wei, Hyung Won Chung, Vinh Q Tran, David R So, Siamak Shakeri, Xavier Garcia,
Huaixiu Steven Zheng, Jinfeng Rao, Aakanksha Chowdhery, et al. Transcending scaling laws with 0.1%
extra compute. arXiv preprint arXiv:2210.11399, 2022b. 19, 37

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023. 37, 52, 53

94

https://www.sciencedirect.com/science/article/pii/0004370295000453
http://arxiv.org/abs/1911.02150

REFERENCES

A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460, 1950. ISSN 00264423,
14602113. URL http://www.jstor.org/stable/2251299. 1

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. xi, 11, 15

Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfiability solvers and their applications in
model checking. Proceedings of the IEEE, 103(11):2021–2035, 2015. doi: 10.1109/JPROC.2015.2455034.
32

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021. 20, 48

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models. arXiv
preprint arXiv:2206.07682, 2022. 2

Ludwig Wittgenstein. Philosophical Investigations. Basil Blackwell, Oxford, 1953. ISBN 0631119000. 16

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online, 2020. Association for Computational Linguistics. doi: 10.18653/
v1/2020.emnlp-demos.6. URL https://aclanthology.org/2020.emnlp-demos.6. 54, 111

Yotam Wolf, Noam Wies, Yoav Levine, and Amnon Shashua. Fundamental limitations of alignment in
large language models. arXiv preprint arXiv:2304.11082, 2023. 37

Nathan Young, Qiming Bao, Joshua Bensemann, and Michael Witbrock. Abductionrules: Training trans-
formers to explain unexpected inputs. arXiv preprint arXiv:2203.12186, 2022. 29

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu, Daya Guo, Jiahai Wang, Jian Yin, Ming Zhou, and
Nan Duan. Ar-lsat: Investigating analytical reasoning of text. arXiv preprint arXiv:2104.06598, 2021.
29

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul F.
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. CoRR,
abs/1909.08593, 2019. URL http://arxiv.org/abs/1909.08593. 37

95

http://www.jstor.org/stable/2251299
https://aclanthology.org/2020.emnlp-demos.6
http://arxiv.org/abs/1909.08593

REFERENCES

96

Appendix

A Illustrative items of the synthetic base dataset

For each task, we tested two different prompts. The following illustrative items of the proposed synthetic
dataset follow templates, that are built with placeholders (curly braces) for input and output.

One example for placeholders could be:
Formula:

all x.F (x) ! G(x)

Model:
Peter is hungry.
Peter is tall.
Sue is not hungry.
Sue is tall.

Satisfied?:
satisfied

Keys:
F: hungry
G: tall
a: Peter
b: Sue

A.1 Task 1: Create Formula

Prompt 1:
Input:

“Here is a world model:
{{ world model }}
Let us interpret predicates and names as follows:
{{ key mapping }}
Provide a logical formula in predicate logic that is {{ satisfied }} given the above situation and interpre-
tation (keys)! “

97

REFERENCES

Expected Target:
“ {{ formula }} “

Prompt 2:
Input:

Context:
You will receive a problem in first-order predicate logic to solve. This problem contains a set of statements
about the world (let us call it a ’world model’) and a mapping from things in this world to variables
representing these things (we call that mapping the ’keys’). You are then asked to provide a formula in
first-order predicate logic that is either satisfied or unsatisfied given the world model and keys. Please
return only the formula, written in the format of the python library nltk.
Question:
Here is a world model:
{{ world model }}
Here are the keys:
{{ key mapping }}
Please write down only one formula in first-order predicate logic that is {{ satisfied }} given the above
world model and keys.
Answer:

Expected Target:
“ {{ formula }} “

A.2 Task 2: Create world model

Prompt 1:
Input:

“Consider the following formula:
{{ formula }}
describe a situation in which the formula is {{ satisfied }} and provide the keys! “

Expected Target:
“ Situation:
{{ world model }}
Keys:
{{ key mapping }}
“

Prompt 2:
Input:

Context:
You will receive a problem in first-order predicate logic to solve. This problem contains a formula in first-
order predicate logic, written in the format of the python library nltk for which you are asked to create
a ’world model’ and ’keys’ that either satisfy or do not satisfy the formula. A world model is a set of
statements about whether one or more predicates apply to things in this world. Keys are a mapping from
things to (lower case) variables and predicates to (upper case) variables.
Question:

