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Abstract

Machine Learning is one of the fastest-developing areas in computer science. It has a wide

range of applications including automation, image recognition, language processing and many

others. Deep learning in particular is a subset of machine learning which has been at the forefront

of many breakthroughs. However, it has very high computational requirements as it utilizes

large datasets and the size of the networks constantly increases in order to improve performance.

Among neural network variants, binary neural networks have gained attention due to their reduced

memory requirements, faster inference and energy efficiency. These are essential qualities for the

implementation of neural networks on embedded systems and small devices such as smartphones.

The training of binary neural networks is challenging, as they require additional algorithms which

approximate gradient descent. We look into quantum-inspired formulations for a better alternative.

Quantum computing has been gaining popularity in recent years as it holds great promises for

optimisation, simulation and secure communication but also could be a great threat to the current

security paradigm. Quantum computers perform computations over higher-dimensional search

spaces, potentially leading to improvements in many areas of machine learning. We focus on a

versatile mathematical formulation called a Quadratic Unconstrained Binary Optimisation (QUBO),

which is required by quantum annealers, the most advanced current quantum devices in terms of

number of qubits. It can also be solved on gate-based quantum computers and classical computers.

There has been a recent formulation for the training of a binary neural network to be implemented

as a QUBO, which does not require gradient descent at all. We offer a model that improves upon

the original formulation, tackling the problem of bad scalability and achieve a QUBO which is

capable of handling much bigger feature spaces for our networks. Furthermore, we allow for

training over time which removes some volatility and produces more robust weights. We also add

some quality-of-life changes to the model such as separately tunable penalty factors and more

freedom when choosing the size of the feature vectors and the number of hidden neurons. Because

of our improvements, we are, to the best of our knowledge, the first to fully train a binary neural

network for image classification and sentiment analysis tasks by using a QUBO. We test our model

on preprocessed data from the MNIST and IMDb datasets and we solve our QUBOs on a digital

annealer, achieving promising results and in very specific cases outperforming an unoptimised

classical neural network of the same size with the same loss and activation functions.
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Zusammenfassung

Maschinelles Lernen zählt zu den am schnellsten wachsenden Bereichen der Informatik. Es findet

vielfältige Anwendungen, darunter Automatisierung, Bilderkennung, Sprachverarbeitung und viele

andere. Insbesondere im Bereich des Deep Learning, einer Teilbereich des Maschinellen Lernens,

haben sich zahlreiche Durchbrüche ereignet. Allerdings hat Deep Learning sehr hohe Rechenanfor-

derungen, da es sehr große Datensätze verwendet und die Größe der Netze ständig erhöht wird,

um die Leistung zu verbessern. Unter den Varianten Neuronaler Netze haben Binäre Neuronale

Netze aufgrund ihrer reduzierten Speicheranforderungen, schnelleren Inferenz und Energieeffizi-

enz Aufmerksamkeit erregt. Dies sind wesentliche Eigenschaften für die Implementierung von

Neuronalen Netze in eingebetteten Systemen und kleinen Geräten wie Smartphones. Das Training

von Binärer Neuronaler Netze ist jedoch eine anspruchsvolle Aufgabe, da zusätzliche Algorithmen

erforderlich sind, um den Gradientenabstieg zu nutzen. Wir betrachten quanteninspirierten For-

mulierungen, um eine bessere Alternative zu finden. Quantencomputing hat in den letzten Jahren

auch an Popularität gewonnen, da es vielversprechende Ansätze für Optimierung, Simulation und

sichere Kommunikation, aber auch potenzielle Bedrohungen für das aktuelle Sicherheitsparadigma

bietet. Quantencomputern können Berechnungen in höherdimensionalen Räumen durchführen, was

zu Verbesserungen in vielen Bereichen des maschinellen Lernens führen kann. Unter den heutigen

Quantentechnologien ist das Quanten-Annealing am weitesten entwickelt und bietet die größte

Anzahl an Qubits. Quadratisches Unbeschränktes Binäres Optimierungsproblem (QUBO) ist eine

vielseitige mathematische Formulierung, die von Quanten-Annealern benötigt wird, aber auch

auf gatterbasierten Quantencomputern und klassischen Computern lösbar ist. Wir präsentieren ein

Modell, das eine existierende Formulierung für das Training eines Binären Neuronalen Netzes als

QUBO verbessert. Wir versuhen das Problem der schlechten Skalierbarkeit zu lösen und bauen ein

QUBO, das viel größere Featureräume für die Binären Neuronalen Netze nutzen kann. Darüber

hinaus ermöglichen wir auch Online Training, was teilweise Volatilität beim Training entfernt und

stabile Gewichte erzeugt. Wir fügen dem Modell auch einige Verbesserungen hinzu, wie separat

einstellbare Straffaktoren und mehr Freiheit bei der Wahl der Größe der Merkmalsvektoren und

der Anzahl der Hidden Neuronen. Dank unserer Verbesserungen sind wir, unserer Kenntnis nach

die ersten, die ein Binäres Neuronales Netz für Bilderkennungs- und Sentimentanalyseaufgaben

vollständig, mithilfe eines QUBOs trainieren können. Wir testen unser Modell anhand vorverarbei-

teter Daten aus den MNIST- und IMDb-Datensätzen und lösen unsere QUBOs auf einem digitalen

Annealer, wobei wir vielversprechende Ergebnisse erzielen und in sehr speziellen Fällen nicht

optimierte klassische Neuronale-Netze mit derselben Größe, Loss- and Aktivierungsfunktionen

übertreffen.
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1 Introduction

Machine learning (ML) models are prominent in many fields today but take a lot of time to be

trained and are usually computationally expensive. It is evident that they are also a crossing point

for many topics like Geometry Processing, Embedded Systems, Context-sensitive Systems and

Medicine Robotics. The focus of this work will be on Neural networks (NNs), because of their wide

array of use cases in all of the above-mentioned fields. They are also arguably the best performing

ML method in the last decade, driving most of the recent successes [1].

Among these, Binary neural networks (BNNs) are powerful and very efficient quantization models

in terms of memory consumption, energy consumption and speed of inference [28], which makes

them probably the best-suited network models for resource-constrained environments such as

embedded systems and portable devices. They achieve this at the cost of slightly lower accuracy in

comparison to full-precision models [28]. Their training presents challenges due to the discrete and

non-differentiable nature of binary operations. Traditional approaches often employ a method called

Straight Through Estimator (STE) to circumvent this issue by approximating gradient descent, but

these estimators may introduce quantization errors and hinder training convergence [29]. In search

of a way to circumvent these difficulties, we look into quantum and quantum-inspired technologies

and formulations for a way to implement the training of a BNN without an STE and without gradient

descent.

Even though large-scale fault-tolerant quantum computers are not expected to be realized in the

near future, quantum computing is being researched in many fields of computer science. Naturally,

its promises for exponential speed up for computation tasks have made it very alluring to ML

researchers. In the last decade Quantum machine learning (QML) has been a rapidly growing field

with efforts in many areas including Support Vector Machines (SVMs) [2], Principal component

analysis (PCA) [3], K-nearest neighbour (KNN) algorithms [4],[5] and K-means clustering [6].

Finding an efficient way for NNs to be implemented on a quantum computer might be an important

milestone for ML, considering the computational advantages promised by quantum technology

and the widespread use of NNs. There have been many efforts to create Quantum neural networks

(QNNs) [7], [8], but with the current quantum technology [9] scaling those to big sizes will likely

be a challenging task.

It is no surprise that there also has been ongoing research on training classical NNs with gate-based

quantum computers and it has gained significant attention in recent years [8], [10]. The objective

is to leverage the computational power of quantum systems to enhance the training process for

classical NNs. Because of the different principles of quantum computing, such as superposition,

tunnelling and entanglement, researchers aim to develop novel algorithms and architectures that
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1 Introduction

can utilize those to overcome the limitations of classical approaches. Although this field is still in

its early stages of development, ongoing research explores various strategies, including quantum-

inspired classical algorithms [11] and hybrid quantum-classical methods [12], [13], [14]. Currently,

full-precision NNs are too big and too complex to be fully trained by today’s quantum technology.

However, successful hybrid implementations such as [15], [13] and [12] which improve classical

training, show promising results.

Most current implementations for QNNs and the quantum training of classical NNs involve replacing

parts of the NN with a variational quantum circuit. This is a type of quantum circuit that is

using rotation operator gates with free parameters to perform various numerical tasks, such as

approximation, optimization and classification. The variational quantum algorithm is a hybrid

algorithm that is very similar to a NN in that it approximates functions through parameter learning,

but also benefits from quantum phenomena. Some prominent examples would be the replacing of

the generators [14] and/or the discriminators [16],[17] of generative models and the convolutional

and pooling layers of Convolutional neural network (CNN) [18], [19] with quantum circuits. There

have been some recent efforts to implement the policy training for reinforcement learning by using

a variational quantum circuit [20]. There are also approaches that replace the input layer of a

NN with artificial neurons [21] which use fewer parameters to learn the complex and non-linear

patterns in data. The possible applications of these quantum technologies for ML and its use cases

for the industry are gathering attention and are being investigated in many projects such as the

German initiatives QuCUN [22] and QCHALLenge [23]. However, it is important to note that

in all of these works, we see a significant reduction of the dimensions of the data either during

preprocessing or via a hybrid implementation utilizing classical computers. This is required because

of the limited maturity of state-of-the-art quantum computers, most experiments are performed with

4-6 qubits. Implementing the full training of a big NN on a gate-based quantum computer could

lead to faster and more efficient training of NNs, allowing for further advancements in ML and

artificial intelligence, however, with the rate at which gate-based technology is developing [9], this

step will likely take a while.

Adiabatic quantum computing (AQC) is the second prominent type of quantum computation, which

we will consider. It relies on the adiabatic theorem and utilizes the principles of superposition,

tunnelling and entanglement that manifest in quantum physical systems in order to solve optimi-

sation problems. There has been a lot of progress in adapting ML algorithms for AQC including

SVMs [2], linear regression [24] and K-means clustering [6]. Physical realizations of AQC called

quantum annealers are the most developed quantum technology in terms of number of qubits.

The currently largest quantum annealer has more than 5000 qubits [25] compared to the largest

gate-based machines having an order of magnitude less [9]. This is a major factor considering the

representational power needed to train a NN and makes them suitable for scaling up the size of the

trained networks. Additionally, quantum annealers being specifically designed for optimization

problems, exploration of large solution spaces and finding optimal configurations, makes them

well-suited for the optimization of the loss function of a NN. They are also more stable as annealers

directly map the optimisation problem onto their hardware architecture, exhibiting greater noise

resilience compared to gate-based quantum computers and being less prone to measurement er-
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rors and decoherence. Furthermore, because of this mapping, quantum annealers have reduced

computational overhead compared to gate-based counterparts, potentially speeding up training

times for real-world testing. Lastly, by exploring a wider range of configurations near the global

minimum, quantum annealers could contribute to the discovery of parameters that exhibit improved

generalization abilities.

