

Modularizing NMT Systems by Standardizing Neural Representations

Jan Niehues – 22.11.2022

Motivation

NMT reach very good quality

Condition

Large amount of training data

Real-world applications

- No End-to-End Training data
 - Parallel data between distances languages
 - Speech Translation

Multi-lingual Machine Translation

- 6000-7000 languages in the world
 Mainly focus on top 10 languages
 Minimize:
 - Human effort
 - Necessary training data
- One model to translate between many/all languages
 - Share common knowledge
 - Increase efficiency

Multi-lingual Machine Translation

One Model

- Train on several directions
- Control target language by <BOS>

- Challenge:
 - Generalize to unseen directions

Modular Network

Supervised directions

Modular Network

Supervised directions

Zero-shot directions

Modular Network

Zero-shot directions

How different are the representation?

How easy can we classify the source language?

Zero-shot directions

Pivot-based translation

Zero-shot directions

Pivot-based translation
 Language agnostic representation
 Continuous

Zero-shot directions

Pivot-based translation Language agnostic representation Continuous Discrete

Aim

Similar representation for different languages

Aim

- Similar representation for different languages
- Challenges
 - Different word order

Aim

- Similar representation for different languages
- Challenges
 - Different word order
 - Baseline
 - 1-to-1 correspondence between words and hidden states

Analyse

Focus on current word

- Transfer Learning
 - Reconstruct source word/position

Dataset	Word	Position
Baseline	99.9%	93.3%

Aim

Similar representation for different languages

Idea:

Disentangling Positional Information

Disentangling Positional Information

Residual Connections

- Shortcut
- Improve learning
- Problem
 - Bias towards 1-to-1 correspondence between states and tokens

Disentangling Positional Information

Residual Connections

- Shortcut
- Improve learning
- Idea:
 - Remove connection in the middle
 - Liu et al., 2021

S₂

Analyse

Focus on current word

- Transfer Learning
 - Reconstruct source word/position

Dataset	Word	Position
Baseline	99.9%	93.3%
Liu at al.	48.5%	51.4%

Aim

Similar representation for different languages

Idea:

- Disentangling Positional Information
- Similarity regularizer
 - $L_{sim} = dist(Encoder(x), Endocer(Y))$
 - Euclidian distance between meanpooled sentence representations
 - Arivazhagan et al. (2019)
 - Pham et al. (2019)

Aim

Similar representation for different languages

Idea:

- Disentangling Positional Information
- Similarity regularizer
- Adversarial Language Classifier
 - $L_{adv} = \sum_{c=1}^{L} y_c \log(1 p_c)$
 - Motivated by Arivazhagan et al. (2019)

Experiment

- 3 data sets
 - Parallel data between English und 3,8 or 9 languages

BLEU Score

Dataset	Baseline	Disent.	Sim	Adv	Adv.+Disent
IWSLT	10.9	17.9	16.7	16.8	18.0
Europarl	13.4	25.2	24.5	25.3	26.1
PMIndia	2.4	14.3	8.9	7.3	17.1

Experiment

- 3 data sets
 - Parallel data between English und 3,8 or 9 languages

BLEU Score

Dataset	Baseline	Disent.	Sim	Adv	Adv.+Disent	Pivot
IWSLT	10.9	17.9	16.7	16.8	18.0	19.1
Europarl	13.4	25.2	24.5	25.3	26.1	26.0
PMIndia	2.4	14.3	8.9	7.3	17.1	22.1

Experiment

Related languages

Europal without overlapping sentences

Dataset	Baseline	Disent.	Pivot
All	8.2	26.7	27.1
Germanic	11.8	25.5	24.8
Romance	13.5	32.2	31.0

Similarity of the representations

Classify source language of the encoder states

Motivation

Construct artificial languages

Advantages:

- Discrete representation are more robust
- Interpretation

Example

source sentence	learning	а	new	language
(English)	\downarrow	\downarrow	\downarrow	\downarrow
discrete codes	3	609	57	1042
source sentence	belajar	bahasa	baru	
(Indonesian)	\downarrow	\downarrow	\downarrow	
discrete codes	3	57	258	

- Challenge:
 - Learning representation
 - Codebook

- Learning representation
 - Codebook
 - Minimize discretization error
 - $\blacksquare L = |enc(X) q(enc(x))|$

- Learning representation
- Backpropagation
 - Straight-through estimator

- Learning representation
- Backpropagation
- Less expressive
 - Information bottleneck
 - Soft discretization

- Learning representation
- Backpropagation
- Less expressive
- Index collapse
 - Slicing the codebook
 - Kaiser et al. ,2018

Results

- Zero-shot translation quality
 - Initialized with MM100
 - Different bridge langauges
 - BLEU Score

Dataset	Baseline	Sim	Adv	Discrete
ID-Bridge	17.7	18.4	18.4	18.3
EN-Bridge	5.1	17.3	17.2	15.2

Speech Translation

- Cascaded Speech Translation
 - ASR

MT

Karlsruhe Institute of Technology

Speech Translation

- Cascaded Speech Translation
 - ASR
 - MT
- End-to-End speech translation
 - One single model
 - Mainly ASR/MT training data

Speech Translation

- Cascaded Speech Translation
 - ASR
 - MT
- End-to-End speech translation
 - One single model
 - Mainly ASR/MT training data
- Increase similarity

Karlsruhe Institute of Technology

Data augmentation

Single bridge difficult

- Add artificial language
 - Artificial language: character-wisereversed English (EN-R)
 - **E**.g. "Hello world!" \rightarrow "Dlrow olleh!"

<DE>

EN text

→ DE text

Results

	10% ST data for fine-tuning	25% ST data for fine-tuning
Plain proposed model	9.8	12.4
Plain proposed model + similarity loss	10.6 (+0.8)	13.2 (+0.8)
Plain proposed model + augmented data	11.5 (+1.7)	13.5 (+1.1)
Plain proposed model + augmented data + similarity loss	11.5 (+1.7)	13.7 (+1.3)

Results

Results Pre-trained Models

Experiment	Without	10%	15%	20%	All
Only original loss	-	0.32	1.98	11.8	20.9
After similarity loss	0	0.98	10.7	17.8	21.6

Conclusion

- Encoder-Decoder Models assume End-to-End data
 - Often not available
- Compatibility of representation essential
- Different techniques to achieve
 - Similarity losses
 - Adversarial losses
 - Architectural changes
 - Discrete representation

References

- Li, Z., & Niehues, J. (2022). Efficient Speech Translation with Pre-trained Models. Conference on Neural Information Processing Systems (NeurIPS) 2022.
- Liu, D., Niehues, J., Cross, J., Guzmán, F., & Li, X. (2021). Improving Zero-Shot Translation by Disentangling Positional Information. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 1259–1273. <u>https://doi.org/10.18653/v1/2021.acl-long.101</u>
- Liu, D., Niehues, J. (2022). Learning an Artificial Language for Knowledge-Sharing in Multilingual Translation. Proceedings of the 7th Conference on Speech Translation.
- Dinh, T. A., Liu, D., & Niehues, J. (2022). Tackling Data Scarcity in Speech Translation Using Zero-Shot Multilingual Machine Translation Techniques. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6222–6226. https://doi.org/10.1109/ICASSP43922.2022.9746815

Karlsruhe Institute of Technology

https://ai4lt.anthropomatik.kit.edu

Thanks