Spoken Language Translation

Jan Niehues Matteo Negri Matthias Sperber Sebastian Stüker Marco Turchi

17/09/2019 jan.niehues@maastrichtuniversity.nl

Maastricht University

Use cases

- Presentations
 - Conferences/Lectures
- Videos
 - Internet: Youtube, Facebook, ...
 - Television
- Every-day interactions
 - Tourist encounters, Medical care, Interactions with authorities
 - Telefon conversations
- Meetings

Meeting

Overview

- Introduction
- Cascaded approach
- End-to-End Speech Translation
- Challenges:
 - Segmentation
 - Simultaneous translation
 - Spontaneous speech

- Sequence
 - Consecutive translation
 - Simultaneous translation
 - Differences:
 - Segmentation
 - Speech overlap

Speech	
Translation	
Speech	
Translation	

- Sequence
- Number of speakers
 - Examples:
 - Single speaker
 - E.g., presentations
 - Multiple speaker
 - E.g., meetings
 - Challenges:
 - Overlapping voice

- Sequence
- Number of speakers
- Online/Offline systems
 - Offline: Translate audio in batch mode
 - E.g., movies
 - Online: Translate during production of speech
 - Real-time translations:
 - Translation as fast as speech input
 - Latency
 - Time that passes between speech and translation
 - Latency should be as minimal as possible

- Sequence
- Number of speakers
- Online/Offline systems
- Presentation
 - Text
 - Audio
 - Additional TTS needed

Recent Data Resources

- Fisher data [Post et al., 2013]
 - Languages: Spanish to English
 - Domain: Telephone conversation
- MuST-C Corpus [Di Gangi et al., 2019]
 - Languages: English to 8 European Languages
 - Domain: TED
- LIBRI-TRANS [Kocabiyikoglu et al., 2018]
 - Languages: English to French
 - Domain: Audio books
- MASS [Boito et al, 2019], STC [Shimizu et al., 2014], BSTC, ...

Overview

- Motivation and Introduction
- Cascaded approach
- End-to-End Speech Translation
- Challenges:
 - Segmentation
 - Simultaneous translation
 - Spontaneous speech

Cascade Spoken Language Translation

- Serial combination of several models
 - Automatic speech recognition (ASR)
 - Machine translation (MT)

Cascade Spoken Language Translation

- Serial combination of several models
 - Automatic speech recognition (ASR)
 - Machine translation (MT)
 - Segmentation
- Advantages:
 - Data availability
 - Modular system
 - Easy incorporation of new ASR/MT developments

Cascaded SLT: Challenges

- Error propagation
 - Even the best components lead to errors
 - Solutions
 - Ignore
 - Represent different hypotheses
 - N-Best lists
 - Lattices [Saleem et al, 2005; Matusov et al, 2005]
 - Make MT robust to errors [Tsvetok et al. 2014; Lewis et al., 2015; Sperber et al, 2017]
- Separate optimization
- Script for source language is needed
- Computational complexity

Overview

- Motivation and Introduction
- Cascaded approach
- End-to-End Speech Translation
- Challenges:
 - Segmentation
 - Speech output
 - Simultaneous translation
 - Spontaneous speech

End-to-End SLT

End-to-End SLT

- Opportunity
- Directly learn mapping to target language text
 - [Duong et al., 2016;Berard et al., 2016; Weiss et al., 2017]
- IWSLT 2018 Evaluation:
 - Significant worse than cascaded models

E2E SLT - Challenges

- Input is audio signal
 - Longer sequences difficult to handle for NNs
 - Dependencies in time and frequency dimension
 - Approaches:
 - Apply techniques from automatic speech recognition
 - E.g. pyramidal encoder[Chan et al, 2016]
- Data availability
 - Few end-to-end speech translation corpora available
 - Often considerably smaller than MT and ASR training data
- Complicated mapping between source and target sequence
 - Source transcript can be intermedia supervised signal

SLT Data

- Synthetic data:
 - Automatic generation by using TTS
 - [Berard et al, 2016; Kano et al, 2018;]
 - Challenge:
 - Generalization from TTS output to real audio signal
- Exploit other data sources by multi-tasking
 - Available data:
 - Speech data + transcripts
 - Parallel MT data
 - Idea:
 - Share parts of the network
 - Train SLT system using speech or MT data

Multi-task learning

- Pre-training (Kano et al., 2018):
 - Train encoder on ASR task
 - Reuse on SLT task

Multi-task learning

- Pre-training (Kano et al., 2018):
 - Train encoder on ASR task
 - Reuse on SLT task

Multi-task learning

- Pre-training (Kano et al., 2018):
 - Train encoder on ASR task
 - Reuse on SLT task
- Multitasking (Weiss et al.,2017):
 - Train SLT and ASR jointly
- Challenge:
 - Data efficiency
 - How much gain from ASR/MT data?

