(Simultaneous) Speech Translation: Challenges and Techniques

Jan Niehues

27/10/2020 jan.niehues@maastrichtuniversity.nl

Overview

- Motivation
- Speech Translation Models
 - Cascaded approach
 - End-to-End Speech Translation
- Challenges
 - Segmentation
 - Simultaneous translation

Jan Niehues - S2T Translation

Use cases

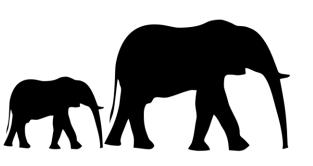
- Conferences / Lectures
- Internet videos
 - Youtube, Facebook, ...
- Television
- Meetings
- Telephone conversations

- Sequence
 - Consecutive translation
 - Simultaneous translation
 - Differences:
 - Segmentation
 - Speech overlap

Speech	
Translation	
Speech	
Translation	

- Sequence
- Number of speakers
 - Single speaker
 - e.g. Presentations
 - Multiple speaker
 - e.g. Meetings
 - Challenges:
 - Overlapping voice
 - Mainly increases difficulty for speech recognition

- Sequence
- Number of speakers
- Online/Offline systems
 - Online: Translate during production of speech
 - Offline: Translate full audio
 - e.g. movies
 - Real-time translations:
 - Translation as fast as speech input
 - Latency
 - Time passes between speech and translation



- Sequence
- Number of speakers
- Online/Offline systems
- Output Modality
 - Text:
 - Most commonly used
 - Reviseble
 - Speech
 - More natural?

Jan Niehues - S2T Translation

Data

- Languages: Spanish to English
- Domain: Telephone conversation
- MuST-C Corpus [Di Gangi et al., 2019]
 - Languages: English to 8 European Languages
 - Domain: TED
- LIBRI-TRANS [Kocabiyikoglu et al., 2018]
 - Languages: English to French
 - Domain: Audio books
- MASS [Boito et al, 2019], STC [Shimizu et al., 2014], BSTC, ...

The Model

• Speech Translation

Important technology

Automatic Speech Recognition

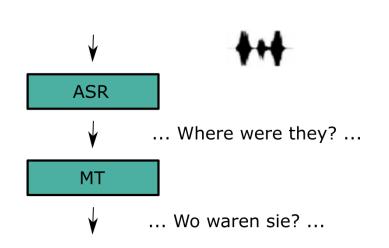
- Architectures
 - Cascade
 - End-to-End

Machine Translation

Jan Niehues - S2T Translation

Cascade Translation

- Serial combination of several models
 - Automatic speech recognition (ASR)
 - Machine translation (MT)
- Advantages:
 - Data availability
 - Modular system
 - Easy incorporation of new ASR/MT developments

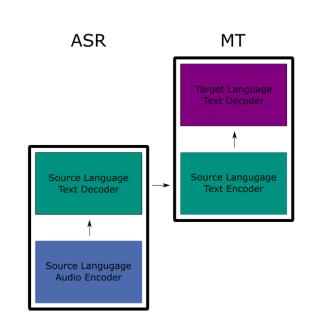


Challenges

- Error propagation
 - Even best components lead to errors
 - Techniques
 - Ignore
 - Represent different hypothesis
 - N-Best lists
 - Lattices [Saleem et al, 2005;Matusov et al, 2005]
 - Robust to errors [Tsvetok et al. 2014;Lewis et al., 2015;Sperber et al, 2017]
- Separate optimization
- Script for source language is needed
- Computational complexity
- Information loss

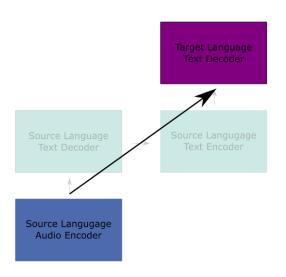
End-to-End SLT

- Opportunity:
 - Sequence to Sequence models successfully applied to both tasks



End-to-End SLT

- Opportunity:
 - Sequence to Sequence models successfully applied to both tasks
 - [Duong et al., 2016;Berard et al., 2016; Weiss et al., 2017]