A Quantum Unconstrained Binary Optimisation (QUBO) is a mathematical formulation for binary

variables that aims to minimize a quadratic objective function subject to no constraints. It is the native

input format for a quantum annealer, which is one of their limitations. Higher degree polynomials

can also be solved on annealers by first internally transforming them to quadratic [26], [27], but

this comes at the cost of increasing the size of the problem and the qubits required for solving

it. However, the QUBO formulation offers a unique opportunity for a problem to be solved on a

classical computer by using Simulated annealing (SA), genetic algorithms or Digital annealing (DA),

on a quantum annealer or on a gate-based quantum computer by utilizing the Variational Quantum

Eigensolver (VQE) or the Quantum Approximation Optimization Problem (QAOA) algorithms.

Considering the early stages of research for combining quantum computing with ML the flexibility

in terms of solution methods for the QUBO formulation is certainly advantageous. By formulating

the training process of a BNN as a QUBO problem, the binary weights and activations can be

directly optimized without relying on approximations. This approach offers several benefits,

including a native binary environment and no rounding during the training, hopefully leading to

fewer quantization errors and faster convergence. By utilizing the benefits of not using an STE for

the training, there is a hope to enhance the robustness, efficiency, and overall performance of the

trained BNNs, while maintaining or even improving the accuracy, opening up new possibilities

for their application in real-world scenarios. The advantages quantum annealers have for training

NNs which were mentioned above are even more pronounced for the training of BNNs because of

the exploration over a binary solution space where no approximations need to be made, as it is the

natural domain for annealers.

These natural connections have led to research being done trying to combine AQC and ML. There

have been formulations for a few ML models such as KNN, linear regression and clustering [6].

And because Quantum annealing (QA) is also a very good generative tool there have been models,

which utilize it for sampling in order to enhance the training of NNs [31], [32]. There have also

been a few attempts to fully model the training of NNs [26] and BNNs [33] as a QUBO, but this is

a very underdeveloped area of research.

In this work, we improve upon the QUBO formulation from [33]. It presents a natural and intuitive

way to implement the training of a BNN and is very transparent with the values for all of the neurons

which makes it a good model for research. We also explain the main differences, advantages and

disadvantages compared to the approach presented in [26]. The main limitation that is reported in

both approaches is connected to the scalability of the formulation and our main effort is to reduce

the size of the resulting QUBO and also to allow for bigger feature vectors to be used. Even though

the scaling of our formulation is still polynomial, limiting the size of the BNN and the amount of

training data, we are nevertheless able to do realistic classification on preprocessed data.
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We further improve the general utility of the formulation by developing an algorithm for training

over time which allows for the training over multiple batches one after the other, continuously

improving the solution. The training over time scheme theoretically adds possibilities for more

complex weights, such as ternary weights {−1,0,1} or even small integers, to be approximated after

the training, even though the QUBO training itself remains completely binary. We also give more

freedom of choice when it comes to the size of the feature vector, which is limited to one less than a

power of two in [33]. Furthermore, we allow for fine-tuning of the penalty terms, which results in

more opportunities for fine-tuning and also helps in penalizing some infeasible solutions. Lastly, we

adapted our model for the two use cases of image classification and sentiment analysis, which are

very prominent problems from computer vision and Natural language processing (NLP) respectively.

These are widespread use cases, which provide a good baseline for the performance of our model.

Furthermore, they also have some of the most rigorously tested and balanced low-complexity

datasets such as the MNIST and IMDb datasets. Additionally, to the best of our knowledge, no

work has presented a fully trained NN for these tasks achieved solely via a QUBO, with a feature

vector size that is applicable to real-world scenarios.

We did our benchmarking and testing on the Fujitsu Digital annealer [34] which is a novel quantum-

inspired technology that uses annealing to solve QUBO problems. Because it is fully classical

we were able to use it for testing without fear of decoherence or quantum errors. The Digital

annealer is capable of handling problems with qubit sizes in the thousands which allows it to

solve problems in the same or higher realm of complexity as the D-Wave Advantage which has

5000 qubits. The quantum annealer offers limited connectivity [25], so when there are many

2-qubit connections in the QUBO matrix, extra qubits are needed in order to compensate for these

interactions, effectively reducing the number of available qubits. The digital annealer, on the other

hand, offers full connectivity and the QUBO matrix can be directly mapped on the hardware. We

are doing tests up to 8000 qubits which is what the digital annealer should be able to solve without

problems [34]. This gives us a good approximation for the performance of quantum annealers

in the near future and produces dependable results for testing. Our formulation was tested on

down-sampled versions of the datasets MNIST and IMDb used for image recognition and sentiment

analysis respectively. Even though some reduction in the feature space was done to make the

experiments take a shorter amount of time, we showed that our model can be used with the full-scale

images from MNIST. For the sentiment analysis, the formulation was able to handle vocabulary

size in the hundreds which, provided a good preprocessing, is enough for easier datasets.

We describe the theoretical backgrounds and relevant related work in chapter 2 and chapter 3. Then

we explain the formulation of the original model in detail in chapter 4. We describe the different

improvements we made and how to apply the new model to image classification and sentiment

analysis in chapter 5. The setup for our experiments and the discussion of the observed results we

present in chapter 6. Lastly, we briefly summarize our results in chapter 7 and offer some ideas and

suggestions for future developments in chapter 8.
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2 Background information

2.1 Quantum unconstrained binary optimisation
(QUBO)

A QUBO is a mathematical formulation for binary variables that aims to minimize a quadratic

objective function subject to no constraints. The general form of a QUBO problem can be expressed

as:

min f (x) = ∑
i

qiixi +∑
i< j

qi jxix j (2.1)

where x = (x1,x2, . . . ,xn) is a binary decision vector representing the variables, and the coefficients

qii represent the linear terms of the objective function, while qi j represent the quadratic terms.

We also add a constant E to eq. (2.1) for all coefficients q which are not dependent on any of

the variables x. This constant does not affect the solution vector x of the QUBO but changes the

minimum value of f (x).

The solution of the QUBO problem is a vector of binary variables that minimizes the objective

function f (x) and finding it is an NP-hard problem. A solution can be achieved through various

classical optimization techniques, such as SA, genetic algorithms and DA, quantum approaches

like QA or hybrid approaches such as QAOA and VQE. It is also possible to use simulated QA

which is performed solely on a classical machine and simulates the evolution of the Hamiltonian

(see section 2.1.1). It is proposed that it also benefits from adiabatic speed-up [35] similar to

QA. Notably, these are all probabilistic schemes, so the quality of the found solutions can vary.

Considering the early stages of research for combining quantum computing with ML the flexibility

in terms of solver options of the QUBO formulation presents a good base for future developments

in many directions.

The QUBO formulation can also allow for the splitting of any problem of size n in two QUBO

problems of size n−1 known as Divide-and-Conquer [36]. These can be solved independently of

each other opening possibilities for parallelisation. By itself this simplification is not very efficient,

however, if the structure of the problem is exploited each time such a simplification is made, the

size of both QUBOs can be reduced by more than one variable making it an effective way of

speeding up calculation. This reduces the overall qubit requirements while also improving the

approximations of the solving heuristics [36].
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2 Theory

Overall the QUBO formulation has a few notable advantages which make it a great candidate for

implementing the training of BNNs. QUBO is a versatile framework capable of representing a broad

spectrum of optimization problems, which is also naturally aligned to tackle binary problems and

can become highly parallelisable by utilizing schemes such as Divide-and-Conquer. Furthermore,

as mentioned above, there is a plethora of ways to solve the QUBO problem. This compatibility

opens up avenues for harnessing quantum computing capabilities, classical computing and even

hybrid approaches to explore new ways for training BNNs and to get insights into the future of

training NNs as a whole.

We are going to go into further detail about some of the most popular ways to solve QUBOs which

are crucial for our research, namely SA, with DA in particular which is going to be used for the

experiments in chapter 6 and QA, which is the best candidate quantum technology for solving our

formulation.

2.1.1 Quantum Annealing (QA)

Currently, there are two main quantum computing paradigms: Gate-based quantum computing

(GQC) and AQC. Currently, the practical realisation of AQC in the form of quantum annealers is

more developed and offers machines with a larger number of qubits. QA is an optimisation technique

that utilizes quantum mechanical phenomena such as quantum tunnelling, quantum entanglement

and quantum superposition and aims to find the lowest energy state, or the global minimum, of a

given problem’s objective function. This is achieved through the energy minimization of a physical

system. QA as a computational technique was proposed by Tadashi Kadowaki and Hidetoshi

Nishimori in 1998 [37]. One of the main developers of quantum annealers as of today is D-Wave

Systems and it has played a prominent role in the development of QA technology. After a prototype

was demonstrated in 2007, in 2011, D-Wave introduced its first commercial QA system, the D-

Wave One [38]. Subsequent generations of featured improvements in qubit count, connectivity, and

overall performance, with Advantage, reaching 5000 qubits [25], which outperforms the previous

iterations of D-Wave machines in almost all metrics except for very sparse problems [39].

QA involves mapping an optimization problem onto a physical system composed of qubits. They

represent the variables of the problem, and their states are manipulated to explore different config-

urations. The energy profile of any physical system is defined by a function called Hamiltonian.

In the case of QA, the Hamiltonian is the sum of an initial Hamiltonian and a final Hamiltonian.

The initial Hamiltonian is formulated to be very simple and with a known lowest energy state

(ground state). The system’s state is initialised at the ground state of the initial Hamiltonian, which

is then annealed such that the final Hamiltonian, which represents the target optimization problem,

dominates in the overall system. If the evolution is slow enough and there is minimal thermal noise,

the final state of the system, which corresponds to the desired solution of the optimization problem,

will be in the ground state of the final Hamiltonian:

H(t) = (1− s(t))Hi + s(t)H f (2.2)
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2 Theory

Figure 2.1: The idea behind QA training compared to classical training. Theoretically QA can tunnel from
any other minimum to the global one. Image from [26]

Hi = ∑
n

σn,x (2.3)

H f =

(
∑
n

σn,z +∑
n,m

Jn,mσn,zσm,z

)
(2.4)

Where Hi is the initial Hamiltonian, H f is the final Hamiltonian, σi,x,σi,z are Pauli gates applied on

qubit i, Jn,m are couplings between qubits n and m and s(t) is the annealing schedule. s(t) increases

from 0 to 1 as t goes from 0 to the maximal time chosen for the annealing. The adiabatic theorem

states that "a physical system remains in its instantaneous eigenstate if a given perturbation is acting

on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian’s

spectrum" [40]. So if our system starts at the ground state of Hi and the evolution of the Hamiltonian

is slow enough to satisfy the requirements of the theorem, the system will end up in the ground

state of H f . In practice, many real-world problems have an infinitely small gap and therefore the

evolution of s(t) needs to be infinitely slow. In such cases, even small perturbations can get the

system out of the ground state. This means that for most relevant problems real quantum annealers

have a non-zero probability to end up in a state with higher energy than the ground state.