98

A Illustrative items of the synthetic base dataset

Consider the following formula:
{{ formula }}
Provide a world model and keys such that the formula is {{ satisfied }}
Please answer by returning the world model starting with ’World model:’, followed by the keys starting
with ’Keys:’."
Answer:

Expected Target:
“ Situation:
{{ world model }}
Keys:
{{ key mapping }}
“

A.3 Task 3: Deduce sat

Prompt 1:
Input:

“Consider the following formula in first-order predicate logic:
{{ formula }}
Let us interpret predicates and names as follows:
{{ key mapping }}
Also, here is a world model:
{{ world model }}
Is the provided formula satisfied or not given the situation? (’satisfied’ or ’unsatisfied?’). “

Expected Target:
“ {{ satisfied }} “

Prompt 2:
Input:

Context:
You will receive a problem in first-order predicate logic to solve. This problem contains a formula in first-
order predicate logic, written in the format of the python library nltk a set of statements about a world
(’world model’) and a mapping (’keys’) from things in this world to variables representing these things.
Please return in one word whether the formula is satisfied or unsatisfied given the world model and keys.
Question:
Consider the following formula:
{{ formula }}
Here is a world model:
{{ world model }}
Here are the keys:
{{ key mapping }}
Is the provided formula satisfied or unsatisfied given the world model and keys?
Answer:

Expected Target:

99

REFERENCES

“ {{ satisfied }} “

B Dataset statistics

B.1 Fewshot and Zershot evaluation

Regarding the evaluation dataset for zeroshot and fewshot learning, we observe 507 formulas that are
satisfied, 493 that are unsatisfied. We have 503 formulas that use one exist quantifier, 497 formulas that
use one all quantifier. 552 formulas use a single predicate (either F or G), and 448 formulas use two
predicates. 457 formulas use the implication operator, and 470 formulas use the and operator. There were
497 formulas that had the negation operator in front. Hence, we have a very balanced evaluation dataset
in these regards.

Furthermore, 56 formulas only use a unary operator (i.e. the negation), while 48 formulas use only a
binary operator (either the and operator or the implication operator); the other 896 formulas use both
unary and binary operators. There are 123 tautologies and 120 contradictions in this dataset.

Finally, here are the graphs showing counts of (1) how many constants we use, (2) how many keys we
use, (3) how big our world models are (in terms of the number of sentences), (4) how many negations there
are and (5) how many times we observe a certain total number of operators.

Figure 6.1: Number of datapoints that have a certain number of constants. Fewshot and
Zeroshot.

Figure 6.2: Number of datapoints that have a certain number of keys. Fewshot and Zeroshot.

100

B Dataset statistics

Figure 6.3: Number of datapoints that have a certain number of sentences (world model
size). Fewshot and Zeroshot.

Figure 6.4: Number of datapoints that have a certain number of negations. Fewshot and
Zeroshot.

Figure 6.5: Number of datapoints that have a certain total number of operators. Fewshot
and Zeroshot.

B.2 Training evaluation

The training evaluation dataset uses a different subset of 1000 datapoints from the base dataset, so we
analyze it separately. Note, however that it does not differ in a significant way from the zershot and
fewshot evaluation dataset: we observe 505 formulas that are satisfied, 495 that are unsatisfied. We have
503 formulas that use one exist quantifier, 497 formulas that use one all quantifier. 543 formulas use a
single predicate (either F or G), and 457 formulas use two predicates. 468 formulas use the implication
operator, and 474 formulas use the and operator. There were 494 formulas that had the negation operator
in front. Hence, we have a very balanced evaluation dataset in these regards.

Furthermore, 43 formulas only use a unary operator (i.e. the negation), while 45 formulas use only a
binary operator (either the and operator or the implication operator); the other 912 formulas use both
unary and binary operators. There are 123 tautologies and 118 contradictions in this dataset. So, we

101

REFERENCES

observe that this dataset does not significantly differ from the evaluation dataset in the fewshot and
zeroshot setting.

Finally, here are the graphs showing counts of (1) how many constants we use, (2) how many keys we
use, (3) how big our world models are (in terms of the number of sentences), (4) how many negations there
are and (5) how many times we observe a certain total number of operators.

Figure 6.6: Number of datapoints that have a certain number of constants. Training evalu-
ation.

Figure 6.7: Number of datapoints that have a certain number of keys. Training evaluation.

Figure 6.8: Number of datapoints that have a certain number of sentences (world model
size). Training evaluation.

102

B Dataset statistics

Figure 6.9: Number of datapoints that have a certain number of negations. Training evalu-
ation.

