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NMT reach very good quality 
Condition

Large amount of training data

Real-world applications
No End-to-End Training data

Parallel data between distances languages
Speech Translation

Motivation
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6000-7000 languages in the world
Mainly focus on top 10 languages
Minimize:

Human effort
Necessary training data

One model to translate between 
many/all languages

Share common knowledge
Increase efficiency

Multi-lingual Machine Translation

Sequence-to-
Sequence Model
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One Model
Train on several directions
Control target language by <BOS>

Challenge:
Generalize to unseen directions

Multi-lingual Machine Translation

s1 s2 s3 s4

<E>p1 p2 p3

p1 p2 p3 </s>

p1 p2 p3 p4

<F> t1 t2 t3

t1 t2 t3 </s>
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Modular Network

Supervised directions
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Zero-shot directions
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Modular Network

Supervised directions
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How different are the 
representation?

How easy can we classify the 
source language?

November 227

Modular Network

Zero-shot directions
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Pivot-based translation
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Standardizing Neural Representations

Zero-shot directions
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Pivot-based translation
Language agnostic representation

Continuous
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Standardizing Neural Representations

Zero-shot directions
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Pivot-based translation
Language agnostic representation

Continuous
Discrete

November 2210

Standardizing Neural Representations

Zero-shot directions
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Aim
Similar representation for different 
languages

Standardizing Neural Representations

s1 s2 s3 s4

<E>p1 p2 p3

p1 p2 p3 </s>

p1 p2 p3 p4

=
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Aim
Similar representation for different 
languages

Challenges
Different word order

Standardizing Neural Representations

s1 s2 s3 s4

<s> p1 p2 p3

p1 p2 p3 </s>

p1 p2 p3 p4

=
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Aim
Similar representation for different 
languages

Challenges
Different word order
Baseline

1-to-1 correspondence between 
words and hidden states

Standardizing Neural Representations

s1 s2 s3 s4

<s> p1 p2 p3

p1 p2 p3 </s>

p1 p2 p3 p4

=
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Focus on current word
Transfer Learning

Reconstruct source word/position

Analyse

Dataset Word Position
Baseline 99.9% 93.3%

s1 s2 s3 s4

s3
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Aim
Similar representation for different 
languages

Idea:
Disentangling Positional Information

Standardizing Neural Representations

s1 s2 s3 s4

<s> p1 p2 p3

p1 p2 p3 </s>

p1 p2 p3 p4

=
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Residual Connections
Shortcut
Improve learning

Problem
Bias towards 1-to-1 
correspondence between states 
and tokens

Disentangling Positional Information

s2
November 2216
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Residual Connections
Shortcut
Improve learning

Idea:
Remove connection in the middle

Liu et al., 2021

Disentangling Positional Information

s2
November 2217
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Focus on current word
Transfer Learning

Reconstruct source word/position

Analyse

Dataset Word Position
Baseline 99.9% 93.3%
Liu at al. 48.5% 51.4%

s1 s2 s3 s4

s3
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Aim
Similar representation for different 
languages

Idea:
Disentangling Positional Information
Similarity regularizer

𝐿!"# = 𝑑𝑖𝑠𝑡 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑥 , 𝐸𝑛𝑑𝑜𝑐𝑒𝑟 𝑌
Euclidian distance between mean-
pooled sentence representations

Arivazhagan et al. (2019)
Pham et al. (2019)

Standardizing Neural Representations

s1 s2 s3 s4

<s> p1 p2 p3

p1 p2 p3 </s>

p1 p2 p3 p4

=
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Aim
Similar representation for different 
languages

Idea:
Disentangling Positional Information
Similarity regularizer
Adversarial Language Classifier

𝐿$%& = ∑'()* 𝑦'log(1 − 𝑝')
Motivated by Arivazhagan et al. (2019)

Standardizing Neural Representations

s1 s2 s3 s4

<s> p1 p2 p3

p1 p2 p3 </s>

p1 p2 p3 p4
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Zero-shot translation quality
3 data sets