We can calculate the energy of the Hamiltonian and minimize it in order to find the ground state, by

expressing it as a QUBO (see eq. (2.1)):

min f (q) =

(
∑
n

Qnnqn + ∑
n<m

Qnmqnqm

)
= min qT Qq (2.5)

Where q = [q1,q2, . . . ,qN ] is a quantum state, where each qn,qm ∈ {0,1}, Q ∈ RN×N , and Qnm

is the element at the n-th row and m-th column of the QUBO matrix Q. This is the only way to
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map a problem on a quantum annealer which is one of the main drawbacks of QA, as it limits the

representation power of this technology.

The fundamental advantage of QA lies in its potential to efficiently explore complex solution spaces,

particularly for optimization problems with a large number of variables or a rugged landscape

of potential solutions. It has been applied to different optimization problems in areas such as

finance, logistics, cryptography and drug discovery [41]. Efforts are ongoing to identify problem

domains where QA excels and showcases a practical advantage over classical algorithms. However,

while QA holds great promise, further research and development are necessary to fully exploit its

capabilities and explore its practical implications [41].

2.1.2 Simulated Annealing (SA)

SA is a probabilistic technique for approximating the global optimum of a given function. It

is a metaheuristic that helps to approximate the global minimum in a large search space for an

optimization problem. It was introduced in 1983 in [42]. It draws inspiration from the cooling

processes in metallurgy. The main idea is to overcome local optima and improve the likelihood of

finding a global optimum by allowing "bad" moves early in the search but reducing their probability

as the algorithm progresses. The amount of "bad" moves which are allowed is controlled by a

parameter called temperature, which is dependent on the annealing time.

The hill climbing algorithm is a simple heuristic that looks at all neighbouring states and moves

there if that solution is better than the current solution. SA is a direct improvement over such

heuristics, as it significantly decreases the probability of getting stuck in a local optimum, by

iteratively exploring the solution space and gradually decreasing the temperature which increases

the probability of approximating the global minimum [42]. The idea behind this approach can be

seen in fig. 2.2.

The main way to achieve this is by using a stochastic sampling method called Monte Carlo sampling

[44], developed in 1953:

P(accept) = exp
(
−∆E

T

)
(2.6)

where P(accept) is the probability of accepting the candidate solution, ∆E is the change in energy

between the current solution and the candidate solution and T is the current "temperature" parameter,

controlling the level of randomness in the search. The temperature T can be decreased in many

ways, called annealing schedules, but it is done usually either linearly or exponentially.
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Figure 2.2: SA explores the objective function avoiding local minima and has a high probability of finding
the global minimum. Image from [43]

Digital Annealing (DA)

DA is a new computing technology that Fujitsu Laboratories started researching and developing

in the middle of the last decade. It is used for solving combinatorial optimization problems,

which are difficult to solve with existing general-purpose computers. The digital annealer is a

quantum-inspired classical technology that can be understood as accelerated SA. Where quantum

computers repeatedly apply unitary operations to multiple qubits, the digital annealer repeatedly

applies stochastic transitions to classical bits which correspond to the aforementioned binary values

[34]. In order to accelerate this iterative operation of stochastic transitions for digital circuits, the

latest generation model features an architecture that performs parallel computations of subtraction

operations for the finite differences of the energy function and its stochastic evaluation.

DA solves combinatorial optimization problems mapped to an Ising model that is expressed by the

energy function similarly to QA. The spin states {−1,+1} are converted into binary values {0,1}
and the digital annealer can rapidly solve those problems by searching for a ground state, based on

the Markov-Chain Monte Carlo method [34]. Although it operates on classical hardware without

relying on quantum effects like superposition and entanglement, Fujitsu’s DA quantum-inspired

technology offers the potential to provide efficient solutions to large-scale optimization problems

which are formulated as a QUBO. This can prove beneficial for a problem like the training of a

NN which requires high numbers of variables. It is also helpful for the purposes of research as

there are no decoherence errors to take into account and no quantum noise. Furthermore, many of

the parameters are tunable, such as the maximal annealing time, the number of solutions returned,

the initial solution, the annealing schedule and many more. Additionally, the version that we used

allows for one-hot encoding of penalties and auto-tuning for the factor applied to the penalties
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[34]. This offers great flexibility for testing and benchmarking. For our experiments, we have not

changed most of the parameters except for the maximal annealing time, in order to find the desired

global minimum of our QUBO, essentially using the digital annealer as a black box. This was done

because we wanted to minimize the effects of different setups for the DA on the solutions and focus

on the quality of the formulation itself.

2.2 Neural Networks (NN)

A NN is a computational model inspired by the structure of the human brain. It consists of multiple

layers of interconnected nodes called neurons which process and transmit information. These

networks are used in various fields of artificial intelligence to learn patterns and make predictions.

They solve complex tasks by gradually improving their performance, in a sequential process called

training, where the network adjusts its internal parameters based on training data. The network’s

layered architecture and adaptive learning enable it to recognize and generalize patterns, making it

a versatile tool for tasks such as image recognition, natural language processing and more. In the

last decade, the size of NNs increased significantly both in terms of number of layers and the size

of each layer. The training of these large networks was enabled by the increasing availability of

large and diverse datasets.

A NN is the composition of L layers of neurons. The value for each neuron yi in layer l can be

computed as follows:

yl
i = σ

(
∑

j
W l

i jy
l−1
j +bl

i

)
(2.7)

Where W l
i j is the weight connecting neuron j in layer l −1 to neuron i in layer l, b(l)i is the bias

term for neuron i in layer l and σ is the activation function.

The final output of the NN for an input x with n features is the result of the activation function

applied on the last layer:

f (xn) = yL (2.8)

Let (θ ) include all the weights W (l)
i j and biases b(l)i for all layers l.

The goal of training the NN is to find the optimal parameters θ that minimize a chosen loss function

L over a training dataset D:

θ
∗ = min

θ
∑

(x,y)∈D
L( f (x;θ),y) (2.9)

where y is the label to datapoint x.

This minimization process is typically achieved through an optimization algorithm such as gradient

descent. There are several types of gradient descent, including batch-gradient descent, stochastic

gradient descent and mini-batch gradient descent. They all share the main idea of calculating the
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gradient of the loss function and then slowly adjusting the parameters θ of the NN in the opposite

direction, so if we have a negative gradient the parameters should be increased and vice versa.

2.2.1 Binary Neural Networks (BNN)

BNNs are a class of NNs that have their network weights and activations constrained to binary

values, either −1 and +1 or 0 and 1. This is the most extreme method for the quantization of

NNs. Quantization is utilized mainly in order to reduce resource consumption of NNs in order to

make them suitable for resource-constrained environments, including embedded systems, mobile

devices and Internet of Things applications. BNNs offer advantages in terms of computational

efficiency and compact model storage, [45], [46]. The memory efficiency is due to the fact that

all of the inputs and parameters are represented by a single bit. This is especially important when

dealing with expansive NNs. Furthermore, binary values can be manipulated using simple logic

operations, such as bitwise XOR, bitwise AND and bit shifts, resulting in more energy-efficient

computations compared to their non-binary counterparts. This also results in significantly faster

inference, compared to classical NNs and other quantization schemes. The theoretical speed-up for

XNOR-Net in [46] is calculated to be a factor of 58. Another thing to keep in mind is the fact that

current hardware is optimized for floating point operations and BNNs are theorized to perform even

better on specialized hardware optimized for bitwise operations [28], making them a candidate for

real-time functionality, such as real-time computer vision systems or autonomous vehicles. An

experiment was conducted in [45], where a 23 times speed up was achieved by a kernel utilizing

specialized hardware, compared to a control unoptimized kernel. On top of this, BNNs enable

higher hardware parallelism because of the efficient binary operations, which further improves

processing speed and throughput.

Utility and security

The usefulness of BNNs does not end with their extreme efficiency. They offer many benefits in

terms of security, compression and generalization capability. Binary weights help address privacy

concerns by attenuating the sensitivity of the model to malicious attacks. Due to their binary

nature, the weights hide information regarding the original training data and it has been shown that

quantization helps protect from adversarial attacks [47], [48], [49]. The compact representation

of BNNs permits efficient model compression, thereby facilitating easier deployment and transfer

across networks characterized by limited bandwidth or storage capacity. It is also considered

that BNNs exhibit greater resilience to noise and quantization errors compared to full-precision

networks and it is even suggested that the added noise allows for better generalization [29].

As a downside BNNs have reduced representational capacity relative to their non-binary counter-

parts, potentially leading to marginal decreases in accuracy. Full-precision NNs can express a wide

range of subtle variations, allowing them to capture intricate patterns in the data, whereas BNNs

are restricted to the "black and white" relations of binary variables. Ongoing research endeavours

focus on developing techniques to mitigate this limitation. Approaches encompass the introduction

17



2 Theory

of supplementary model parameters [46] or the utilization of more advanced binary activation

functions [50].

Training

One of the main challenges when it comes to BNNs is their training. Binary activation functions

introduce non-differentiability, interfering with the straightforward use of traditional gradient-

descent-based optimization techniques. Nevertheless, researchers have devised approximation

methods, such as the STE, to enable backpropagation and gradient-based learning in BNNs. It

was introduced in [51] and is a technique used during the training of BNNs to handle the non-

differentiability of binary activation functions. It is formally defined as follows:

g =
∂L
∂h

, h = bin( f (x)) (2.10)

Where g is the estimated gradient, L is the loss function, h is the output of a neuron, f (x) is the

forward pass and bin() is the rounding function.

During the forward pass, the binary activation function is applied to obtain binary outputs. In the

backward pass, instead of directly propagating non-differentiable gradients, the STE approximates

the gradients as seen in eq. (2.10). Essentially the full-precision weights are stored in parallel with

the binary weights. The full-precision ones are used for the backpropagation, while the binarized

ones are used for the forward propagation. This allows the gradients to be backpropagated through

the network in a meaningful way and also avoids oscillating gradients. As a result, even though the

binary activation function is not differentiable, the STE provides a way to approximate gradients

and continue the training process. The STE technique is one of the staple ways used in BNNs to

address the challenges posed by discrete and non-differentiable operations. For a more in-depth

understanding, refer to the original paper [51], which discusses the STE concept in detail.

Even so, the training of BNNs takes longer than other quantization methods as found out in [45]

which can be seen in fig. 2.3, and remains arguably the most problematic quality they have. This is

to be expected as multiple changes to the real-valued references in the STE are required in order to

change the binary weight.

2.3 Image Classification

Image classification refers to the computational task of assigning predefined labels or classes to

input images based on their visual content. It is used for many tasks such as object recognition

for autonomous vehicles, robotics, manufacturing quality control, medical diagnoses, content

moderation on online platforms and social media, security and surveillance, augmented reality and

many more [52],[53]. It involves the development of ML models that can effectively recognize

and differentiate between various objects, scenes, or patterns depicted in images, enabling accurate

classification. Formally it can be defined as developing a predictive model that finds a mapping:
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Figure 2.3: Training curves of a BNNs showing that they are slower to train but nearly as accurate as 32-bit
float NNs [45]. Dotted lines represent the training costs and the continuous lines represent
validation error rates. Image taken from [45]

f : X → Y (2.11)

where xi ∈ X is an image, represented as a matrix of pixel values and yi ∈ Y is the corresponding

label.