Figure 6.10: Number of datapoints that have a certain total number of operators. Training
evaluation.

B.3 Hard evaluation

The hard evaluation dataset is harder than the training evaluation dataset, as we use more predicates,
more quantifiers and more operators. That is, we have both one "exists" and one "all" quantifier in each
formula. We have 108 formulas with only one predicate, 672 formulas with two predicates and 220 formulas
with three predicates (F, G and H). 255 formulas have no implication, 533 formulas have one implication
and 212 formulas have two implications. 217 formulas have no and operator, 531 formulas have one and
operator and 252 formulas have two and operators. This has as a consequence, that we also have no
formulas with just unary operators (negations), only 6 formulas with only binary operators (implications
or and operators), but 994 formulas that have both unary and binary operators.

It follows that there appear more negations and more total operators. As a consequence of using more
predicates, there are more world models that are longer as compared to the training dataset. It also
means that the number of keys rises whenever we use more operators, otherwise it stays comparable to
the training dataset. At the same time, we keep the number of constants similar to the training dataset.
All of this can be seen from the following figures.

103

REFERENCES

Figure 6.11: Number of datapoints that have a certain number of constants. Hard dataset.

Figure 6.12: Number of datapoints that have a certain number of keys. Hard dataset.

Figure 6.13: Number of datapoints that have a certain number of sentences (world model
size). Hard dataset.

Figure 6.14: Number of datapoints that have a certain number of negations. Hard dataset.

104

B Dataset statistics

Figure 6.15: Number of datapoints that have a certain total number of operators. Hard
dataset.

We maintain balance in this dataset in the labels and the negations in front of a formula: 504 formula-
world model combinations are unsatisfied, while 496 are satisfied. 499 formulas have no negation in front,
while 501 have a single negation in front. Finally, in order to measure the number of tautologies and
contradictions, we had to introduce a timeout (which we set to two seconds), which means that for 67
formulas, it could not be decided whether they were a tautology or a contradiction (or neither). For the
remaining formulas, 111 were tautologies and 100 were contradictions.

B.4 Training on a single task

Regarding the training dataset for the single task setting, we observe 3037 formulas that are satisfied, 2963
that are unsatisfied. We have 2954 formulas that use one exist quantifier, 3046 formulas that use one all
quantifier. 3266 formulas use a single predicate (either F or G), and 2734 formulas use two predicates.
2769 formulas use the implication operator, and 2860 formulas use the and operator. There were 3009
formulas that had one negation operator in front, while 2991 did not. Hence, we have a very balanced
training dataset in these regards.

Furthermore, 278 formulas only use a unary operator (i.e. the negation), while 278 formulas use only a
binary operator (either the and operator or the implication operator); the other 5444 formulas use both
unary and binary operators. There are 706 tautologies and 742 contradictions in this dataset.

Finally, here are the graphs showing counts of (1) how many constants we use, (2) how many keys we
use, (3) how big our world models are (in terms of the number of sentences), (4) how many negations there
are and (5) how many times we observe a certain total number of operators.

Figure 6.16: Number of datapoints that have a certain number of constants. Finetuning.

105

REFERENCES

Figure 6.17: Number of datapoints that have a certain number of keys. Finetuning.

Figure 6.18: Number of datapoints that have a certain number of sentences (world model
size). Finetuning.

Figure 6.19: Number of datapoints that have a certain number of negations. Finetuning.

Figure 6.20: Number of datapoints that have a certain total number of operators. Finetun-
ing.

106

B Dataset statistics

B.5 Training on multiple tasks

Regarding the training dataset for the multi task setting, we observe 1204 formulas that are satisfied, 1196
that are unsatisfied. We have 1179 formulas that use one exist quantifier, 1221 formulas that use one all
quantifier. 1302 formulas use a single predicate (either F or G), and 1098 formulas use two predicates.
1117 formulas use the implication operator, and 1141 formulas use the and operator. There were 1198
formulas that had one negation operator in front, while 1202 did not. Hence, we have a very balanced
training dataset in these regards.

Furthermore, 99 formulas only use a unary operator (i.e. the negation), while 119 formulas use only a
binary operator (either the and operator or the implication operator); the other 2182 formulas use both
unary and binary operators. There are 276 tautologies and 293 contradictions in this dataset.

Finally, here are the graphs showing counts of (1) how many constants we use, (2) how many keys we
use, (3) how big our world models are (in terms of the number of sentences), (4) how many negations there
are and (5) how many times we observe a certain total number of operators.