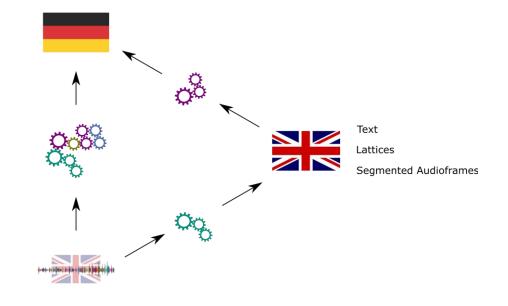


E2E SLT - Challenges

- Task complexity
 - Complicated mapping between source and target sequence
 - Source transcript can be intermedia supervised signal
- Data availability
 - Few end-to-end speech translation corpora available

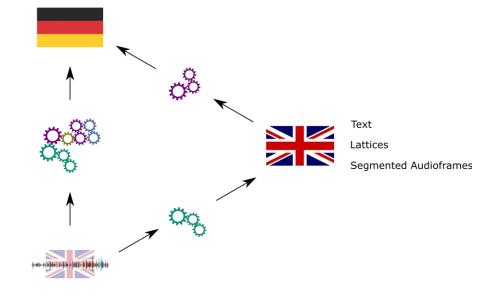
Intermediate Representation

- Idea:
 - Reintroduce intermediate representation
 - Use additional data based on intermediate representation
 - Simplify task
- Representations:
 - Source Language Transcript
 - Segmented audio frames
 - Lattices



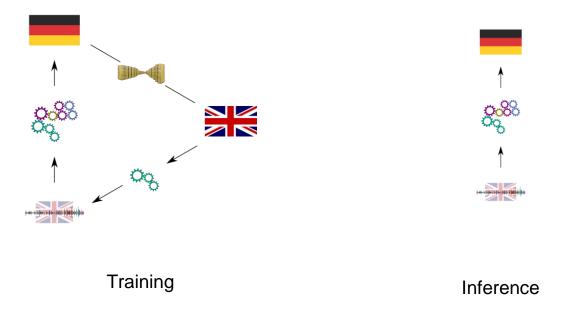
Integration

- When to use what component?
 - Training
 - Inference
- How to use the components?
 - Data Generation
 - Add. Loss function
- What parameters to share?
 - Share parameters between different tasks



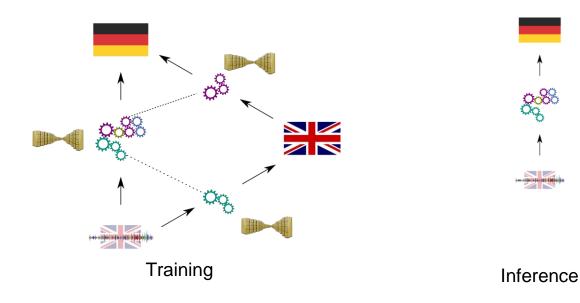
Synthetic data

- Automatic generation by using TTS
 - [Berard et al, 2016; Kano et al, 2018;]
- Challenge:
 - Generalization from TTS output to real audio signal



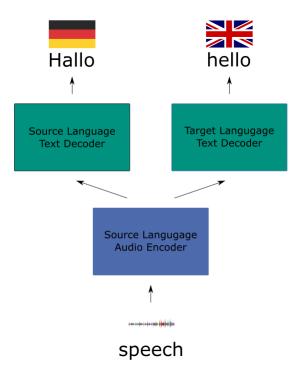
Multi-task learning

- Available data:
 - Speech data
 - Parallel MT data
- Idea:
 - Share parts of the network
 - Train SLT system using speech or MT data



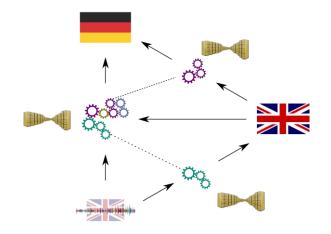
Multi-task learning

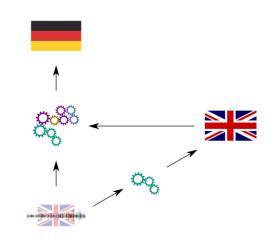
- Pre-training (Kano et al., 2018):
 - Train encoder on ASR task
 - Reuse on SLT task
- Multitasking (Weiss et al.,2017):
 - Train SLT and ASR jointly
- Challenge:
 - Data efficiency
 - How much gain from ASR/MT data?