2-stage NN Model

- SLT needs to learn complicated mapping
 - Supervised intermediate signal available
- Stack different decoders
 - Attend to source language decoder hidden states
- Triangle version:
 - Attend to source audio and source text [Anastasopoulos Chiang, 2018]
- Shared context vectors:
 - Ignore hard decisions of source language decoder [Sperber et al;2019]

Overview

- Motivation and Introduction
- Cascaded approach
- End-to-End Speech Translation
- Challenges:
 - Segmentation
 - Simultaneous translation
 - Spontaneous speech

Challenges - Segmentation

- Many applications:
 - Continuous audio stream
 - No punctuation in spoken language
- Automatic segmentation and punctuation needed
 - Readability
 - Semantic
 - "Let's eat Grandpa !"
 - "Let's eat, Grandpa !"
 - Cascaded SLT:
 - MT often operates at sentence level

Challenges - Segmentation

- Add segmentation as additional component
- Approaches:
 - Language model-based
 [Stolcke et al, 1998; Rao et al, 2007]
 - Sequence labeling [Lu and Ng, 2010]
 - Monolingual machine translation [Peitz et al, 2011;Cho et al, 2012]
- Integration:
 - Between ASR and MT
 - After MT
 - Include into MT

Challenges – Simultaneous Translation

- Generate translation while speaker speaks
- Tradeoff:
 - More context improves speech recognition and machine translation
 - Wait as long as possible
 - Low latency is important for user experience
 - Generate translation as early as possible
- Challenge:
 - Different word order in the language
 - SOV vs SVO

German	Ich	melde	mich	zur	Interspeech	2019	an
Gloss	I	regester/ cancel	myself	to	Interspeech	2019	
English	I	????					

Challenges – Simultaneous Translation

- Approaches:
 - Learn optimal segmentation strategies
 - Stream decoding
 - Dynamically learn when to generate a translation
 - Re-translate
 - Update previous translation with better ones

Simultaneous Translation: Learn optimal segmentation strategies

- Idea:
 - Create segments that optimizing tradeoff between segment length and translation quality
- Advantages:
 - No changes to the NMT system
- Disadvantage:
 - Shorter context during translation
- E.g.:
 - Oda et al., 2014

Example:

Ich melde mich

zur Interspeech 2019 an

Simultaneous Translation: Stream decoding

- Idea:
 - At each time step:
 - Decided to output word
 - Wait for additional input
- Methods:
 - Dynamic decision (Cho et al, 2016; Gu et al, 2017; Dalvi et al, 2018)
 - Fixed schedule (Ma et al, 2019)
- Advantage:
 - Longer context into the past is available
- Disadvantage:
 - Major changes to the architecture
 - Balance between latency and quality

Simultaneous Translation: Re-translation

- Idea:
 - Directly output first hypothesis (low latency)
 - If more context is available
 - Update with better hypothesis (high quality)
 - Not only for MT, but for all components [Niehues et al, 2016]
 - Example:
 - Ich melde mich \rightarrow I register
 - Ich melde mich von der Klausur ab \rightarrow I withdraw form the exam
- Advantages:
 - Low latency and high quality
- Disadvantages:
 - Bad user experience if there are many updates
 - High computation cost

Challenges – Spontaneous speech

- Speech often spontaneous
 - Disfluencies
- Cascaded approach
 - Special model to generate clean text
 - E.g., as sequence labeling task [Cho et al, 2014]
- End to End:
 - Jointly learn to translate and remove speech disfluencies [Salesky et al, 2019]
 - Challenge:
 - Data resources

Summary

- Speech translation adds additional difficulties
 - Segmentation
 - Disfluencies
 - Simultaneous translations
- Cascade models often still state of the art
- Significant improvements in end-to-end models

Future research directions

- Simultaneous E2E Speech Translation
 - Segmentation
 - Stream decoding
- Different data conditions
 - Multilingual models
 - Low/Zero resource models
- Prosody
- Manual interaction

Hong Kong 2nd-3rd November 2019

> 16th International Workshop on Spoken Language Translation

Important Dates:

Sep. 1: Paper Submission July 1 - Sept. 8: Evaluation Period Oct. 13: Acceptance - Notificatior

www.iwslt.org