While traditional ML techniques have been used for image classification, such as SVMs, Decision

trees, Naive Bayes and Random Forests, the main improvements in accuracy and performance

were led by the development of deep learning. In this work, we are only going to focus on image

classification utilizing NNs.

2.3.1 History

In 1998 LeNet [54] was introduced, which was one of the first CNNs architectures, designed

specifically for handwritten digit recognition. It showcased the successful application of deep

learning techniques for image classification tasks. LeNet’s architecture included convolutional

layers, pooling layers, and fully connected layers, which proved to be highly effective for pattern

recognition in images and inspired a lot of similar architectures.

One of the main breakthroughs utilizing deep learning came in 2012, with the introduction of

AlexNet [55], a deep CNN architecture that significantly outperformed existing methods on the

ImageNet dataset, which is one of the most complex benchmark datasets for image classification.

AlexNet is most famous for the use of the ReLU activation function and GPU acceleration.

VGGNet [56], developed in 2014, demonstrated that increasing the depth of the network led to

improved accuracy. With its 16- and 19-weight layers, it set new benchmarks on various image
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classification tasks and provided insights into the importance of network depth in deep learning

models.

ResNet [57] addressed the problem of degradation in deep NNs. By utilizing skip connections

and residual blocks, ResNet enabled the training of deeper networks without suffering from the

vanishing gradient problem, which allowed for even deeper architectures to be developed and also

significantly improved the accuracy of the classification.

After constant improvements and rising popularity NNs, the focus shifted to trying to widen their

applications. In 2017 MobileNet [58] was introduced, which is a lightweight CNN architecture

designed for mobile and embedded devices. MobileNet utilized depthwise separable convolutions,

which significantly reduced the computational cost and model size without sacrificing accuracy.

It can be argued that [58] popularized the concept of efficient models for resource-constrained

environments.

With the rising popularity of quantum computers, there has also been a lot of research focusing on

image classification such as the development of the Quantum convolutional neural network (QCNN)

[13] and utilizing quantum circuits for the training of classical NNs [12] for medical image

classification.

Furthermore, image classification has been used as an important benchmark for the development of

BNNs,[45], [46]. For more information about the development of BNNs refer to section 2.2.1.

2.3.2 MNIST

The MNIST dataset is a widely employed benchmark dataset for image classification in ML and

computer vision [59]. It comprises grayscale images of handwritten digits, ranging from 0 to 9,

with each image having dimensions of 28x28 pixels. It contains 60,000 training samples and 10,000

testing samples. It offers a diverse set of writing styles, different digit shapes, and variations in

stroke thickness. The dataset provides a balanced distribution of digits, ensuring an equal number

of examples for each class. It is one of the simplest datasets and provides a good benchmark for

new approaches such as the one presented in this work. It is extensively studied and therefore

provides established baselines that can serve as references and guidelines for the performance of

the tested models. It was also chosen because it offers one of the smallest but still realistic image

sizes. Having a smaller number of features allows us to formulate our model while still utilizing

a few images for the training, especially in the context of the polynomially scaling QUBO sizes

when training BNNs [26],[33].

2.4 Sentiment Analysis

Sentiment analysis, also referred to as opinion mining, is a computational technique that involves

employing ML algorithms to categorize the sentiment or emotional orientation expressed in textual
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data, such as customer reviews, social media posts or survey responses. It is an important part

of NLP, which has many use cases such as social media monitoring, political analysis, customer

feedback analysis, brand monitoring and market research. Its primary objective is to automatically

ascertain and classify the subjective information conveyed within the text into positive, negative or

neutral sentiments. In this work, in order to reduce complexity the focus is solely on classifying

positive and negative reviews. Usually, sentiment analysis enables the extraction of valuable insights

concerning the opinion of the person who wrote the text by analysing its full content and training on

vast amounts of data, so in the context of limited resource environments, it should be a challenging

classification problem. Formally it can be defined as developing a predictive model that finds a

mapping:

f : X → Y (2.12)

where xi ∈ X is a text and yi ∈ Y is the corresponding binary sentiment label.

One popular approach to sentiment analysis is the bag-of-words model, which represents text

as a collection of individual words, disregarding grammar and word order. The bag-of-words

approach relies on the assumption that the overall sentiment of a document can be inferred from the

frequencies or presence of certain words or phrases within it. The simplest bag-of-words model is a

n-hot encoding for the vocabulary, signifying either the presence or absence of a word, losing the

information about how many times it has been mentioned. This is a simple yet effective method for

sentiment analysis, which was chosen for this work because it allows for a small vocabulary size

and a binary input vector, which in turn drastically reduces the size of the BNN and the QUBO.

Due to the limited resources available, this is essential in order to have at least a few datapoints to

train on, while also keeping the problem small enough to be solvable on current quantum annealers.

2.4.1 History

In 2002 an unsupervised learning approach to sentiment analysis was introduced in [60]. This work

laid the foundation for using statistical measures to extract sentiment from textual data.

In [61] supervised ML techniques were used for sentiment analysis. In the paper a dataset of

movie reviews was introduced, which had sentiment labels and were used to evaluate various ML

algorithms including Naive Bayes, SVMs and Maximum Entropy.

In [62], in which the IMDb dataset was introduced, the effectiveness of deep learning in capturing

sentiment information was highlighted. The authors trained Recurrent neural networks (RNNs) and

CNNs on this dataset and achieved state-of-the-art results in sentiment analysis. This work paved

the way for subsequent research in sentiment analysis and contributed to the development of more

sophisticated NN models for this task.
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In [63], Recursive Neural Tensor Networks for sentiment analysis were developed. These are

RNNs that capture compositional meaning in sentences by analysing the hierarchical structure

of sentences, allowing for more nuanced sentiment analysis. This model outperformed previous

state-of-the-art methods on sentiment analysis tasks, showcasing the effectiveness of NNs for

capturing sentiment compositionality.

In [64] a Gated RNN model was proposed for sentiment analysis at the document level. It

incorporated gated units to capture long-term dependencies in sequential data, enabling it to model

the sentiment of an entire document. The authors evaluated the model on multiple sentiment

analysis datasets, including Twitter sentiment classification, achieving competitive performance.

The field of quantum NLP is in its very early stages of development but there have been some

resent developments in building Long Short-Term Memory networks such as [15] and [65] which

are well suited for tasks such as text classification and sentiment analysis.

And similarly to the task of image classification, there has been a lot of research concentrated for

compressing NLP models in order to make them more viable for resource constraint environments.

As early as 2016 there were proposed Long short-term memory (LSTM) implementations [66],

where binarizing the weights was achieved with very good results but binarizing both weights and

inputs proved challenging. In [67], where a 2-4 bit representation was used for the weights and

activations, very good accuracy was observed for NLP and in [68] state-of-the-art results were

achieved while using the binarized representations of all the components of a text classification

architecture.

2.4.2 IMDb

The IMDb Movie Review Dataset is a collection of movie reviews sourced from the IMDb website.

Each review is accompanied by a sentiment label indicating whether the sentiment expressed in the

review is positive represented by 1 or negative represented by 0. It is simple with small sizes of the

reviews and it has a specific domain that allows for a simple bag-of-words approach with a very

small vocabulary and n-hot encoding to be effective, which makes it a good match for our research

purposes.

The dataset was initially introduced by Maas et al. in [62] and has since become a standard

benchmark for evaluating sentiment analysis algorithms. This allows for comparison against

established results and general guidelines. It consists of 50,000 movie reviews, with 25,000 reviews

labeled as positive and 25,000 reviews labeled as negative. This balanced distribution ensures

an equal representation of positive and negative sentiments, enabling objective evaluation and

comparison of sentiment analysis models.
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3 Related work

There is very limited literature on the specific problem of formulating the whole training of a BNN

as a QUBO. In [33] the authors introduce the formulation which we are improving upon and in

[26] a fundamentally different approach is suggested, which we will briefly explain in this section.

The focus of this approach is on utilizing non-trivial activation functions and training on a dataset

that can easily be larger than the number of qubits on any device currently in existence. This

is achieved by calculating the loss function for the whole NN over an approximated activation

function for each of the neurons, over the whole training dataset, which results in a big high-degree

polynomial that represents the whole training process for the BNN. After that, they remove terms

that are not quadratic by introducing auxiliary variables (see section 4.2.3 eq. (4.12)).

This approach allows for "one-shot" training over large amounts of training data. However, it is

very hard to utilize data that has a large number of features or has not been through significant

preprocessing. As stated in one of the examples, where a quadratic approximation of the RELU

activation function is used, the number of additional auxiliary variables that need to be introduced

is:

(Nh +1)(N f +1)+(Nh +1)(N f +1)2 (3.1)

[26]

Where Nh is the number of hidden neurons and N f is the number of input features. The authors

report that the number of auxiliary variables scales geometrically with the degree of the term that is

being reduced, which depends on the activation function. For example, there is an approximation

of the RELU activation function which is 4th degree and there is an approximation of the sigmoid

activation function which is 3rd degree.
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The usual way of training a NN described in section 2.2 is to perform forward propagation with the

initial weights and biases, then calculate the loss function for the given input data and adjust the

parameters during the backpropagation using gradient descent. This process is repeated until the

training is finished. Gradient descent cannot be used on binary parameters so for a BNN the training

is usually done via a method called STE (see section 2.2.1). Now we are going to describe the

model presented in [33] for training a BNN without backpropagation, gradient descent or an STE,

achieved by formulating the problem as a QUBO and then finding an optimal or close to an optimal

setup for the parameters. We are going to present the original scheme as we have implemented it,

so the ordering of the variables in the solution vector and the names of some functions and variables

are different, but the definitions are unchanged from the original formulation.

4.1 Definition of the Binary Neural Network (BNN)

The authors do not use biases for the formulation which also aligns with other classical BNN models

such as [46]. They can be included as additional terms but this will add additional complexity and

later on, could interfere with our objective to reduce the size of the QUBO and allow for bigger

feature vectors.

For the BNN a simple activation function was chosen in order to introduce non-linearity in the

easiest and most efficient way possible. The activation the authors chose is the sign function, which

for x ∈ R is denoted as sgn(x) and is defined as:

sgn(x) =
x
|x|

(4.1)

For a BNN with binary weights W l ∈ {−1,1}, inputs yl ∈ {−1,1} and layers l ∈ [0,1,2, ...L], the

output of each neuron is computed as the sign of the weighted sum of inputs multiplied by the

weights:

yl+1
j = sgn

(
∑

i
W l

i jy
l
i

)
(4.2)

where yl+1
j is the output of neuron j, yi are the inputs from previous layer neuron i, Wi j is the weight

connecting neuron i to neuron j.
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And the output of the whole network looks like this:

yL = sgn
(

∑W Lsgn
(

∑W L−1...sgn
(

∑W0y0
)))

(4.3)

For easier notation, in [33] the authors define the product of the weights and inputs for the layers l

and l +1 as follows:

Zl+1
i j =W l

i jy
l
i (4.4)

For the loss function the simple 0−1 loss function is chosen, which is defined as follows:

L0−1(yL, l) =

0 if yL = l

1 if yL ̸= l
(4.5)

where L is the loss, l is the true label and yL is the predicted output.