2-stage NN Model

• Intermediate representation in inference

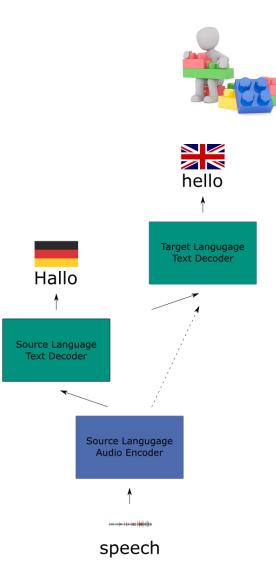




Inference

2-stage NN Model

- Intermediate representation in inference
- Stack different decoders
 - Attend to source language decoder hidden states
- Triangle version:
 - Attend to source audio and source text [Anastasopoulos Chiang, 2018]
- Shared context vectors:
 - Ignore hard decisions of source language decoder [Sperber et al;2019]



Challenges

- Sentence Segmentation:
 - Text: Sentence-based models
 - Audio: Continuous streams

- Simultaneous Translation:
 - Generate translation while speaking
 - Low-Latency

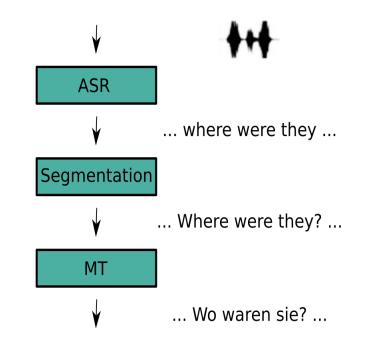


Challenges – Sentence Segmentation

- Many applications:
 - Continuous audio stream
 - No punctuation in spoken language
- Automatic segmentation and punctuation needed
 - Readability
 - Semantic
 - Let's eat Grandpa !
 - Let's eat, Grandpa !
 - Processing
 - MT often operate on sentence level

Segmentation and Punctuation

- Add segmentation as additional component
- Approaches:
 - Language model-based
 [Stolcke et al, 1998; Rao et al, 2007]
 - Sequence labeling [Lu and Ng, 2010]
 - Monolingual machine translation [Peitz et al, 2011;Cho et al, 2012]
- Integration:
 - Between ASR and MT
 - After MT
 - Include into MT



Simultaneous Translation

- Generate translation while speaker speaks
- Tradeoff:
 - More context improves speech recognition and machine translation
 - Wait as long as possible
 - Low latency is important for user experience
 - Generate translation as early as possible
- Challenge:
 - Different word order in the language
 - SOV vs SVO

German	Ich	melde	mich	zur	Summer	School	an
Gloss	I	register/ cancel	myself	to	summer	School	
English	I	????					

Simultaneous Translation

- Approaches:
 - Learn optimal segmentation strategies
 - Re-translate
 - Update previous translation with better once
 - Stream decoding
 - Dynamically learn when to generate a translation

Optimizing segmentation

- Idea:
 - Create segments that optimizing tradeoff between segment length and translation quality
- Advantages:
 - No changes to the NMT system
- Disadvantage:
 - Shorter context during translation
- E.g.:
 - Oda et al., 2014

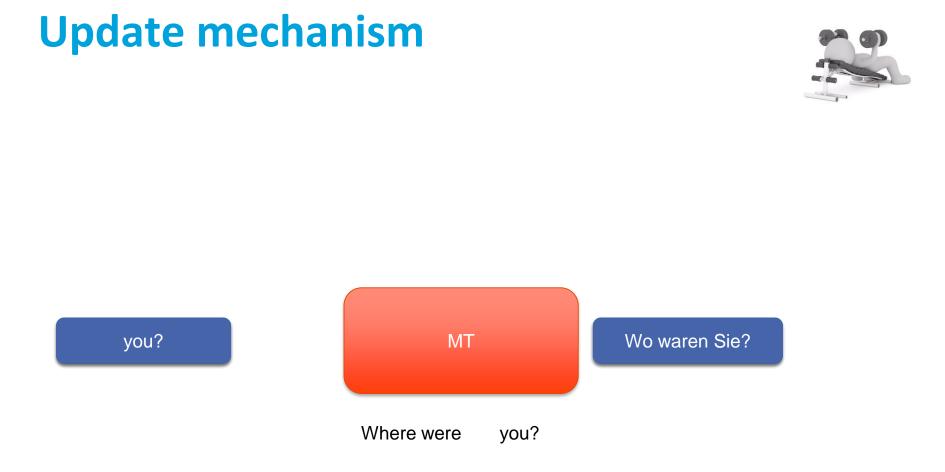
Example:

Ich melde mich

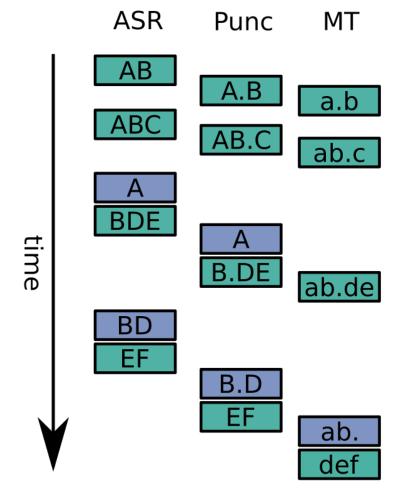
zur Konferenz an

Iterative Updates

- Directly output first hypothesis
- If more context is available:
 - Update with better hypothesis
- Example:
 - Ich melde mich
 - I register
 - Ich melde mich von der Klausur ab
 - I withdraw form the exam
- Not only for MT, but for all components [Niehues et al, 2016]
 - No adaptation of the architecture



Iterative Updates - Framework



- Time in seconds till words appear
 - Brackets:
 - Words do not change anymore

	English- French	German-English
ASR - Static	4.9	5.7
ASR - Updates	1.7 (2.3)	1.6 (2.2)
MT - Static	7.5	8.6
MT - Updates	1.8 (3.3)	2.0 (5.3)

Adaptation to NMT

- Challenge:
 - NMT always tries to generate complete sentence
 - Example:
 - I encourage all of
 - Yo animo a todo el mundo .
 - Train-Test mismatch

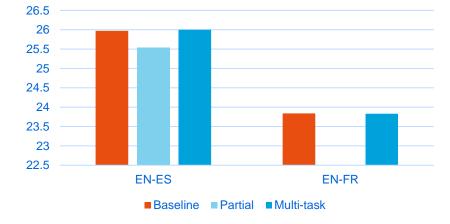
Adaptation to NMT

- Idea:
 - Train NMT on partial sentences
 - No parallel data available -> Generate artificial data
- Source data:
 - Every prefix of the sentence
- Target data:
 - Constraints:
 - As long as possible for low latency
 - Substring of previous prefix for few rewrites
 - Length-based
 - Same ratio of source and target sentence

Adaptation to NMT

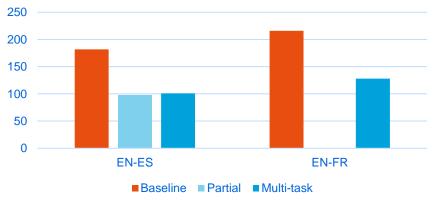
Source	Target
Ich	I
Ich bin	1
Ich bin nach	I went
Ich bin nach Hause	I went
Ich bin nach Hause gegangen	I went home

- Many more prefixes than full sentence
 - Concentrating on prefixes
- Multi-task training
 - Mix partial and full sentences (Ratio 1:1)



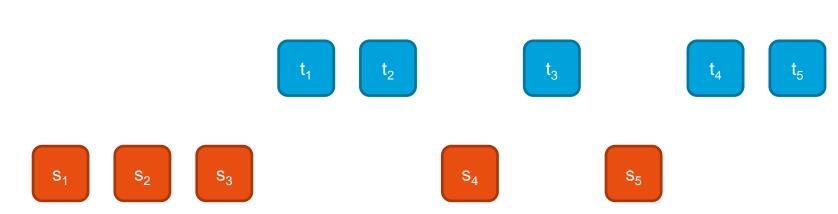
BLEU ↑

Word update↓



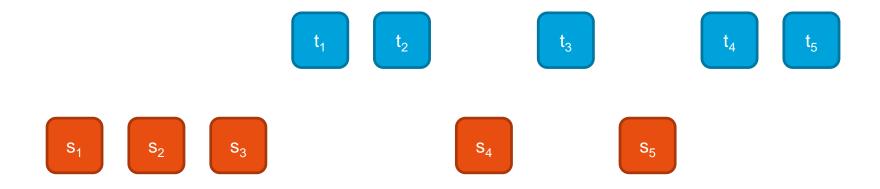
Stream decoding

- Idea:
 - At each time step:
 - Decided to output word
 - Wait for additional input
 - (Kolss et at., 2008)