Figure 6.21: Number of datapoints that have a certain number of constants.

Figure 6.22: Number of datapoints that have a certain number of keys.

107

REFERENCES

Figure 6.23: Number of datapoints that have a certain number of sentences (world model
size).

Figure 6.24: Number of datapoints that have a certain number of negations.

Figure 6.25: Number of datapoints that have a certain total number of operators.

C Results for Prompt 2.

Here we present the results of the fewshot experiments with prompt 2.

108

C Results for Prompt 2.

Figure 6.26: Fewshot performance on task 1 (create formula). Prompt 2.
Top: Left: Falcon-7b; Middle: Llama-13b; Right: Flan-Ul2.

Bottom: Left: Orca-13b; Right: Wizard-15b.

Table 6.1: Fewshot accuracies for task 1 (create formula). One, two or four examples.
Prompt 2.

Model 1 example 2 examples 4 examples
Flan-UL2 (20B) 0.0 (0.0) 0.0 (0.0) 0.002 (0.057)

Falcon-7B 0.299 (0.379) 0.370 (0.417) 0.346 (0.363)
Llama-13B-Chat-hf 0.152 (0.346) 0.255 (0.359) 0.398 (0.429)

Orca-13B 0.233 (0.571) 0.389 (0.469) 0.499 (0.506)
Wizard-15B 0.240 (0.422) 0.365 (0.426) 0.500 (0.503)

109

REFERENCES

Figure 6.27: Fewshot performance on task 2 (create world model). Prompt 2.
Top: Left: Falcon-7b; Middle: Llama-13b; Right: Flan-Ul2.

Bottom: Left: Orca-13b; Right: Wizard-15b.

Table 6.2: Fewshot accuracies for task 2 (create world model). One, two or four examples.
Prompt 2.

Model 1 example 2 examples 4 examples
Flan-UL2 (20B) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Falcon-7B 0.162 (0.451) 0.247 (0.516) 0.142 (0.555)
Llama-13B-Chat-hf 0.007 (0.013) 0.087 (0.224) 0.207 (0.602)

Orca-13B 0.112 (0.227) 0.071 (0.257) 0.416 (0.605)
Wizard-15B 0.391 (0.658) 0.388 (0.657) 0.418 (0.654)

110

D Training Hyperparameters

Figure 6.28: Fewshot performance on task 3 (deduce sat). Prompt 2.
Top: Left: Falcon-7b; Middle: Llama-13b; Right: Flan-Ul2.

Bottom: Left: Orca-13b; Right: Wizard-15b.

Table 6.3: Fewshot accuracies for task 3 (deduce sat). One, two or four examples. Prompt
2.

Model 1 example 2 examples 4 examples
Flan-UL2 (20B) 0.488 (0.488) 0.481 (0.481) 0.478 (0.478)

Falcon-7B 0.493 (0.493) 0.493 (0.493) 0.493 (0.493)
Llama-13B-Chat-hf 0.510 (0.510) 0.504 (0.504) 0.503 (0.503)

Orca-13B 0.492 (0.492) 0.504 (0.504) 0.509 (0.509)
Wizard-15B 0.494 (0.494) 0.493 (0.493) 0.495 (0.495)

No figures for task three (deduce sat) are shown, because they are all close to 0.5.

D Training Hyperparameters
Our training hyperparameters for each of the models is depicted in table 6.4. Whatever hyperparameter
is not listed there, means that we use the default settings from the huggingface library Wolf et al. (2020).
Plus, we use the Autotokenizers and AutoModelForCausalLM classes (or the T5ForConditionalGeneration
class in the case of the sequence-to-sequence model). We also generally restrict our models to generate
only up to a maximum of 200 tokens (if they do not produce the stop token themselves).

In order to understand the table, here are some explanations of the relevant concepts:

• The number of training epochs refer to the number of times that the finetuning goes through the
entire input dataset.

111

REFERENCES

• Weight decay adds a small penalty to the loss function, thereby aiming to prevent overfitting on
the training data. Overfitting refers to a model fitted so well on the training data that it does not
generalize well to unseen test data.

• The learning rate determines how big of a step we move towards the minimum of the loss function
when optimizing.

• A checkpoint is a step during finetuning that is saved (e.g. so that we can continue training at
some future moment in time or to compare how training outcomes evolve over time. Therefore, the
number of checkpoints saved then refers to the total number of checkpoints that we saved, keeping
the best performing ones.

• Quantization, double quantization and LoRA r have been discussed in section 4.