Then the loss is formulated as a quadratic function and squared in order to avoid negative loss:

L = (yL − l)2 (4.6)

4.2 Model for one datapoint

We will first explain some of the important elements and intuitions for building the QUBO from

[33] and in the rest of the section we are going to explain in detail how to construct the QUBO

matrix for a BNN that has 1 input layer, 1 hidden layer and a single output neuron for binary

classification.

4.2.1 Prerequisites

One thing, which should be noted for the training scheme from [33] is the switching from binary

notation {−1,1}, which is also called spin notation in the literature [33], [26], referencing quantum

spins, to the binary notation {0,1} which is also known as logical bits/qubits as it is the one used

for QUBO formulations [27]. When the spin notation is used for the weights it denotes a positive

correlation via a "spin up" - (1) and a negative correlation via a "spin down" - (−1). The two

notations can be used interchangeably and can be both used throughout the whole formulation, but

it is often the case that swapping between the two grants a simpler mathematical formulation.

When swapping between the notations, the conversion of a spin variable to a binary {0,1} variable

or vice versa is done as follows:

q =
s+1

2
, q ∈ {0,1}, s ∈ {−1,1} (4.7)
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When swapping from the {−1,1} notation to the {0,1} notation, the multiplications of the weights

and inputs in the sign function need to be converted to XNOR operations. This can be illustrated as

follows:

Z =W ∗ y : W = 1, y = 1, Z = 1,

W = 1, y =−1, Z =−1,

W =−1, y = 1, Z =−1,

W =−1, y =−1, Z = 1

Z = XNOR(W,y) : W = 1, y = 1, Z = 1,

W = 1, y = 0, Z = 0,

W = 0, y = 1, Z = 0,

W = 0, y = 0, Z = 1

The sign function applied over the sum of the bits, has to be converted to a counting operation for

the ones, which establishes a majority. This can be achieved by looking at the most significant bit

of the binary sum in the {0,1} notation, with the restriction that the bits which are being counter

are one less than a power of 2:

sgn

(
2n−1

∑
i=0

ai

)
, ai ∈ {−1,1} ⇐⇒ msb

(
bin

(
2n−1

∑
i=0

ai

))
, ai ∈ {0,1}, n ∈ N (4.8)

This can be illustrated by the use of a simple example for the addition of seven bits. The possible

sums expressed as three bits in binary notation are {000,001,010,011,100,101,110,111}. Here

we can see that if the majority of bits are ones, 4 in our case, the most significant bit of the sum is 1

and if the majority of bits are zeros the most significant bit of the sum is 0. What happens here is

that we "count" how many bits are one and then represent the number in base two. After that, the

most significant bit represents the majority.

4.2.2 Objective function

First, the simple squared loss function needs to be incorporated in the QUBO which is defined as

follows:

L = (yL − l)2 (4.9)

Where l is the true label, yL is the prediction of our BNN.
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Because this is a QUBO formulation for a binary classification task, there is only one neuron per

datapoint that is needed for the classification. Consequently, the objective function is only applied

to a single qubit in the QUBO per datapoint.

With only the objective function included our QUBO matrix Q looks like this:

min
q∈{0,1}

Q = (aL
1 − l)2 (4.10)

Where aL
1 is the output neuron and l is the true label.

4.2.3 Penalty Terms

First, a penalty term needs to be introduced, ensuring the multiplications in QUBO represent the

multiplications in the BNN correctly. As discussed in section 4.2.1 XNOR operations have to be

used for that. In order to enforce the correctness of q3 = XNOR(q1,q2) the following penalty term

is used, where P ∈ R+:

PXNOR(q1,q2,q3) = P(1−q1 −q2 −q3 +2q1q2 +2q2q3 +2q1q3 −4q1q2q3) (4.11)

Because there cannot be any cubic terms in a QUBO, additional variables b need to be introduced,

to allow the cubic term q1q2q3 to be replaced by the quadratic bq3, where b = q1q2. This is enforced

by using the following penalty:

Pcubic(q1,q2,q3,b) = bq3 +P(3b+q1q2 −2q1b−2q2b) (4.12)

Here, q1, q2, and q3 are binary variables, and b is an auxiliary variable in the QUBO problem.

These two penalties are applied to every multiplication in the model:

Zl+1
i j = XNOR(W l

i j,a
l
iL) (4.13)

In order to better illustrate the ordering of the binary variables in the QUBO, we collate them in a

binary vector q:

q = (Z00
0,Z01

0, ...Znm
0,a0L

0,a1L
0...anL

0,W00
0,W01

0...Wmn
0,b000,b010...bnm0,

Z0
1,Z1

1, ...Zn
1,aL

1,W 1
0 ,W

1
1 ...W

1
n ,b0

1,b1
1...bn

1) (4.14)

where al
nL are the values for the neuron n in layer l and n is the number of hidden neurons, while m

is the number of features.
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After adding both of these penalties to the QUBO, it looks as follows:

min
q∈{0,1}

Q =
(
aL

1 − l
)2

+∑
i, j,l

PXNOR

(
ai

l,Wi j
l+1,Zi

l+1
)
+∑

i, j,l
Pcubic

(
ai

l,Wi j
l+1,Zi

l+1,bi
l+1
)

(4.15)

Next, penalty terms are introduced for ensuring the additions in the QUBO represent the additions

in the forward pass for the BNN correctly. As explained in section 4.2.1 the most significant bit of

the binary notation is observed in order to enforce the addition of the binary inputs in each neuron.

Here is an example of counting three bits by using two:

Padd
(
a,aout ,qin

0 ,q
in
1 ,q

in
2
)
= P

(
−a−2aout +qin

0 +qin
1 +qin

2
)2

(4.16)

where a,aout is the representation of a number in base 2, aout being the most significant bit and

qin
0 ,q

in
1 ,q

in
2 ∈ {0,1}.

In the general case, if the number of inputs of a neuron is restricted to values 2n − 1 and a are

auxiliary bits, the penalty term, as described in [33] for the activation of the sum becomes:

Padd(ai,qk) = P

(
−

n−1

∑
i=0

2iai +
2n−1

∑
k=0

qk

)2

(4.17)

After adding the penalty terms for the addition, the binary vector q is complete:

q = (Z00
0,Z01

0, ...Znm
0,a00

0...a0L
0,a10

0...anL
0,W00

0,W01
0...Wmn0,b00

0,b01
0...bnm

0

Z0
1,Z1

1, ...Zn
1,a0

1,a1
1, ...aL

1,W 1
00,W

1
01...W

1
0n,b0

1,b1
1...bn

1) (4.18)

From it, we can calculate the number of variables required for this representation. Let us have

a feature vector of size m as input and n hidden neurons. The total number of variables for one

datapoint is 3nm+n log2 m+3n+ log2 n.

In the end, the simple notation for the whole QUBO looks as follows:

min
q∈{0,1}

Q=
(
aL

1 − l
)2
+∑

i, j,l
PXNOR

(
ai

l,Wi j
l+1,Zi

l+1
)
+∑

i, j,l
Pcubic

(
ai

l,Wi j
l+1,Zi

l+1,bi
l+1
)
+∑

i, j,l
Padd

(
ai

l,Zi
l
)

(4.19)
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4 QUBO modelling for training Binary neural networks (BNN)

4.3 Model for multiple datapoints

The model for a single datapoint can be extended for multiple datapoints, as described in [33], in

order to have the opportunity for training over larger amounts of data. It should be noted that the

weights W 0
i j and W 1

i j are shared between the datapoints, but all other variables are datapoint specific.

So the binary vector needs to be extended for multiple datapoints as follows:

q =
(

Z⃗0
0 , Z⃗

0
1 , ...⃗Z

0
d , a⃗

0
0, a⃗

0
1...⃗a

0
d ,W

0 ,⃗b0
0 ,⃗b

0
1...⃗b

0
d , Z⃗

1
0 , Z⃗

1
1 , ...⃗Z

1
d , a⃗

1
0, a⃗

1
1, ...⃗a

1
d ,W

1 ,⃗b1
0 ,⃗b

1
1...⃗b

1
d

)
(4.20)

Where d is the number of datapoints and for a datapoint x: a⃗l
x are all variables ai j, Z⃗l

x are all

variables Zi j and b⃗l
x are all variables bi j in a layer l.

The locations where the additional variables are placed in the QUBO are not specified in the original

model. The idea behind the ordering of the variables we used is that each set of variables for a

datapoint is followed by the same type of variables for the next datapoint. So after the Z variables

for the first datapoint follow the Z variables for the second etc., after the b variables for the first

datapoint, follow the b variables for the second and so on.
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real-world problems as a QUBO

We improved the original model in several aspects with the goal of making the formulation

applicable to realistic problems such as image classification and sentiment analysis.

5.1 Structural improvements

The original QUBO can be split into an objective function matrix and a penalty matrix, which can

also be weighted differently as follows:

Q = wob jL+wpC (5.1)

This allows us to control how big of an importance is placed on correct classifications of the

training data versus correct interactions between the neurons. This is most significant for solutions

with non-zero energy as usually lower energy solutions are preferred. However, as we can see in

chapter 6 it makes a difference even when focussing only on zero energy solutions.

Furthermore, we can also make the observation that the different types of penalty terms for our

penalty matrix C can be classified as XNOR penalties expressed in eq. (4.11), corresponding cubic

term penalties from eq. (4.12) and addition penalties explained in eq. (4.17). They can also be

separately weighted by wXNOR, wcubic and wadd respectively. The general structure for the QUBO

we are building is as follows:

Q = wob jL+wXNORPXNOR()+wcubicPcubic()+waddPadd() (5.2)

We opt to use different penalty factors for each penalty type as this allows us to penalize some

possible incorrect solutions, which would not be penalized otherwise. We will illustrate this with a

simple example of an infeasible solution. Let Z1
0 = 1, a0

0L = 1, b1
1 = 1 and everything else in our

binary solution vector, including W 1
0 be 0. The relation between these variables should be:

Z1
0 = XNOR

(
a0

0L,W
1
0
)

(5.3)
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5 Modelling the training of BNNs for real-world problems as a QUBO

while b is the auxiliary variable for the cubic terms which appear in the penalty. In this case Z1
0

should be 0 and therefore this solution should be penalized.

From eq. (4.11) and eq. (4.12) from the original formulation, we get a penalty:

PXNOR
(
a0

0L,W
1
0 ,Z

1
0
)
= P

(
1−a0

0L −W 1
0 −Z1

0 +2a0
0LW 1

0 +2W 1
0 Z1

0 +2a0
0LZ1

0 −4b1
1Z1

0
)
+

+P
(
3b1

1 +a0
0LW 1

0 −2a0
0Lb1

1 −2W 1
0 b1

1
)

(5.4)

which after we substitute our values simplifies to the following:

−3P+P =−2P (5.5)

Which, regardless of the value for the penalty factor P, will lower the energy and thus be accepted

as a valid solution.