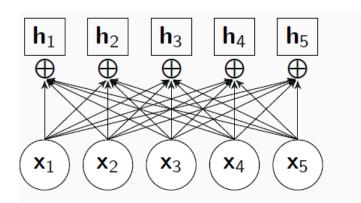
Stream decoding

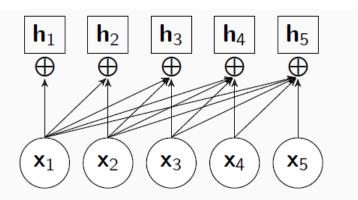
- Architecture:
 - Encoder-Decoder
- Challenges:
 - Encoder: Only past input is available
 - Decoder: Wait or Output



Stream decoding - Encoder

- Encoder:
 - No information of the future
 - LSTM:
 - Unidirectional
 - Attention:
 - Only attend to pervious states





Experiments

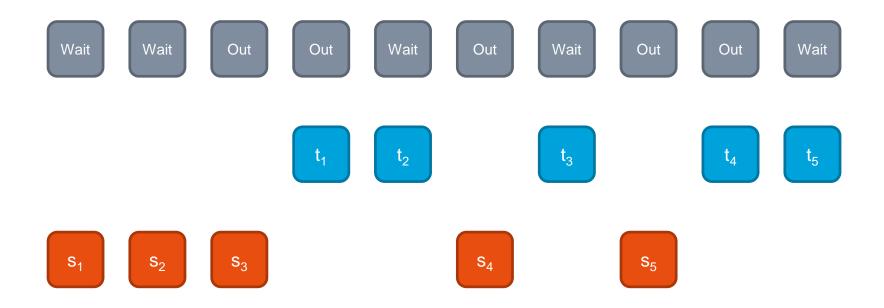
- Automatic speech recognition
 - 3 data set
 - Encoder-Decoder Model using 32 Encoding/ 12 Decoder layers
 - Metric:
 - Word Error Rate

Dataset	Unidirectional	Bidirectional
How2	14.4	14.9
TED	11.1	11.1
LibriVox	9.2	9.7

Attention Matrix

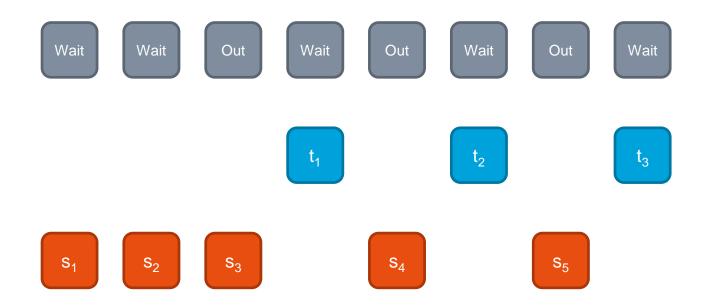
Stream decoding - Decoder

- Methods:
 - Dynamic decision [Cho et al, 2016; Gu et al, 2017; Dalvi et al, 2018]



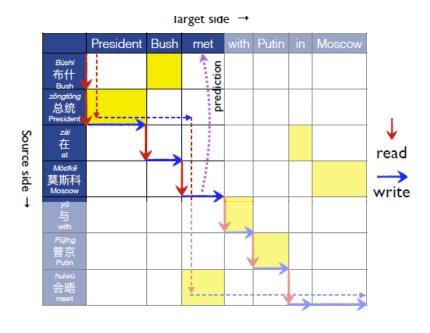
Stream decoding - Decoder

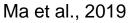
- Methods:
 - Dynamic decision Cho et al, 2016; Gu et al, 2017; Dalvi et al, 2018
 - Fixed schedule (Ma et al, 2019)
 - Wait-k policy



Stream decoding - Decoder

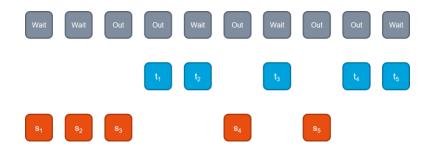
- Methods:
 - Dynamic decision Cho et al, 2016; Gu et al, 2017; Dalvi et al, 2018
 - Fixed schedule (Ma et al, 2019)
 - Wait-k policy





