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Motivation

® NMT reach very good quality

® Condition
@ Large amount of training data

® Real-world applications

@ No End-to-End Training data
@ Parallel data between distances languages
@ Speech Translation
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Multi-lingual Machine Translation

® 6000-7000 languages in the world
® Mainly focus on top 10 languages
2 Minimize:

® Human effort

® Necessary training data

® One model to translate between

many/all languages
® Share common knowledge

® Increase efficiency
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Sequence Model

N > y ( \\“

Al 4 Language Technologies (AI4LT), IAR, KIT



Multi-lingual Machine Translation A\‘(IT

® One Model
® Train on several directions
m Control target language by <BOS> Pi P2 P3</s> t, t, t3 </s>
EEER 0000
® Challenge: <E>p; P2 p3

@ Generalize to unseen directions

S1 Sy 83 4 P1 P2 P3 Pa
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Modular Network

® Supervised directions
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Modular Network

® Supervised directions
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® Zero-shot directions
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Modular Network

® Zero-shot directions
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® How different are the
representation?
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® How easy can we classify the

source language?

Baseline
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Standardizing Neural Representations ﬂ(".

® Zero-shot directions ® Pivot-based translation
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Standardizing Neural Representations ﬂ(".

® Zero-shot directions ® Pivot-based translation
‘D ® Language agnostic representation
)y

® Continuous
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Standardizing Neural Representations ﬂ(".

® Zero-shot directions
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® Pivot-based translation
® Language agnostic representation
@ Continuous

® Discrete
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Standardizing Neural Representations A\‘(IT

2 Aim
® Similar representation for different
languages

S1 Sy S3 Sy P1 P2 P3 P4
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Standardizing Neural Representations A\‘(IT

2 Aim
® Similar representation for different
languages
® Challenges
@ Different word order

S1 S2 S3 34 P1 P2 P3 P4
% %
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Standardizing Neural Representations A\‘(IT

2 Aim
® Similar representation for different
languages
® Challenges
@ Different word order

® Baseline

® 1-to-1 correspondence between
words and hidden states

S1 S2 S3 34 P1 P2 P3 P4
% %
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Analyse ﬂ(“.
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® Focus on current word

® Transfer Learning
® Reconstruct source word/position

S3
ST
é Baseline 99.9% 93.3%

S; S, S3 S4
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Standardizing Neural Representations A\‘(IT

®Aim
® Similar representation for different
languages
® |dea:
@ Disentangling Positional Information

S1 S2 S3 34 P1 P2 P3 P4
% %
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Disentangling Positional Information Q(IT

® Residual Connections
® Shortcut
® Improve learning

® Problem

® Bias towards 1-to-1
correspondence between states
and tokens
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Disentangling Positional Information Q(IT

® Residual Connections
® Shortcut
® Improve learning

® |dea:

® Remove connection in the middle
® Liuetal., 2021
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Analyse ﬂ(“.
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® Focus on current word

® Transfer Learning
® Reconstruct source word/position

S3
ﬂ Dataset | Word | Position

Baseline 99.9% 93.3%

@ @ é e Liu at al. 48.5% 51.4%

S; S, S3 S4
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Standardizing Neural Representations A\‘(IT

®Aim
® Similar representation for different
languages
® |dea:
@ Disentangling Positional Information
® Similarity regularizer
L, = dist(Encoder(x),Endocer(Y))

® Euclidian distance between mean-
pooled sentence representations
® Arivazhagan et al. (2019)
® Pham et al. (2019)

S1 Sy S3 Sy P1 P2 P3 P4
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Standardizing Neural Representations A\‘(IT

2 Aim
® Similar representation for different
languages
® |[dea:
@ Disentangling Positional Information
® Similarity regularizer
® Adversarial Language Classifier

O Laay = £=1 yclog(1l —pe)
® Motivated by Arivazhagan et al. (2019)

P1 P2 P3 P4
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AT

Experiment
® Zero-shot translation quality . -
@ 3 data sets — .l
® Parallel data between English und 3,8 or 9 él{i

-~

languages | .
m BLEU Score - )