If we take the same example with our suggested weights from eq. (5.2) we get:

PXNOR
(
a0

0L,W
1
0 ,Z

1
0
)
= wXNOR

(
1−a0

0L −W 1
0 −Z1

0 +2a0
0LW 1

0 +2W 1
0 Z1

0 +2a0
0LZ1

0 −4b1
1Z1

0
)
+

+wcubic
(
3b1

1 +a0
0LW 1

0 −2a0
0Lb1

1 −2W 1
0 b1

1
)

(5.6)

which after the substitution simplifies to:

−3wXNOR +wcubic (5.7)

Considering that this solution should be penalized we can choose values for wcubic and wXNOR such

that wcubic > 3wXNOR and therefore wcubic −3wXNOR > 0.

Additionally, this way of specifying the factors for the different penalties allows for more possibili-

ties for customisation and optimisation, as expressed in [27]. There might be a setup for the penalty

factors which improves the performance of our model. This, however, is something that we will not

attempt in this work and briefly discuss in chapter 8.

5.2 Flexible number of neurons in each layer

The original scheme is restricted to allowing feature vectors and number of hidden neurons which

are of the form 2n −1 (see section 4.2.3 eq. (4.17)). This has the consequence that the trained BNN

needs to be adapted to the QUBO formulation rather than the other way around. To solve this, we

propose a change to the addition penalties, which allows for the use of any number of odd input

bits and hidden neurons. The reason for having an odd number of inputs is that the addition with

the sign function as an activation is essentially a majority vote and to have a clear majority, an odd
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5 Modelling the training of BNNs for real-world problems as a QUBO

number is required. The idea behind our formulation is to change the factors of the most significant

bit and the bit before that in order to ensure that the only time when the most significant bit changes,

is when a majority is reached and then use the bit before that as a "buffer" to compensate for the

changes we made, while still allowing for all possible sums to be represented. Let us clarify by

using 49 input bits as an example, which would not be possible in the original scheme. If we insert

these values in eq. (4.17) we get:

Padd(ai,qk) = P

(
−

5

∑
i=0

2iai +
49

∑
k=0

qk

)2

(5.8)

The only value in the binary vector which is used as the output of a neuron is the bit a5. If we have

25 bits that are 1, we can see that a5 is 0 as the binary notation for 25 is 011001, not registering

that majority is reached.

Our model would also use 6 bits for the addition and we keep the first four factors before the bits

the same as eq. (4.17), which leads to a penalty that looks like this:

Padd(ai,qk) = P

(
−(+2a1 +4a2 +8a3 +ba4 +ma5)+

49

∑
k=0

qk

)2

(5.9)

Now we have to choose values for b and m. Formally we will define them for n input bits as follows:

m =
n+1

2
, b = m−

log2 n−2

∑
i=0

2i (5.10)

So in our example, for m we have to choose the value 25 as it is the majority of 49. For the buffer b,

in order to still be able to represent all possible sums, we need to cover the numbers between 16

and 25 which leaves us with b = 9. After this, our penalty looks as follows:

Padd(ai,qk) = P

(
−(1a0 +2a1 +4a2 +8a3 +9a4 +25a5)+

49

∑
k=0

qk

)2

(5.11)

5.3 Reducing Variables

We can make the observation that when we calculate the values for the first layer of hidden neurons

∑Z0
i j, the inputs yi

0 are available before the annealing begins and are not affected by any of the

variables which are changed in the solution vector, thus there is no need for them to be present in

our QUBO vector which represents only variables. This leaves the variables Z0
i j only dependent on

the weight variables Wi j, which allows us to pack the whole information of the Z0
i j variables into the

part of the QUBO which is representing the weights Wi j. After that change, we need to readjust the
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5 Modelling the training of BNNs for real-world problems as a QUBO

addition to be connected to the weights as there will no longer be Zi j variables. We also need to pay

attention to the fact that the multiplications that we are skipping are in the binary {0,1} notation

and therefore should be represented by an XNOR.

To formalize this approach we first make the observation that the XNOR in eq. (4.13), applied to

the input yi
0 which we know, can be expressed as follows:

Z0
i j =

W 0
i j if yi

0 = 1

1−W 0
i j if yi

0 = 0
(5.12)

After that, the addition penalty for layer 0 described in eq. (4.17) is changed to use Wi j instead of

Zi j as follows:

Padd
(
ai j

0,Wi j
0) (5.13)

After all of this is taken into account we can remove all Z0
i j variables, along with the auxiliary b0

i j

variables described in eq. (4.12), which are no longer needed.

After the simplification, our binary vector, without losing any information becomes:

q=
(
a0L

0,a1L
0...anL

0,W00
0,W01

0...Wmn0,Z0
1,Z1

1, ...Zn
1,a0

1,a1
1, ...aL

1,W 1
00,W

1
01...W

1
0n,b0

1,b1
1...bn

1)
(5.14)

Where n is the number of hidden neurons and m is the number of inputs.

We can calculate the number of variables required for this representation similarly to the original.

If we have a feature vector of size m as input and n hidden neurons, the total number of variables

required for the model with one datapoint is nm+ n log2 m+ 3n+ log2 n which is with 2nm less

than the original. The connections between the input layer and the first hidden layer usually contain

the largest number of parameters, so our reformulation helps us to significantly reduce the number

of QUBO elements that are needed to represent the training. For a network with 7 inputs and 7

hidden neurons for 8 datapoints, the original scheme requires 760 variables [33] and our scheme

reduces that number to 360. We performed most of our experiments with a BNN with 49 inputs

and 7 hidden neurons which required just 822 qubits. This is the most significant improvement

enabling us to classify image and text data as can be seen in chapter 6.

5.4 Training over time

The usual way a NN is trained is a sequential process described in section 2.2. One of the benefits

of the training being formulated as a QUBO is that it can be done in a "one-shot" fashion for

multiple images at the same time. It, however, is still limited in the amount of data which can be

utilised. In order to learn over an extensive number of datapoints, while maintaining or improving
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5 Modelling the training of BNNs for real-world problems as a QUBO

the accuracy, we propose a hybrid scheme for training over time by utilizing multiple batches. This

was left by the authors of the original formulation [33] as future work, where they were envisioning

a different approach to ours, which only focuses on previous solutions which repeat exactly. In

comparison, we propose a scheme that takes advantage of all previous solutions which can be

the result of previous training with annealing or even from classical training. The general idea of

our formulation is to keep optimal weights found during training as a reference and each time we

construct a QUBO for a new batch of datapoints, to introduce a bias in that QUBO towards those

weights. This bias has to be chosen carefully so that the option to settle for different, better weights

is still available, but in every other case favour the old weights.

A direct approach of letting the weights of each iteration influence the next will result in weights

which change a lot and are also very subjective to the order in which the batches are trained. To

tackle these problems we propose having a floating point solution matrix V . After each annealing

run we add the suggested weights Wsi j of all solutions suggested by the digital annealer, multiplied

by a learning rate α to the solution matrix V :

Vi j =Vi j +∑
s

αWsi j, s ∈ {0, ...,25} (5.15)

where s is a solution from the digital annealer.

This scheme is devised to work for binary weights which are in {−1,1} notation in order to avoid

infinite scaling and also allow for the possibility for a weight in V to flip from negative to positive

or vice versa.

Now that we have our reference weights Vi j, we can add a bias towards them the next time we

construct a QUBO. For that, we use an additional penalty function, which affects only the diagonal

elements of the matrix which looks like this:

−B∑
i j

Wi jVi j (5.16)

Where B is a factor for the bias towards the weights that are in the matrix Vi j containing the reference

weights and Wi j are the weights in the new QUBO. The penalty is multiplied by −1 because the

weights which are positive need to reduce the energy and the weights which are negative need to

increase the energy if we want to have a bias towards finding those same weights. So our simplified

notation for formulating a QUBO for training over multiple batches is:

min
q∈{0,1}

Q =
(
aL

1 − l
)2

+∑
i, j,l

PXNOR

(
ai

l,Wi j
l+1,Zi

l+1
)
+

+∑
i, j,l

Pcubic

(
ai

l,Wi j
l+1,Zi

l+1,bi
l+1
)
+∑

i, j,l
Padd

(
ai

l,Zi
l
)
−B∑

i j
Wi jVi j (5.17)
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We should also add that, for general intuition, we adjust the energy constant with the same amount

that we subtract from the diagonal elements in order to still have global optima at 0 energy and no

solutions with negative energy. This is just for convenience and does not change the functionality

of the formulation.

Here we made the interesting observation that we don’t need to round off the elements in the

solution matrix V , as they are stored classically and are not variables in the QUBO, meaning they

don’t have to be binary. We can even use the solution matrix V directly, which will somewhat

approximate integer or floating point weights. This, however, would defeat the purpose of using a

BNN in the first place. One more feasible precision allowed by this modelling is the use of ternary

weights {−1,0,1}, which depending on the problem might be beneficial. This can be achieved by

setting a boundary around 0 where we assume that the weight is undetermined giving it a value of

0 and outside of that boundary we round the weights to {1,−1}. Essentially we could get 2-bit

approximations for the ideal weights without the need to enlarge the QUBO size. This however is

something we have not explored in this work.

5.5 Modelling for Image Classification

For the image classification, we used the MNIST dataset and each image was reduced from 28x28

to a dimension 7x7 by applying MaxPooling on each 4x4 grid. MaxPooling is a very popular

preprocessing technique where a grid is applied over the input and only the maximal value in that

grid is stored in the new matrix. Therefore it is often used in CNNs for reducing the size of the

inputs. Additionally, because we are going to be binarizing the values for the inputs, there is further

incentive to get as close to polarized binary values as possible in order to lose as little information

as possible when rounding. After the MaxPooling, we tried to further increase the number of ones

artificially by setting any number that passes a threshold (we use 0.25) to 1. This final step is done

so that the input vector has a similar number of ones and zeros in it. We do not have any evidence

that this improves or hurts the performance of our model but we wanted to create very balanced

feature vectors, in contrast to the ones for sentiment analysis, in order to test our model under

different conditions.

We also performed a few tests on full-scale images, but due to the amount of time needed for

solving those big instances, we mainly focused on working with preprocessed data with reduced

dimensions and complexity. For the full-scale images there was minimal preprocessing. The first

step was removing a single bit from the bottom right corner of the image (the last bit), as it is one

of the most likely bits to hold no valuable information. This was needed as our scheme only works

with an odd number of features and so we were working with 783 inputs rather than 784. The last

step we did was increasing the contrast by again setting any number that is larger than our threshold

of 0.25, instead of the expected 0.5, to 1.

Considering that we are doing binary classification we had to choose pairs of digits to be compared.

We decided on two pairs namely 0,1 and 5,6. We expected the former to be relatively easy to
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Figure 5.1: Preprocessing applied to numbers 0 and 1

classify and the latter to be challenging, again for the purpose of testing as many different scenarios

as possible.

Lastly, we had to decide on a way for choosing a set of weights because the digital annealer has the

option to return a few solutions, which we set to 25. We observed only the solutions with the lowest

energy and then we used them to classify the training data. The best-performing weights on the

training data were then tested on the test data in order to benchmark the performance of the scheme.

This is not the case for our multibatch model, where all 25 solutions are utilized to influence the

final optimal weights (see section 5.4).