Parallel data between English und 3,8 or 9 
languages

BLEU Score

Experiment

Dataset Baseline Disent. Sim Adv Adv.+Disent
IWSLT 10.9 17.9 16.7 16.8 18.0
Europarl 13.4 25.2 24.5 25.3 26.1
PMIndia 2.4 14.3 8.9 7.3 17.1
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Zero-shot translation quality
3 data sets

Parallel data between English und 3,8 or 9 
languages

BLEU Score

Experiment

Dataset Baseline Disent. Sim Adv Adv.+Disent Pivot
IWSLT 10.9 17.9 16.7 16.8 18.0 19.1
Europarl 13.4 25.2 24.5 25.3 26.1 26.0
PMIndia 2.4 14.3 8.9 7.3 17.1 22.1
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Related languages
Europal without overlapping sentences

Experiment

Dataset Baseline Disent. Pivot
All 8.2 26.7 27.1
Germanic 11.8 25.5 24.8
Romance 13.5 32.2 31.0
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Classify source language of the encoder states

Similarity of the representations

November 2224



Jan Niehues – Modular NMT AI 4 Language Technologies (AI4LT), IAR, KIT

Motivation
Construct artificial languages

Advantages:
Discrete representation are more 
robust
Interpretation

Example
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Discrete Representations

Learning an Artificial Language for Knowledge-Sharing
in Multilingual Translation

Danni Liu and Jan Niehues
Karlsruhe Institute of Technology

{danni.liu, jan.niehues}@kit.edu

Abstract

The cornerstone of multilingual neural transla-
tion is shared representations across languages.
Given the theoretically infinite representation
power of neural networks, semantically identi-
cal sentences are likely represented differently.
While representing sentences in the continuous
latent space ensures expressiveness, it intro-
duces the risk of capturing of irrelevant features
which hinders the learning of a common rep-
resentation. In this work, we discretize the en-
coder output latent space of multilingual mod-
els by assigning encoder states to entries in a
codebook, which in effect represents source
sentences in a new artificial language. This
discretization process not only offers a new
way to interpret the otherwise black-box model
representations, but, more importantly, gives
potential for increasing robustness in unseen
testing conditions. We validate our approach
on large-scale experiments with realistic data
volumes and domains. When tested in zero-
shot conditions, our approach is competitive
with two strong alternatives from the literature.
We also use the learned artificial language to an-
alyze model behavior, and discover that using
a similar bridge language increases knowledge-
sharing among the remaining languages.1

1 Introduction

A promising potential of multilingual (Dong et al.,
2015; Firat et al., 2016; Ha et al., 2016; Johnson
et al., 2017) neural machine translation (NMT) is
knowledge-sharing between languages. To enable
knowledge-sharing, a prerequisite is the ability to
capture common features of languages, especially
between related ones. Constructed languages such
as Interlingua and Esperanto are excellent exam-
ples of human-designed structures based on the
commonalities of a wide range of related languages.
For data-driven models, however, it is difficult to

1Code available at: https://github.com/dannigt/

fairseq/tree/master/examples/quant

source sentence learning a new language
(English) # # # #

discrete codes 3 609 57 1042

source sentence belajar bahasa baru
(Indonesian) # # #

discrete codes 3 57 258

Table 1: We aim to learn a sequence of discrete codes to
represent source sentences in multilingual NMT models.
Our goal is to 1) improve inference-time robustness, 2)
have more interpretable intermediate representations.

leverage such resources due to data scarcity: There
is little parallel data to these constructed languages,
and creating new translation heavily depends on
expert curation. Instead of relying on manually-
created data, we aim to learn an artificial language
in a more unsupervised fashion in parallel with
training the NMT model. Specifically, our goal
is to learn a sequence of tokens to represent the
source sentences, which then serves as context for
the NMT decoder. Table 1 illustrates this idea.