IWSLT 10.9 17.9 16.7 16.8 18.0
Europarl 13.4 25.2 24.5 25.3 26.1
PMindia 2.4 14.3 8.9 7.3 17.1
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Experiment Q(IT
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® Zero-shot translation quality . -
® 3 data sets — vl
® Parallel data between English und 3,8 or 9 ; =
languages ‘ T
- g

® BLEU Score

IWSLT 10.9 17.9 16.7 16.8 18.0 19.1
Europarl 13.4 25.2 24.5 25.3 26.1 26.0
PMindia 2.4 14.3 8.9 7.3 17.1 22.1
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Experiment ﬂ(".
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® Related languages )
® Europal without overlapping sentences —_ fhl
- g

Daiee_Bosaive Disei_pivor__

26.7 27 .1
Germanic 11.8 25.5 24.8
Romance 13.5 32.2 31.0
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Similarity of the representations ﬂ(".

Karlsruhe Institute of Technology

® Classify source language of the encoder states

Baseline Residual
K =]
3 3 1.0
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o .= 0.8
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Discrete Representations

® Motivation
® Construct artificial languages
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® Advantages:

® Discrete representation are more
robust

® Interpretation

® Example

source sentence | learning a new language

(English) { 4 { {
discrete codes 3 609 57 1042

source sentence | belajar bahasa baru
(Indonesian) 4 d 4
discrete codes 3 57 258
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Discrete Representations

® Challenge:

® Learning representation
® Codebook
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P1 P2 P3 </s>

ass Nearest Neighbor

S; S, S3 Sy Search
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Discrete Representations

® Challenge:

® Learning representation
® Codebook

® Minimize discretization error
m L=|enc(X)—q(enc(x))]
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P1 P2 P3 </s>

& Nearest Neighbor
S; S, S3 Sy Search
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Discrete Representations ﬂ(".

® Challenge:
@ Learning representation P1 P2 Pp3 </s>

® Backpropagation

® Straight-through estimator

Copy gradient
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Discrete Representations

® Challenge:
® Learning representation
® Backpropagation
® Less expressive

® Information bottleneck
@ Soft discretization
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Discrete Representations

® Challenge:
® Learning representation
® Backpropagation
® Less expressive

® Index collapse

® Slicing the codebook
®m Kaiser et al. ,2018
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Results ﬂ(".
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® Zero-shot translation quality
® Initialized with MM100

@ Different bridge langauges
@ BLEU Score

Dataset _|Baseline _|Sim _|Adv | Discrete

ID-Bridge 17.7 18.4 18.4 18.3
EN-Bridge 5.1 17.3 17.2 15.2
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Speech Translation

® Cascaded Speech Translation

2 ASR
aMT

ASR
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Speech Translation

® Cascaded Speech Translation
2 ASR
aMT

® End-to-End speech translation
® One single model
® Mainly ASR/MT training data

ASR
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Speech Translation

® Cascaded Speech Translation

| ASR
aMT

® End-to-End speech translation

® One single model
® Mainly ASR/MT training data

® Increase similarity
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Data augmentation

® Single bridge difficult
® Add artificial language

® Artificial language: character-wise-
reversed English (EN-R)

® E.g. “Hello world!” — “Dirow olleh!”
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EN audio =5, —25R——{ EN text
ST
ENtext =7 » DE text
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Results
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10% ST data  25% ST data
for fine-tuning  for fine-tuning

Plain proposed model

0.8 12.4

Plain proposed model + similarity loss

10.6 (+0.8)  13.2 (+0.8)

Plain proposed model + augmented data

115 (+1.7)  13.5(+1.1)

Plain proposed model + augmented data +
similarity loss
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Results
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P + auxiliary loss

10152 15

+1.7  4+0.059

BLEU score
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Results Pre-trained Models
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Experiment Without 10% 15% 20% All
Only original ; 032 | 1.98 11.8 20.9
loss
After similarity 0 098 | 107 | 178 | 216
loss
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Conclusion A\‘(IT
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® Encoder-Decoder Models assume End-to-End data
B Often not available

® Compatibility of representation essential

@ Different techniques to achieve
@ Similarity losses
® Adversarial losses
® Architectural changes
® Discrete representation
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