Figure 5.2: Preprocessing applied to numbers 5 and 6
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5.6 Modelling for Sentiment Analysis

For the sentiment analysis, we used the IMDb dataset. Here, the preprocessing is not as straight-

forward as with the image classification because we have to find a way to keep the dimensionality

of the input data very low, which is why we chose a bag-of-words approach. In order to select

a good ensemble of words we calculated an index for every word that is found in the interviews

and adjusted the bounds for it in order to control the number of words which were selected. This

index is calculated by dividing the occurrences of a word in positive reviews by the occurrences in

negative reviews or vice versa:

Ip(x) = Op(x)/On(x), In(x) = On(x)/Op(x) (5.18)

where x is a word, Op() and On() are functions that calculate the occurrences of a word in the

positive and negative reviews respectively.

We choose appropriate values for these indices, guaranteeing us that the words we choose occur

often in positive but occur rarely in negative reviews and vice versa. In our case, we opted for

words x which either have Ip(x)> 3 or In(x)> 3. Furthermore, we selected only words that appear

often in order to reduce the effects of outliers. We simply considered only words x for which

Op(x)+On(x) > 80. Our next step was removing any names and very specific words from the

dataset, as they are something that cannot be used in generalized cases and would make our sparse

vectors even sparser. Our vocabulary after this preprocessing consisted of 203 words and can be

seen in fig. 5.3. After that, when choosing reviews for training and testing we chose only reviews,

which have more than 10 occurrences of words from our vocabulary in order to avoid extremely

sparse or even empty feature vectors. After our preprocessing, we were left with feature vectors

of length 203 which were quite sparse, and had 394 vectors for training and 363 for testing. We

should note that after the preprocessing there were 126 words in the vocabulary, characteristic for

negative reviews compared to the 77 characteristic for positive reviews. Also, there were more

negative reviews overall in both our training and test datasets after the preprocessing. These are

significantly more unbalanced feature vectors and datasets compared to the ones we used for image

classification in section 5.5, which will present our formulation with a different challenge and

hopefully give us more insights into its strengths and weaknesses.
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Figure 5.3: Words in our vocabulary after the preprocessing is done.

This is a very simple, hand-crafted approach and we recognise that there are many preprocessing

possibilities that will hopefully produce much better results. Formulating a binary feature vector

with such low dimensions is a very challenging task and, in our opinion, a very interesting avenue

for future research (see chapter 8).

The same method for choosing a solution from the 25 returned by the digital annealer, which

was described for image classification, is also applied here. After choosing the solutions with the

lowest energy, the weights are used to classify on the training data and then the best classifier is

benchmarked on the test data. This is not the case for our multibatch model, where all 25 solutions

are utilized to influence the final optimal weights (see section 5.4).
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In order to have a fair comparison with a classical NN we have implemented a simple Multilayer

perceptron (MLP) with the same dimensions as the BNN that we are training with our QUBO. The

input that we are using for the classical network is preprocessed and binarized the same way as the

input data for the QUBO and BNN. Then we train the MLP with the squared loss function and the

sign activation function, using classical weights which are slightly reduced to f loat16. We train it

over 50 epochs and with a learning rate of 0.1. After we have finished with the training, we test the

performance with classical weights in order to have a benchmark. After that, we round the classical

weights to get binary weights {−1,1} and have a second test of the performance of the classical

training with binary precision, which is the closest comparison to our scheme.

For the annealing we decided to focus on solutions suggested by the DA solver which have an

energy of zero, meaning that there were no violations in both the objective function and the penalty

terms. This means that all multiplications and additions in the represented BNN are executed

correctly and that all of the training data was classified correctly. We can see when comparing

fig. 6.1b with fig. 6.1a that with an increasing number of datapoints it gets more difficult to find

solutions with no violations. Even though we cannot verify this, we strongly believe that there is a

number of datapoints, which cannot have no objective function violations. For some cases when

no zero-energy solutions were found, we chose the ones with the lowest energy. We observe that,

generally, the quality of the solutions remains stable as long as the violations of penalty terms and

the objective function are not too many as can be seen in fig. 6.1.
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(a) 18 datapoints for digits 0 and 1 (b) 20 datapoints for digits 0 and 1

(c) 16 datapoints for digits 5 and 6

Figure 6.1: Accuracy of test samples depending on their energies with mean and standard deviation. Achieved
by changing the maximum annealing time, resulting in states with different energies.

6.1 Image classification

For our testing as described in section 5.5 we focused on 4 labels 0,1 and 5,6. We used the first

10000 images from the training images and all 10000 test images from the MNIST dataset. Overall,

the model successfully learned to differentiate between the digits for both pairs. Depending on

the problem and the setup, the average accuracy of our model was between 65% and 90%. It also

achieved a maximal observed accuracy of 96%. Most of our tests were focused on observing how

the model responds to different internal parameters and datasets, as most intuitions for classical

ML are not applicable to such formulation.

One of the most interesting observations was how the accuracy of our model changes with the

addition of new training data. For limited amounts of training data - 2, 4 and 6, our model

outperforms both the classical training with f loat16 weights and the binarized weights, which can

be seen in fig. 6.2. This is a very interesting observation, which might point to a niche scenario

where the QUBO modelling leads to better utilization of limited data. The performance is overall

similar to a binarized version of the trained MLP but tends to fall behind the full-precision MLP.

In the same figures we can also see that the performance of the QUBO model is getting worse with

the addition of more training data. This might be due to the higher volatility of BNNs for example.

If we use the same data but split it in small batches we get considerably better results. This can be

seen if we compare the performance of our multibatch online training fig. 6.7 with fig. 6.2. These

examples are both using the same 20 images of 0s and 1s and 5s and 6s. The training with 5 batches

containing 4 datapoints, achieves 15% and 14% higher accuracy respectively.
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(a) For digits 0 and 1 (b) For digits 5 and 6

Figure 6.2: A comparison between the accuracy of the QUBO model and that of a classical model with and
without binarization on different numbers of datapoints.

(a) For digits 5 and 6 (b) For digits 0 and 1

Figure 6.3: Histograms showing the how consistently the model performs for two datapoints on different
randomly chosen pairs of data. There is always one datapoint of each class.

There was also a consideration for the possibility of some data being an outlier in terms of how

well it represents the general problem and thus allowing for better training. After testing different

pairs of data separately which can be seen in fig. 6.3 we concluded that this is likely not the case,

because even though there are some differences in the accuracy, when all the data is used together

these differences should be balanced out.

One last possibility we considered was the difficulty in finding a good solution for generalization.

As an example for 20 datapoints finding a solution with 0 energy took approximately 1200 seconds,

while for 4 datapoints each anneal requires 90 seconds or less. This suggests that with an increasing

number of datapoints there are fewer and fewer solutions without any violations, which is to be

expected as each datapoint increases the requirements to be met by the weights, removing some of

the previously possible solutions. It might be the case that the quality of complex solutions which

fit many datapoints perfectly is worse for generalization compared to the solutions achieved on a

few datapoints. If this is the case, this is similar to the effects of overfitting for classical ML.
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(a) For digits 0 and 1 (b) For digits 5 and 6

Figure 6.4: Changes to accuracy depending on the relation between penalty factor and objective function
factor. The penalty factor is 10 and we are training on 10 datapoints. Additionally we are
comparing two ways to order the data in the input vector-alternating or segregated.

(a) Across different objective factors
(b) Average accuracies with mean and standard devia-

tion

Figure 6.5: Performance depending on different proportions of the input being from one class, in this case 0
and 1. We tested on 10 datapoints.

We tested how the accuracy of our model changes depending on how the penalties and objective

function are weighted in comparison to each other, represented by the penalty factor and the

objective function factor described in section 5.1 in order to find an optimal setup for these

parameters. What we observe in fig. 6.4 is that the values of the penalty factor and the objective

function factor don’t have observable best values when we compare the quality of the suggested

weights. They also don’t show any linear trends in terms of accuracy of the trained BNN.
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Figure 6.6: Average accuracies with mean and standard deviation achieved on 10 datapoints with different
order for the input data - segregated versus alternating for classifying 5,6 and 0,1.

We also tested if there are any observable effects on the accuracy of the model depending on the

way the training data is ordered, which should not be the case. There are no significant effects that

would suggest a trend in the performance which can be seen in fig. 6.4 and fig. 6.6. This is a good

sign because it means that training is quite stable and there are no unnecessary dependencies in the

QUBO. Furthermore, having a balanced amount of data for each class versus having predominantly

data from one class was investigated and seems to have no significant negative effects which can be

seen in fig. 6.5a. After the results of the aforementioned tests, based on the small differences in the

average accuracy seen in fig. 6.5b and fig. 6.6, we concluded that the optimal performance of our

model is reached when we have a balanced distribution of training data which are in alternating

order.
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Figure 6.7: Accuracies achieved for training 5 batches with different number of input data in each batch.

The online multibatch training scheme, which was described in section 5.4, shows good performance

as can be seen in fig. 6.7. However, overall, it also struggles with the problem described earlier

where the accuracy starts decreasing after a certain amount of training data is used in each batch.

The benefits of this scheme are twofold. First, this scheme provides a good way to create a robust

solution that is not susceptible to outliers and shows good results. And second, it seems to be the

case that even if we use the same training data but split it in a few batches it finds better parameters

for generalization. This can be illustrated by training with 20 datapoints of 1s and 0s in one batch

as seen in fig. 6.2a. If we split the same data in 5 batches we achieve a 15% increase in accuracy,

which can be seen in fig. 6.7. Not only that but it takes a lower amount of annealing time to find

each separate solution. The single batch takes about 1200 seconds while each of the 5 batches

takes 90 seconds. Overall, this scheme is the best bet to train a model for real applications when

there is no verification on the choice of good weights on vast amounts of training data as we do in

section 5.5. This is due the the robustness of the achieved solutions and the efficient utilization of

the solving hardware.
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Figure 6.8: Accuracy achieved for training and testing on full-scale MNIST images depending on the number
of training datapoints.

The motivation for our scheme was to allow for bigger feature vectors and for more training data

to be included. After observing the high accuracy achieved with limited training data and having

gathered some information about the stability of the algorithm even when some penalties are

violated, we decided to test the performance of our scheme on full-size MNIST data. We achieve

training on a few datapoints and our QUBOs require between 5600 and 8600 qubits. The results

are shown here fig. 6.8. This is beyond the capabilities of currently available quantum annealers but

it will hopefully be achievable in the near future. Therefore, we kept the main part of our testing

with smaller-size QUBOs in order to have problems which are solvable on current QA technology.

Furthermore, smaller problems enable us to have more consistent tests, as finding the ground state

of such big instances gets very difficult and takes approximately 1800s for the digital annealer to

find. These results show that our scheme will be able to scale to larger feature spaces and produce

good results, with the caveat that the hidden and output layers should be kept relatively small.

Furthermore, we observed the same tendencies discussed throughout section 6.1 for preprocessed

images to persist for full-scale MNIST images, but the changes in accuracy are less drastic and

more smooth in comparison.