A potential advantage of representing inputs in
discrete tokens is robustness, a property especially
relevant when NMT systems must cope with un-
expected testing conditions. By discretization, we
restrict the continuous latent space to a finite size,
providing the possibility for model intermediate
representations to fall back to a position seen in
training. For instance, in zero-shot translation,
where the model translates directions never seen in
training, the inference-time behavior is often unsta-
ble (Gu et al., 2019; Al-Shedivat and Parikh, 2019;
Rios et al., 2020; Raganato et al., 2021). In practice,
pivoting through an intermediate language typically
gives a strong performance upper bound difficult to
surpass by direct zero-shot translation (Al-Shedivat
and Parikh, 2019; Arivazhagan et al., 2019a; Zhu
et al., 2020; Yang et al., 2021b). Mapping the
source sentences to discrete codes could act as a
pseudo-pivoting step, which we hope to make the
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Challenge:
Learning representation

Codebook

November 2226

Discrete Representations

s1 s2 s3 s4

<E>p1 p2 p3
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Challenge:
Learning representation

Codebook
Minimize discretization error

𝐿 = 𝑒𝑛𝑐 𝑋 − 𝑞(𝑒𝑛𝑐 𝑥 )
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Discrete Representations

s1 s2 s3 s4

<E>p1 p2 p3

p1 p2 p3 </s>

Nearest Neighbor 
Search
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Challenge:
Learning representation
Backpropagation

Straight-through estimator

November 2228

Discrete Representations

s1 s2 s3 s4

<E>p1 p2 p3

p1 p2 p3 </s>

Copy gradient
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Challenge:
Learning representation
Backpropagation
Less expressive

Information bottleneck
Soft discretization

November 2229

Discrete Representations

s1 s2 s3 s4

<E>p1 p2 p3

p1 p2 p3 </s>

p
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Challenge:
Learning representation
Backpropagation
Less expressive
Index collapse

Slicing the codebook
Kaiser et al. ,2018
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Discrete Representations

s1 s2 s3 s4

<E>p1 p2 p3

p1 p2 p3 </s>
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Results

Dataset Baseline Sim Adv Discrete
ID-Bridge 17.7 18.4 18.4 18.3
EN-Bridge 5.1 17.3 17.2 15.2

Zero-shot translation quality
Initialized with MM100
Different bridge langauges
BLEU Score
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Cascaded Speech Translation
ASR
MT

November 2232

Speech Translation

Text 
Encoder

Text 
Decoder

Audio 
Encoder

ASR

MT

Text 
Decoder

Text
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Cascaded Speech Translation
ASR
MT

End-to-End speech translation
One single model
Mainly ASR/MT training data
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Speech Translation

Text 
Encoder

Text 
Decoder

Audio 
Encoder

ASR
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Cascaded Speech Translation
ASR
MT

End-to-End speech translation
One single model
Mainly ASR/MT training data

Increase similarity
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Speech Translation

Text 
Encoder

Text 
Decoder

Audio 
Encoder

ASR

MT

Text 
Decoder

=

Text
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Single bridge difficult
Add artificial language

Artificial language: character-wise-
reversed English (EN-R)
E.g. “Hello world!” → “Dlrow olleh!” 
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Data augmentation

EN audio EN text

EN text DE text

<EN
>

<DE>

EN-R text

<EN
-R>

<EN-R>

<EN>

<DE>

ST
EN audio EN text

EN text DE text

ASR

MT

<EN>

<DE>

<DE>
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Results

10% ST data 
for fine-tuning

25% ST data 
for fine-tuning

Plain proposed model 9.800000 12.400000

Plain proposed model + similarity loss 10.6 (+0.8) 13.2 (+0.8)

Plain proposed model + augmented data 11.5 (+1.7) 13.5 (+1.1)
Plain proposed model + augmented data + 
similarity loss

11.5 (+1.7) 13.7 (+1.3)
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Results
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Results Pre-trained Models

Experiment Without 10% 15% 20% All

Only original 
loss - 0.32 1.98 11.8 20.9

After similarity 
loss 0 0.98 10.7 17.8 21.6
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Encoder-Decoder Models assume End-to-End data
Often not available

Compatibility of representation essential

Different techniques to achieve
Similarity losses
Adversarial losses
Architectural changes
Discrete representation
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Conclusion
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