• The LoRA dropout is the dropout applied to the LoRA adapter. Dropout refers to randomly
excluding a certain number of nodes while training Hu et al. (2021).

• The LoRA Alpha is a factor that scales how much we update the LoRA matrices Hu et al. (2021).

• The NF4 (Normal Float 4) data type is a special data type to represent data (e.g. language model
weights) in 4 bits Dettmers et al. (2023).

Table 6.4: Training hyperparameters for the respective models in the single task setting (for
all three individual tasks).

Hyperparameter Falcon-7B Llama-13B Orca-13B Wizard-15B
Number of Training epochs 10 10 10 10

Weight decay 0.01 0.01 0.01 0.01
Learning rate 2e�5 2e�5 2e�5 2e�5

Number of checkpoints saved 3 3 3 3

Generation restriction
max new

tokens = 200
max new

tokens = 200
max new

tokens = 200
max new

tokens = 200

4-bit quantization True True True True
Double Quantization True True True True

NF4 (Normal Float 4) data type True True True True

LoRA r 16 8 16 16
LoRA alpha 32 16 32 32

LoRA Dropout 0.05 0.0 0.05 0.05

LoRA applied to matrices: "query-key-value"

"q-proj",
"k-proj",
"v-proj",
"o-proj"

"q-proj",
"k-proj",
"v-proj",
"o-proj",

"gate-proj",
"up-proj",

"down-proj"

"c-attn",
"c-proj",
"c-fc",

"c-proj"

Some exceptions were made, e.g. for the Llama model regarding task three (deduce sat), a LoRA
dropout of 0.1 was applied (instead of 0.0, which was used for task one (create formula) and task two
(create world model)). With regards to single task finetuning, some models were not trained for all ten
epochs. For instance, Falcon was only trained for a bit more than 5 epochs for task one (create formula)

112

D Training Hyperparameters

and task two (create world model), and for two epochs for task three (deduce sat), instead of 10. Llama
was only trained for a bit more than 7 epochs on task three (deduce sat). For multitask finetuning, we
trained all four models for only three training epochs, as compared to their hyperparameters for singletask
finetuning.

113

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement, Design and Research Questions
	1.2 Thesis outline

	2 Theoretical Background
	2.1 Neural Networks and Deep Learning
	2.1.1 Feedforward Neural Networks
	2.1.2 RNNs and LSTMs
	2.1.3 The Transformer Architecture
	2.1.3.1 Self-attention
	2.1.3.2 The transformer block
	2.1.3.3 Positional Encodings

	2.2 Language modeling
	2.2.1 Word embeddings
	2.2.2 N-gram language models
	2.2.3 Neural Language Models

	2.3 Parameter-Efficient Fine-Tuning
	2.4 Quantization
	2.5 First-order (Predicate) Logic
	2.5.1 Syntax
	2.5.2 Semantics

	2.6 Model Checkers & Automated Theorem Provers

	3 Related Work
	3.1 Logical Reasoning
	3.1.1 RuleTakers
	3.1.2 RuleReasoner: Solving SAT problems with LMs
	3.1.3 Predicate Logic Inference

	3.2 Semantic Parsing
	3.3 Program Synthesis

	4 Methodology
	4.1 Overview
	4.2 Dataset Construction
	4.3 Task Definitions
	4.4 Evaluation
	4.4.1 Baselines
	4.4.2 Zeroshot & Fewshot learning, Finetuning and Generalization
	4.4.3 Dataset Sizes
	4.4.4 Parsers
	4.4.5 Prompts

	4.5 Models

	5 Experiments and Results
	5.1 Baselines
	5.2 Dataset statistics
	5.3 Zeroshot learning
	5.4 Fewshot learning
	5.5 Finetuning
	5.5.1 Finetuning on one Task
	5.5.2 Generalization to other Tasks
	5.5.3 Finetuning on all tasks
	5.5.4 Generalization to a harder Task

	6 Conclusion
	6.1 Answers to Research Questions
	6.2 Future Research

	References
	Appendix
	A Illustrative items of the synthetic base dataset
	A.1 Task 1: Create Formula
	A.2 Task 2: Create world model
	A.3 Task 3: Deduce sat

	B Dataset statistics
	B.1 Fewshot and Zershot evaluation
	B.2 Training evaluation
	B.3 Hard evaluation
	B.4 Training on a single task
	B.5 Training on multiple tasks

	C Results for Prompt 2.
	D Training Hyperparameters