6.2 Sentiment Analysis

For sentiment analysis, we had only the two labels of "positive" and "negative" reviews. After

doing some hand-crafted preprocessing, described in section 5.6, over the whole IMDb dataset,

we were left with 394 reviews for training and 363 for testing, each in the form of a 203-element

binary vector. Overall, the model successfully learned to differentiate between positive and negative

reviews. Depending on the setup, the average accuracy of our model was about 70% and it had

a maximal observed accuracy of 82%. The accuracy achieved for this problem was significantly

lower than the differentiation between 0 and 1 and similar to the differentiation between 5 and 6.

Similar to image classification most of our tests were focused on observing how the model responds

to different internal parameters and we observed similar patterns for both tasks.
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Figure 6.9: Average accuracies achieved over different amounts of training data with full-precision, rounded
binary weights and our QUBO results.

Figure 6.10: Accuracies achieved with different amounts of training data with full-precision, rounded binary
weights and our QUBO results.

We observed that for few datapoints, between 2 and 6, our model again outperforms both the

classical floating point weights and the binarized weights as can be seen in fig. 6.10 and it achieves

good results on average fig. 6.9. However, we again see the pattern discussed in section 6.1, where

the accuracy drops after a certain amount of training data. In this case, we observe a similar

tendency also for the classical training, which may suggest that the preprocessing has some innate

imbalance.

We also tested if the correlation between the penalty factor and objective function factor has any

significant effects on the accuracy similar to what we tested in fig. 6.4 for image classification.

The results of fixing the penalty factor and testing different values for the objective factor can

be observed in fig. 6.11. This test was done for 6 datapoints, which showed a dip in accuracy in

fig. 6.10. When we did the same test for the image classification we used 10 datapoints which was

showing high accuracy. The idea behind this choice was to find if there is a change in the importance

of the correlation depending on the overall expected accuracy. Similar to image classification, there
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Figure 6.11: Accuracies depending on the objective function factor when the penalty factor is fixed to 10.
The testing was done for 6 datapoints.

Figure 6.12: Accuracies achieved for training 4 batches with different number of input data in each batch

are differences in the accuracy achieved, however, no trend was observed. For our further tests, we

kept our objective factor at 18 while the penalty factor was fixed to 10, as it showed the best results.

The performance of our online multibatch training model, explained in section 5.4, for this task

can be seen in fig. 6.12. Similar to the image classification task, the performance of the scheme is

satisfactory and achieves similar accuracy to the best solutions achieved via "one-shot" training. We

also continue to observe that smaller batch sizes perform better if we keep the number of batches

the same.
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6.3 Final remark

We conclude with a final remark, considering the limitations of the tests that we have done in

section 6.1 and section 6.2. Because of the many tunable parameters in the formulation of the

QUBO and also in the annealing setup, we have to admit that more rigorous testing is required in

order to properly benchmark the performance of our model in the future. Lets us give an example

to illustrate this point. In fig. 6.10 the accuracy for 6 datapoints is 64,46% as we were using

an objective function factor 20 for all tests. When we look at fig. 6.11 we find that this result

is indeed repeated, but there is a higher accuracy achieved with an objective function factor of

18, at 81,81%, which is a significant difference. Now if we add to that, the possible dimensions

of solutions with some violations of penalties and different possibilities for penalty factors, the

volatility of the possible accuracies becomes really high. Furthermore, there were no clear trends in

the accuracy of the model as we have elaborated in section 6.1 and section 6.2. Due to time and

resource constrictions, it was not feasible to exhaustively search for all dependencies or the best

accuracies achieved in all scenarios. This, in our opinion, does not diminish our findings but has to

be taken into consideration when looking into the performance of our model.
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We investigated the problem of formulating the training of BNNs as a QUBO, with the aim to

allow for the training to be done with quantum or quantum-inspired devices. We improved upon

the formulation presented in [33] by allowing for a significant increase in the size of the input

data, which allows for much bigger feature vectors to be used for training, compared to other

approaches. Furthermore, we made some structural improvements to the formulation to add more

freedom for optimization, penalize some infeasible solutions and better utilize the quantum-inspired

hardware we used. The first was allowing for independent weighting of the objective function and

the different penalties. For the penalty factors, this was done out of necessity to penalize states

which represent an infeasible setup for the BNN. This also opens an additional avenue for further

refinement of our model, considering the difference in performance achieved by solely changing

the factor for the objective function. We also made a change to the original model, which allows for

freely choosing the size of the input vector and the number of hidden neurons as long as it is an

odd number. This minor improvement gives more freedom in choosing the size of the BNN which

needs to be trained and ensures that the QUBO model will be able to adapt to the desired size for

the NN and not the other way around.

Combined all of these changes allowed us to model the training for two of the most popular ML

tasks - image classification and sentiment analysis. To the best of our knowledge, the full training

of a BNN for these tasks has never been done with a QUBO until now. We achieved promising

results of an average accuracy of about 80% for image classification and about 70% for sentiment

analysis. Furthermore, in specific circumstances, namely when very few datapoints are available

for training, our model outperforms an unoptimised classical MLP of the same size with the same

loss and activation functions. However, the model shows some signs of instability like solutions,

which lose accuracy with the addition of new data or with longer annealing time and therefore

lower amount of errors, which is something that would need to be further investigated in the future.

We also devised a scheme that allows for the training to be done over time similar to a classical

NN. It produces more robust weights and allows us to propose an additional way to utilize our

scheme, which enables us to approximate good low precision weights for the NN, such as ternary

weights {−1,0,1} or small integers, while still training with binary weights and activations and

keeping the sizes of the QUBOs the same. Even though this scheme sacrifices the "one-shot" style

training it might be a good stepping stone for future research. It achieves consistently good results

for small batches and has less volatility compared to our single-batch training. That being the case,

the multibatch model still suffers from the instabilities mentioned earlier.
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Compared to the formulation from [26] presented in chapter 3, our model does not allow for huge

amounts of training data, but allows for the utilization of significantly bigger inputs, such as the

full-scale images of the MNIST dataset which can be seen in section 6.1. Also in the case of new

data being introduced, our multibatch approach can just train with the new batch and upgrade the

optimal weights, while in the other formulation the loss function, would have to be recalculated

and then a new full-size QUBO would need to be solved. Hopefully in the future finding a way to

circumvent the restrictions of one or both of these approaches will be possible, which would result

in very efficient and fast quantum training schemes for BNNs, with the possibility to train with real

world data over many datapoints.

Overall, we showed that training BNNs for the tasks of image classification and sentiment analysis

is possible with a QUBO, which fulfils our objective of showing that realistic BNNs can be trained

on quantum devices in the future. Our formulation for the QUBO model is quite generalizable and

we hope that it can be used for training BNNs for other ML problems in the future.
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8 Outlook

Allowing for more than binary classification is a logical step for improving this model. This could
be done by implementing a one-hot classification for the output layer with n neurons. We wanted to
focus on extending the applicability of the model to tasks such as image classification and sentiment
analysis for which input size was the biggest priority. Furthermore, allowing for more classes
by adding additional neurons would make our model much more expensive considering that our
scheme for reducing the variables tackles only the interaction between the input layer and the
hidden layer. If there is a way to further reduce the needed qubits for the representation of the
hidden and output layer, multiclass problems should be the next priority for such formulation.

As we explained in section 5.1 there is a need to differentiate between the factors for different
penalties applied to our QUBO in order to penalize infeasible solutions. This also leaves another
avenue for optimizing this formulation, as it might be the case that by fine-tuning the penalty
factors better performance of the model could be achieved. This is often the case with QUBOs, as
is explained in [27].

We considered a different formulation for how the additions are verified in the model, which
requires fewer qubits than the current version explained in section 5.2. The currently used penalties
require qubits equal to the second logarithm of the feature space. We are going to briefly present
this idea for three bits being added, requiring only one bit rather than 2, here:

Let our binary vector be:
q = (a q0 q1 q2) (8.1)

where a is the sign function over the sum (q0 +q1 +q2).

We will show how the matrix looks for this particular simple case:

3 −2 −2 −2

0 0 1 1

0 0 0 1

0 0 0 0


(8.2)
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In the following we are checking what values the energy E has for the possible combinations of the
variables q0,q1,q2. We are going to show only one example where for the case where one or two of
the bits are set to 1 to avoid unnecessary clutter. The energy is the same for the other cases.

a = 0 : q0 = q1 = q2 = 0 → E = 0

q0 = 1, q1 = q2 = 0 → E = 0

q0 = q1 = 1, q2 = 0 → E = 1

q0 = q1 = q2 = 1 → E = 1

a = 1 : q0 = q1 = q2 = 0 → E = 3

q0 = 1, q1 = q2 = 0 → E = 1

q0 = q1 = 1, q2 = 0 → E = 0

q0 = q1 = q2 = 1 → E = 0

We observe that a correctly calculates the sign of the sum q0 +q1 +q2 and the energy is positive in
all incorrect setups while 0 in the correct ones. This result is promising but creating a generalized
scheme proves to be a challenging task and we leave it as an interesting topic for future research.

As we described in section 5.6 we are using a very simple preprocessing for our text data. Some
ideas we had include utilizing embeddings such as Word2vec or GloVe and then group the vectors
we get into clusters. If there is a word from one of the clusters in the review then the corresponding
bit in the feature vector is set to 1. Clustering in this context could prove tricky as it might be hard to
create balanced clusters that are semantically similar, have roughly the same density and also their
number is not too high - ideally less than 100. Another possibility is applying clustering after using
a tf-idf vectorization. However, clustering such sparse data is very dangerous because it would
be hard to capture semantic similarities and also it would be hard to avoid grouping dissimilar
words together. Here we should also note that an expensive model for binary word encoding might
produce dense feature vectors which represent the data very well but such models might be in
conflict with most of the reasons for using BNNs in the first place. Because of these reasons,
we stuck with a simple and straight-forward approach for preprocessing and we leave finding an
optimal balance between complexity, resource consumption and optimal feature extraction for
future research.

Lastly, the unexpected behaviour which we observed throughout section 6.1 and section 6.2, where
the accuracy achieved with our model was dropping after a certain amount of datapoints used in
a single batch seen in fig. 6.10 and fig. 6.2 remains unexplained. We observed the effects when
using different datapoints and when using different internal parameters for our formulation, which
simply confirmed our observation and did not show any biases in the data. It should be noted that
this behaviour persisted even when we were using our multibatch online training scheme, where
we essentially average all of the solutions after each batch. Therefore, this is a phenomenon that we
leave for further research, as it might hold some insights about restrictions in the formulation of the
training of a BNN or even any NN as a QUBO.
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9 Abbreviations

QUBO Quadratic Unconstrained Binary Optimisation

ML Machine learning

QML Quantum machine learning

AQC Adiabatic quantum computing

GQC Gate-based quantum computing

VQE Variational Quantum Eigensolver

QAOA Quantum Approximation Optimization Problem

BNN Binary neural network

NN Neural network

QNN Quantum neural network

QCNN Quantum convolutional neural network

QA Quantum annealing

SA Simulated annealing

DA Digital annealing

STE Straight Through Estimator

CNN Convolutional neural network

RNN Recurrent neural network

NLP Natural language processing

LSTM Long short-term memory

MLP Multilayer perceptron

KNN K-nearest neighbour

PCA Principal component analysis

SVM Support Vector Machine
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