Relation to iterative Update

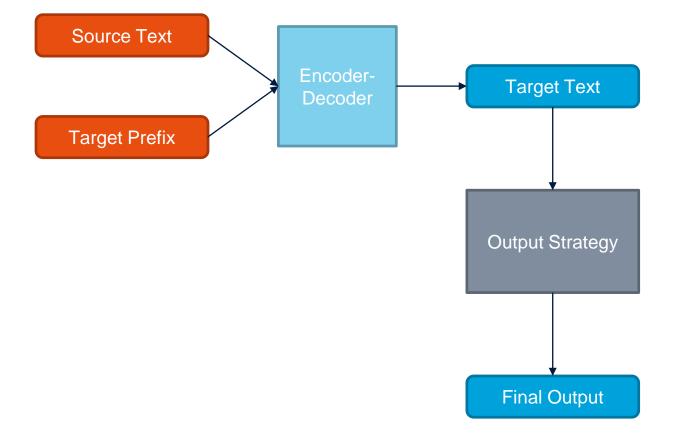
• Decoding with fixed target prefix



Chunks	Displayed	Output
S ₁	Ø	Ø
S ₁ ,s ₂	Ø	Ø
S ₁ ,s ₂ , s ₃	Ø	t ₁ ,t ₂
S ₁ ,s ₂ , s ₃ ,s ₄	t ₁ ,t ₂	t_1, t_2, t_3
S ₁ ,s ₂ , s ₃ ,s ₄ ,s ₅	t_1, t_2, t_3	t_1, t_2, t_3, t_4, t_5

Relation to iterative Update

• Decoding with fixed target prefix



Stream decoding strategies

- Wait-k
 - Wait for k seconds
 - Then output with fixed rate

Input	Prefix	Target Text	Final Output
1	Ø	All model trains	Ø
1,2	Ø	All model art	All
1,2,3	All	All models are wrong	All models
1,2,3,4	All models		

Stream decoding strategies

- Hold-n
 - Do not output last n tokens

Input	Prefix	Target Text	Final Output
1	Ø	All model trains	All model
1,2	All model	All model art	All model
1,2,3	All model	All model are wrong	All model are
1,2,3,4	All model are		

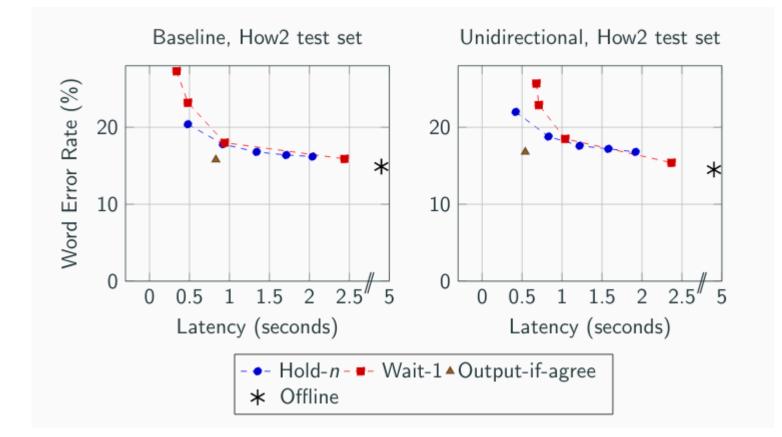
Stream decoding strategies

- Local agreement [Liu et al, 2020]
 - Output if previous and current output agree on prefix
 - Variation [Yao et al., 2020]:
 - Predict the next source word instead of relying on the previous input

Input	Prefix	Target Text	Final Output
1	Ø	All model trains	Ø
1,2	Ø	All models art	All
1,2,3	All	All models are wrong	All models
1,2,3,4	All models		

Latency vs. Accuracy

• Speech recognition results

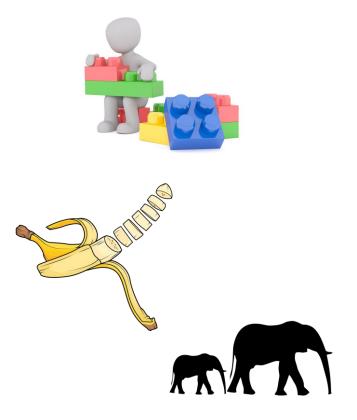


Speech Translation

	BLEU	Latency diff.
Offline	44.5	4.36
Hold-2	37.3	0.48
Hold-4	42.2	0.95
Local Agreement	42.1	0.71

Summary

- Speech translation
 - Cascade models
 - End-to-End architecture
- Challenges
 - Segmentation and Punctuation
 - Simultaneous Translation
 - Shorter Segments
 - Stream decoding
 - Iterative updates



Thanks

